INSTALACIÓN DE EQUIPOS DE GENERACIÓN ELÉCTRICA (SOLAR FOTOVOLTAICA Y EÓLICA) EN LA CIUDAD DE REUS

1. MEMORIA DESCRIPTIVA

AUTOR: MANUEL CUENCA ROIG. DIRECTOR: LLUÍS MASSAGUÉS VIDAL.

1 MEMORIA DESCRIPTIVA
1.1 OBJETO DEL PROYECTO ... 5
1.2 TITULAR .. 5
1.3 DESTINATARIO .. 5
1.4 SITUACIÓN .. 5
1.5 ANTECEDENTES .. 5
 1.5.1 Actividad ... 5
 1.5.2 Edificaciones e Instalaciones .. 6
 1.5.3 Climatología de Reus .. 7
 1.5.4 Características del emplazamiento .. 7
1.6 POSIBLES SOLUCIONES Y SOLUCIÓN ADOPTADA 7
 1.6.1 Opciones a destacar en la instalación solar fotovoltaica 7
 1.6.2 Opciones a destacar en el estudio de la instalación eólica 8
 1.6.3 Conclusión ... 8
1.7 DESCRIPCIÓN GENERAL ... 11
 1.7.1 Generalidades ... 11
 1.7.2 Instalación solar fotovoltaica ... 12
 1.7.2.1 Características ... 12
 1.7.2.2 Módulos fotovoltaicos .. 13
 1.7.2.3 Estructura soporte .. 14
 1.7.2.4 Inversores .. 15
 1.7.2.5 Canalización de la línea eléctrica 15
 1.7.3 Instalación eólica ... 19
 1.7.3.1 Descripción ... 19
 1.7.3.2 Características funcionales .. 21
 1.7.3.3 Aerogenerador Bornay BK-12 24
 1.7.3.4 Diseño ... 25
 1.7.3.5 Características eólicas ... 26
 1.7.3.6 Frenado y maniobra ... 28
 1.7.3.7 Características de los equipos eléctricos 29
 1.7.3.8 Cuadro de control y protecciones 31
 1.7.3.9 Canalización de la línea eléctrica 34
1.7.3.10 Línea eléctrica. ... 35
1.7.3.11 Puesta a tierra. .. 36
1.7.3.12 Características básicas de cimentación... 37

1.8 PRESCRIPCIONES TÉCNICAS ... 38

1.9 PUESTA EN MARCHA Y FUNCIONAMIENTO .. 41

1.10 PLANIFICACIÓN Y PROGRAMACIÓN ... 43

1.11 RESUMEN DEL PRESUPUESTO .. 45

1.12 ANEXO: ESTUDIO BÁSICO DE SEGURIDAD Y SALUD...................... 46

1.12.1 Introducción... 46

1.12.2 Identificación de los riesgos. ... 48

1.12.2.1 Medios y Maquinaria.. 48

1.12.2.2 Trabajos previos. .. 48

1.12.2.3 Derribos.. 48

1.12.2.4 Movimientos de tierras y Excavaciones... 49

1.12.2.5 Cimientos.. 49

1.12.2.6 Estructura.. 50

1.12.2.7 Ramo de paleta. .. 50

1.12.2.8 Cubierta.. 51

1.12.2.9 Revestimientos y Acabados... 51

1.12.2.10 Instalaciones... 51

1.12.2.11 Relación no exhaustiva de los trabajadores que impliquen riesgos laborales... 52

1.12.3 Medidas de Prevención y Protección. ... 53

1.12.3.1 Medidas de Protección Colectiva. ... 53

1.12.3.2 Medidas de Protección Individual. ... 54

1.12.3.3 Medidas de Protección a Terceros... 54

1.12.4 Primeros auxilios... 54

1.12.5 Normativa aplicable... 55

Figura-1 Equipo de medida T-30 del instituto.. 6

Tabla-1. Características eléctricas de los módulos... 13
Tabla-2. Características físicas de los módulos.. 13
Tabla-3. Características de los inversores... 15
Tabla-4. Diagrama de Gantt... 44
1.1 OBJETO DEL PROYECTO

El presente proyecto tiene por objeto el diseño de una instalación solar fotovoltaica de 5 kW y de un sistema eólico, mediante un aerogenerador de baja potencia, en un instituto de enseñanza secundaria. Ambas instalaciones pretenden conectarse a la red eléctrica de baja tensión.

Para la consecución del diseño, ha sido necesario elaborar un estudio técnico-económico, compuesto por un análisis energético y una valoración económica, para posterior montaje y conexión a la red de baja tensión.

1.2 TITULAR.

El titular es el centro de enseñanza **I.E.S. Domènech i Montaner** de Reus, con N.I.F.: Q9355284B.

1.3 DESTINATARIO.

Departament d’Ensenyament de la Generalitat de Catalunya.

1.4 SITUACIÓN.

El centro de enseñanza está situado en la C/. **Maspujols, 21.**

REUS, (Tarragona).

43206.

1.5 ANTECEDENTES.

1.5.1 Actividad.

El recinto que nos ocupa desempeña funciones de carácter académico en Enseñanza Secundaria Obligatoria (E.S.O.), y diferentes especialidades de Ciclos Formativos, tanto de grado medio como superior, a través del Departament d’Ensenyament de la Generalitat de Catalunya.
1.5.2 Edificaciones e Instalaciones.

El instituto se compone de las correspondientes aulas de enseñanza para alumnos, así como distintos talleres-laboratorio para desarrollar conocimientos prácticos en cada una de las especialidades impartidas. También dispone de instalaciones deportivas, bar, servicios administrativos y sala de profesores, entre otras dependencias de menor uso.

Las instalaciones, en la actualidad tienen contrato de suministro en baja tensión con la Cía. Eléctrica FECSA, conectadas a la red eléctrica a través de la correspondiente acometida mediante sistema trifásico mas neutro, siendo los valores correspondientes de tensión, 380 V entre fases y 220 V entre fase y neutro.

Dicha acometida y equipo de medida se encuentran en una caseta de obra civil, siendo ésta limítrofe a un extremo de la parcela, cerca de la pista deportiva. Junto a la caseta, se halla de forma anexa uno de los centros de transformación de la zona.

El contrato de suministro eléctrico estipula una potencia contratada de 100 kW, tarifa 3.0 (de utilización normal), facturación de la potencia Modo 1 y discriminación horaria tipo 2 (contador de doble tarifa, h.punta y hrs.llano + valle).

El equipo de medida es del tipo T-30. Dispone de tres transformadores de intensidad monofásicos (uno por fase), relación 200/5, dos contadores trifásicos, uno de energía activa y el otro de reactiva, y un reloj horario, tal y como se aprecia en la figura 1.

![Figura-1 Equipo de medida T-30 del instituto.](image-url)
1.5.3 Climatología de Reus.

El clima es típicamente mediterráneo, con la peculiaridad del microclima producido por las cordilleras costaneras, sierras de Prades y del Montsant, equilibrado por el mar cercano y la vecindad del valle del Ebro.

En invierno el viento característico es el sereno, que proporciona un paisaje limpio y de gran luminosidad.

La temperatura media anual es de 16,3° y se sitúa entre 20° de máxima y los 12,5° de mínima.

Las precipitaciones máximas se registran en otoño, a menudo en forma de chubascos intensos.

1.5.4 Características del emplazamiento.

La parcela objeto de este proyecto se encuentra a las afueras de la ciudad, por la zona norte, cuya cota de altitud es ligeramente superior a la del núcleo urbano. Tanto la cara norte como la cara oeste de la parcela, están constituidas por una amplia zona descampada, sin barreras naturales ni artificiales, lo que facilita la libre circulación de viento y la penetración de la radiación solar.

Estas circunstancias favorecen que la parcela y sus edificaciones puedan adoptar la instalación de los equipos de generación eléctrica propuestos.

1.6 POSIBLES SOLUCIONES Y SOLUCIÓN ADOPTADA.

1.6.1 Opciones a destacar en la instalación solar fotovoltaica.

? Equipo de generación fotovoltaica mediante paneles fotovoltaicos Monocristalinos.

? Equipo de generación fotovoltaica mediante paneles fotovoltaicos Policristalinos.

? Instalación de un solo inversor capaz de asumir toda la potencia a entregar a la red.

? Instalación de dos inversores con objeto de repartir la potencia a entregar a la red.

? Colocación del equipo inversor en la caseta de interconexión.

? Colocación del equipo inversor en el interior del edificio de generación fotovoltaica.
Colocación del equipo inversor en la planta cubierta del edificio de generación fotovoltaica.

Trazo línea eléctrica de la planta cubierta del edificio, canalizado por el voladizo vertical de la edificación superficialmente hasta caja de conexiones.

Trazo línea eléctrica, comprendido entre planta cubierta y edificio, canalizado por fachada superficialmente.

Trazo línea eléctrica comprendido entre planta cubierta y edificio, canalizado por fachada de forma empotrada.

Trazo línea eléctrica, comprendido entre planta cubierta y edificio, canalizado superficialmente por el interior del edificio hasta la posible ubicación del equipo inversor.

Trazo línea eléctrica comprendido entre edificio y caseta de acometida-medición, canalizado de forma enterrada.

1.6.2 Opciones a destacar en el estudio de la instalación eólica:

- Equipo de generación eólica mediante aerogenerador de 3 kW.
- Equipo de generación eólica mediante aerogenerador de 6 kW.
- Equipo de generación eólica mediante aerogenerador de 10 kW.
- Equipo de generación eólica mediante aerogenerador de 12 kW.
- Equipo de generación eólica mediante aerogenerador de 15 kW.

1.6.3 Conclusión.

Dada la ubicación de la caseta que contiene el equipo de medición y el embarrado donde se realizará la interconexión, cabe la necesidad de situar ambas instalaciones no muy alejadas de ella, para disminuir en lo posible las distancias de las líneas eléctricas correspondientes. Pero esta necesidad se ve condicionada en cada una de las instalaciones por motivos diferentes:

En relación a la instalación fotovoltaica: algunas de las edificaciones se encuentran a una distancia considerable de la caseta de interconexión. Por ello se propone situar la instalación fotovoltaica en la planta cubierta del ala Noreste del recinto, siendo ésta la correspondiente al gimnasio, cuya distancia hasta la caseta es la más favorable. Para mejor localización consultar plano nº5.

Puesto que se trata de un edificio ya construido, se buscará en todo momento una conjunción adecuada entre los aspectos constructivo y energético, de forma que el resultado final sea el más conveniente desde ambos puntos de vista.
En relación a la instalación eólica: para su realización debe tenerse en cuenta una posible ubicación para evaluar los costes de instalación. Debido a que en la zona de la caseta se encuentra la pista deportiva, ello supone un pequeño riesgo en la situación del aerogenerador, debido a hipotéticos impactos ocasionados por balones de fútbol. Por ello se propone situar la instalación eólica en una pequeña superficie de terreno al norte del gimnasio, junto a la zona ajardinada.

La consecución de estos aspectos, junto a las generalidades del proyecto destacadas en el siguiente punto (1.7.1), y asociado a una alta calidad de suministro eléctrico, implica la utilización de equipos y materiales de la más alta calidad, que además permitan garantizar en todo momento la seguridad tanto de las personas como de la propia red y los restantes sistemas que están conectados a ella.

Atendiendo a las posibles soluciones, se ha optado por la utilización de módulos fotovoltaicos Monocristalinos, por ser los de mayor rendimiento, pequeño tamaño y ligeros.

Se ha propuesto la utilización de un kit inversor de dos unidades comercializado íntegramente para la conexión de equipos fotovoltaicos a la red, dadas sus características técnicas y nuestras necesidades. Se ubicará en la planta cubierta del edificio que albergará los módulos fotovoltaicos.

Dado que el equipo inversor se colocará en la planta cubierta mencionada, el tramo de línea eléctrica se canalizará superficialmente por la fachada del edificio hasta la arqueta de enlace con la canalización enterrada, que unirá el edificio con la caseta de acometida-medición.

En cuanto a los diferentes aerogeneradores propuestos, se ha optado por instalar el Bornay BK-12, tras comprobar en los estudios, que es el más rentable.

Es un aerogenerador, que permite con su tecnología de poco peso y elevada inercia mecánica, aprovechar un emplazamiento con vientos de velocidad baja desde 3 m/s, pudiendo alcanzar su potencia nominal a tan solo 12 m/s.

Tecnología totalmente española que permite obtener la potencia nominal con velocidades de viento bajas.

El aerogenerador proyectado es ligero, 155 kg, sus palas miden 3,5 metros de radio y pesan unos 20 kg cada una., es autoorientable, lo cual le mantiene siempre colocado frente al viento, ya que está diseñado para funcionar con veleta, no precisando de complicados motores de orientación.

El alternador montado en el aerogenerador BORNAY BK-12 es un alternador trifásico de imanes permanentes de eje prolongado, tipo intemperie, y dado que el rotor del aerogenerador gira a velocidad variable, se mantendrá siempre acoplado a la red mediante un inversor trifásico, suministrando energía a la red.
Otra característica del aerogenerador empleado es la ausencia de dispositivos interiores, ya que utiliza un simple alternador de intemperie, no requiere freno, ni sofisticados mecanismos de orientación, ni embragues. No precisa, pues, del aparatoso habitáculo de maquinaria situado en lo alto de la torre (gondola), lo cual le hace mucho más económico y fácil de montar, con muchas menos posibilidades de avería, mucho menor impacto visual y un mantenimiento fácil.

La fabricación del aerogenerador es totalmente nacional y sin complicados componentes procedentes de otros países, con lo cual, la disponibilidad tanto tecnológica como de elementos de recambio es total.

Dado el diseño de las palas, este aerogenerador permite ser adaptado al viento de cada emplazamiento, mejorando con ello el rendimiento final de la instalación eólica.

Dado que la velocidad media de los vientos en la zona es baja, del orden de los 3-7 m/s, otros aerogeneradores tienen un rendimiento muy bajo, mientras que el aerogenerador BORNAY BK-12 presenta un rendimiento apropiado con este rango de velocidades.

Dado que el giro de las palas produce energía directa en el intervalo de 3 a 14 m/s, esto se refleja en las r.p.m. del alternador, y en definitiva en su potencia. Por tanto, no es preciso esperar los interminables períodos de acoplamiento de los aerogeneradores convencionales, ni sus continuos desacoplamientos por bajar la velocidad de giro de las hélices. Todo ello significa una mayor aportación de energía a la red y unos transitorios de conexión-desconexión incomparablemente menores, permitiendo así una mayor estabilidad de la red.

Las características señaladas del aerogenerador propuesto, según su diseño, hacen que resulte de una mayor capacidad productiva y rendimiento energético, un menor coste de adquisición, de mantenimiento y de explotación, y en consecuencia, una mayor rentabilidad económica.

El carácter modular del aerogenerador propuesto, le permite, en caso de mantenimiento o reparación, el descenso del conjunto giratorio a nivel del suelo para efectuar las operaciones, siendo por ello más practicables, fáciles y económicas.

Debido a que durante el proceso de fabricación, las palas se consiguen mediante un sistema de pultrusión a perfil constante, éstas no presentan el problema de la rotura por fatiga, que tienen las palas convencionales de capas fibra y resina, las cuáles, al cabo de ciclos y ciclos de funcionamiento, se quiebran por fatiga en la flexión.

La envergadura del aerogenerador propuesto frente a la de los aerogeneradores convencionales de igual potencia, es menor por tener un mástil ligero, aproximadamente la mitad, y al ser de tres hélices rápidas, en este caso, como en los convencionales. Esto supone una gran ventaja desde el punto de vista ambiental.
1.7 DESCRIPCIÓN GENERAL.

1.7.1 Generalidades.

Como se enuncia al principio, el proyecto consiste en una instalación solar fotovoltaica de 5 kW, y de un sistema eólico, mediante un aerogenerador de baja potencia, ambos conectados a la red, en un instituto de enseñanza secundaria.

La instalación fotovoltaica será albergada por el edificio ya construido, y para la posible instalación eólica se dispone de una pequeña superficie de terreno en la parcela. Para mejor localización consultar plano nº5.

Ambos sistemas de aprovechamiento de recursos energéticos renovables no sólo cumplirán la función de ser elementos de producción de energía, sino que también se mostrarán como instrumentos pedagógicos, con los cuales poder dar ejemplo, complementando a través de su puesta en práctica, los objetivos previstos en asignaturas y materias relacionadas con el tema. Esto supondrá una demostración de las actuales aplicaciones y posibilidades de estas tecnologías tanto a alumnos, padres y ciudadanos, consiguiendo además inculcar una mentalidad de desarrollo tecnológico respetuosa con el Medio Ambiente.

La instalación global, servirá pues, de laboratorio de experimentación para los alumnos, y permitirá mostrar la viabilidad técnica de producir electricidad con la luz del sol y la fuerza del viento a escala local, sin generar los impactos ambientales asociados a otras tecnologías convencionales.

La energía solar fotovoltaica plantea enormes posibilidades para ser integrada en edificaciones ya existentes, lo cual evita la necesidad de encontrar nuevos emplazamientos donde ubicar instalaciones fotovoltaicas. Cualquier edificio, siempre que cumpla unos mínimos requerimientos de orientación y ausencia de sombras, puede ser un lugar adecuado para la instalación de un sistema fotovoltaico conectado a la red. Además, la incorporación de instalaciones fotovoltaicas en los entornos urbanos presenta una componente de difusión y demostración muy importante, ya que pueden ser accesibles a un elevado número de personas que, de esta forma, irían familiarizándose con este tipo de energías.

La instalación fotovoltaica puede incluirse en la Red de Escuelas Solares de Cataluña, una iniciativa promovida por el Institut Català d’Energia, que cuenta con la colaboración del Departament d’Ensenyament.
1.7.2 Instalación solar fotovoltaica.

1.7.2.1 Características.

La instalación fotovoltaica se caracteriza por ser simple, silenciosa, de larga duración, de elevada fiabilidad, apenas requiere mantenimiento y no produce contaminación ambiental.

Presenta tres subsistemas claramente diferenciados:

Grupo generador fotovoltaico: está formado por la interconexión en serie y paralelo de un determinado número de módulos fotovoltaicos, encargados de captar la luz del sol y transformarla en energía eléctrica, generando una corriente continua proporcional a la irradiación solar recibida.

Onduladores o Inversores: son dispositivos electrónicos, que basándose en tecnología de potencia transforman la corriente continua procedente de los módulos fotovoltaicos en corriente alterna, de la misma tensión y frecuencia que la de la red. De esta manera la instalación fotovoltaica puede operar en paralelo con la red.

Protecciones: esta parte representa y constituye una configuración de elementos que actúan como interfaz de conexión entre la instalación fotovoltaica y la red en condiciones adecuadas de seguridad, tanto para personas, como para los distintos componentes que la configuran. Por ello se requieren unas protecciones necesarias de acuerdo a lo estipulado en el Real Decreto 1663/2000 sobre conexión de instalaciones fotovoltaicas a la red de baja tensión. Asimismo, deben instalarse los elementos de facturación y medida de acuerdo al mismo Real Decreto.

De lo expuesto anteriormente se desprende que la electricidad obtenida en los módulos fotovoltaicos se inyectará en la red. Esto supone una circulación de corriente eléctrica, lo cual determina una potencia eléctrica a transportar a través de una línea eléctrica, desde el punto de generación hasta el punto de interconexión con la red.

Esta distancia se verá dividida eléctricamente en dos tramos según la naturaleza de la corriente: un primer tramo para suministrar corriente continua y un segundo tramo, tras realizar la conversión mediante los inversores, para suministrar corriente alterna.

Físicamente, el trazado de la línea se dividirá en tres tramos: primer tramo (instalación superior del tejado del edificio). Segundo tramo (instalación superficial entre tejado y fachada del edificio). Y tercer tramo (conducción enterrada desde el edificio hasta la caseta de acometida-medición).

El sistema consta, además, de las necesarias protecciones y la correspondiente instalación de puesta a tierra.

Así pues, la instalación queda estructurada como sigue:
1.7.2.2 Módulos fotovoltaicos.

Los módulos adoptados corresponden al fabricante español **ISOFOTON**, modelo I-159, elaborados con células de silicio monocristalino de elevado rendimiento. Sus principales características se expresan a continuación:

<table>
<thead>
<tr>
<th>Característica eléctrica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia máxima (Pmáx):</td>
<td>159 W</td>
</tr>
<tr>
<td>Tensión a máxima Potencia (Vmáx):</td>
<td>17,4 V</td>
</tr>
<tr>
<td>Tensión en circuito abierto (Voc):</td>
<td>21,6 V</td>
</tr>
<tr>
<td>Corriente a máxima potencia (Imáx):</td>
<td>9,14 A</td>
</tr>
<tr>
<td>Corriente en cortocircuito (Isc):</td>
<td>9,81 A</td>
</tr>
</tbody>
</table>

Tabla-1. Características eléctricas de los módulos

<table>
<thead>
<tr>
<th>Característica física</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura (mm)</td>
<td>1310</td>
</tr>
<tr>
<td>Ancho (mm)</td>
<td>969</td>
</tr>
<tr>
<td>Grueso (mm)</td>
<td>40</td>
</tr>
<tr>
<td>Peso (kg)</td>
<td>17</td>
</tr>
</tbody>
</table>

Tabla-2. Características físicas de los módulos

Los módulos fotovoltaicos se instalarán en la planta cubierta del gimnasio tal y como indica el plano nº6, cuya orientación corresponde al Sur. La inclinación de los módulos será de 51º con respecto al plano horizontal del tejado, y azimut 0º. El sistema consta de dos grupos conectados en paralelo, cada uno con 28 módulos fotovoltaicos. Dada la implantación física establecida en el plano nº6, se atribuyen dos trazados de asociación
eléctrica entre módulos, de manera que al final queden 28 módulos conectados en serie en cada grupo, conducidos hacia sus respectivos inversores.

1.7.2.3 Estructura soporte.

Uno de los elementos importantes en una instalación fotovoltaica, para asegurar un perfecto aprovechamiento de la radiación solar es la estructura soporte, encargada de sustentar los módulos solares y formar el propio panel, dándole la inclinación más adecuada, en este caso 51º sobre el plano horizontal de montaje, para que los módulos reciban la mayor radiación, consiguiendo un aumento en su eficacia.

Las estructuras se construyen con: perfiles de acero galvanizado en caliente, de más de 200 micras de espesor, previéndose una pequeña separación entre módulos con el fin de ofrecer menor resistencia al empuje del viento.

Para la protección contra las inclemencias del tiempo, se utiliza la galvanización en caliente frente a los tratamientos convencionales como la pintura, asegurándose una mayor duración y un mantenimiento nulo de la estructura. En el proceso de galvanización, el perfil es sumergido en un baño de zinc fundido. Como consecuencia de esta inmersión, el zinc cubre perfectamente los ángulos, bordes, soldaduras, etc... y penetra en los pequeños resquicios y orificios del material, confiriendo una protección completa a todas estas zonas que constituyen las partes débiles en otros procedimientos protectores de la corrosión.

Con este procedimiento conseguimos un recubrimiento tenaz y uniforme, formado por una capa externa de zinc puro que aisla completamente el acero de base del ambiente corrosivo.

Estas estructuras soporte están calculadas para resistir la acción del viento en las zonas específicas de la instalación de los sistemas fotovoltaicos, siguiendo las Normas Tecnológicas de la Edificación (NTE), dentro de la Norma Básica de la Edificación (NBE) en su apartado ECV –Cargas de Viento- del MOPTMA.

Según estas indicaciones y para adaptarse al espesor y dimensiones de los módulos empleados, los perfiles utilizados para la construcción de la estructura, son del tipo L 50,40,5,8.

Dado que su adquisición es en tiras lineales, de éstas se irán cortando los trozos correspondientes para conformar el entramado, obteniendo 2 perfiles posteriores de sustentación de 1,14 m por la parte posterior del módulo, y 2 perfiles soporte situados bajo el módulo de 1,42 m, formando el correspondiente ángulo de inclinación $\beta = 51^\circ$. Además se cortarán trozos de 30 cm para formar los anclajes situados en la base de montaje, quedando unidos a los dados de hormigón armado, previamente encofrados. Para más información consultar plano de detalles.
1.7.2.4 Inversores.

Para la conversión de la corriente continua generada por los módulos fotovoltaicos en corriente alterna, de las mismas características (tensión y frecuencia) que la de la red, se utilizarán 2 inversores de 2500 W de potencia máxima.

Cada inversor irá conectado a uno de los dos grupos en que se divide el generador fotovoltaico. De esta manera se adecua la corriente generada por el sistema fotovoltaico a las características de la corriente que circula por la red, siendo posible la operación en paralelo de ambos sistemas.

Los dos inversores elegidos corresponden al modelo SUNNY BOY 2500. Se caracterizan por ser tecnológicamente muy avanzados y cumplir con los requerimientos técnicos y de seguridad necesarios para su interconexión a la red de baja tensión.

Sus características técnicas y físicas se especifican a continuación:

<table>
<thead>
<tr>
<th>Característica</th>
<th>valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia máxima de salida</td>
<td>2.500 W</td>
</tr>
<tr>
<td>Rango de tensión DC de entrada</td>
<td>250-600 Vdc</td>
</tr>
<tr>
<td>Rango de tensión AC de funcionamiento</td>
<td>196-253 Vac</td>
</tr>
<tr>
<td>Rango de frecuencias de red</td>
<td>49-51 Hz</td>
</tr>
<tr>
<td>Tasa de Distorsión Armónica (THD)</td>
<td>< 4%</td>
</tr>
<tr>
<td>Rendimiento aproximado</td>
<td>93%</td>
</tr>
<tr>
<td>Dimensiones</td>
<td>434x295x214 mm</td>
</tr>
<tr>
<td>Peso</td>
<td>34 kg</td>
</tr>
</tbody>
</table>

Tabla-3. Características de los inversores

1.7.2.5 Canalización de la línea eléctrica.

La canalización está dividida físicamente en tres tramos, según la distribución y trazado de la línea eléctrica: el primer tramo corresponde a la instalación superior de la planta cubierta del edificio. El segundo tramo comprende la instalación superficial entre planta cubierta y fachada del edificio. Y el tercer tramo corresponde a la conducción enterrada desde el edificio hasta la caseta de acometida-medición.

La canalización superior de la planta cubierta se realizará mediante tubo de acero de 25 mm, montaje superficial, intercalando las necesarias cajas de derivación para asociar los módulos fotovoltaicos según su distribución (ver plano nº6). Dichas cajas serán de P.V.C. tipo estancas y montaje superficial.
Para la canalización superficial se empleará tubo.

Y finalmente, la canalización enterrada se efectuará a través de una zanja, cuyo trazado se indica en el plano nº5, dicha zanja tendrá una anchura y una profundidad de 0,60 y 0,80 metros, respectivamente, según lo establecido en el Reglamento Electrotécnico de Baja Tensión.

La excavación de la zanja se ejecutará de forma que no resulten dañadas posibles instalaciones existentes, ni los árboles cercanos al recorrido. El trazado entre el edificio y la caseta contiene un cambio de dirección, a fin de mantener intacta la cimentación de la pista deportiva.

En el punto designado del trazado se intercalará una arqueta de registro de fundición de 600 x 600 mm, con objeto de que pueda confluir hasta ella la canalización enterrada correspondiente a la instalación eólica.

Realizada la zanja, se colocará una primera capa de arena cribada de unos 10 cm y se compactará. Seguidamente se colocará un tubo coarrugado de 90 mm para la conducción establecida, manteniendo su posición en el centro de la zanja. El tubo coarrugado contendrá un alambre guía para facilitar el paso de los cables posteriormente.

A partir de aquí se empezará a rellenar la zanja hasta unos 10 cm por encima del tubo coarrugado, y se volverá a compactar.

Después se colocarán placas de identificación de instalaciones enterradas, y finalmente se acabará de rellenar la zanja con la tierra sobrante de la primera excavación, en dos capas, para ir compactando la parte superior.

1.7.2.6 Línea eléctrica.

La línea está dividida eléctricamente en dos tramos según la naturaleza de la corriente: un primer tramo para suministrar corriente continua y un segundo tramo en corriente alterna, tras realizar la conveniente transformación mediante los inversores.

Como norma general los conductores serán de cobre y tendrán la sección adecuada para asegurar caídas de tensión inferiores al 1,5 %, tanto para el tramo de continua como para el tramo de alterna.

El tramo de corriente continua corresponde a la energía eléctrica producida mediante el grupo generador fotovoltaico, que comprende cada una de las derivaciones para asociar los módulos fotovoltaicos, canalización superior a través de la planta cubierta hasta el armario donde se ubican los dos inversores.

Dicha línea es tripolar (3 cables), uno correspondiente al polo positivo, otro al polo negativo y otro al conductor de protección. Para la identificación de los conductores se utilizarán cuatro colores, siendo el rojo el indicativo del polo positivo, el negro el indicativo del polo negativo y el amarillo-verde el del conductor de protección.

Se emplearán conductores flexibles de cobre de doble aislamiento de sección 2 x 10 + 10 mm².
El tramo de corriente alterna comprende la salida de los inversores del armario eléctrico que los contiene hasta llegar al cuadro de embarrados de la caseta de acometida-medicación, donde se realizará la interconexión con la red.

Dicha línea es monofásica, siendo uno de los conductores el de fase y el otro el neutro. Para la identificación de los conductores se utilizarán dos colores característicos, siendo el gris el indicativo del conductor de fase y el azul claro el indicativo del conductor neutro.

Se emplearán conductores flexibles de cobre de doble aislamiento de sección 2 x 25 mm².

Para el conductor de protección se adopta otra sección por realizar su trazado por otro lugar de menor longitud. Su descripción se detalla en el punto (1.7.2.8).

1.7.2.7 Protecciones.

En el diseño de la instalación fotovoltaica conectada a la red ha de garantizarse, por un lado, la seguridad de las personas, tanto usuarios como operarios de la red, y por otro, que el normal funcionamiento del sistema fotovoltaico no afecte a la operación ni a la integridad de otros equipos y sistemas conectados a dicha red.

La conexión a la red de la instalación fotovoltaica será monofásica en baja tensión. Para realizar dicha conexión se cumplirán las consideraciones técnicas referentes a protecciones y seguridad, de acuerdo a la normativa vigente (RD 1663/2000).

A tal efecto, la instalación fotovoltaica dispondrá de medidas de seguridad y protecciones, tanto para la parte de corriente continua como para la de corriente alterna.

Parte de continua

Estará protegida contra contactos directos, de manera que los elementos activos deben ser inaccesibles. Para lograr este aislamiento se utilizarán cajas de conexión debidamente protegidas, que no permitan el acceso a su interior y cables de doble aislamiento.

Se colocarán, además, fusibles seccionadores. Son elementos de corte cuya función principal será la de aislar grupos concretos de la instalación, pudiendo así separar cada una de las ramas del resto del generador, facilitando labores de mantenimiento y aislamiento de partes defectuosas.

Parte de alterna

Se instalará un interruptor general magnetotérmico de accionamiento manual, tipo bipolar de 40 A, fijado sobre perfil DIN, con una intensidad de cortocircuito superior a la indicada por la compañía eléctrica distribuidora en el punto de conexión. Este interruptor
será accesible a dicha compañía en todo momento, con objeto de poder realizar la desconexión manual.

También se dotará al sistema de protección diferencial para la protección frente a contactos indirectos, mediante la colocación de un interruptor automático diferencial bipolar de 40 A y sensibilidad 30 mA, con objeto de proteger a las personas en caso de derivación de cualquier elemento de la instalación. Se fijará sobre perfil DIN.

Interruptor automático de interconexión para la conexión-desconexión automática de la instalación fotovoltaica en caso de pérdida de tensión o frecuencia de la red. Incorporará relé de enclavamiento accionado por variaciones de tensión.

Protección para la interconexión de máxima y mínima frecuencia (51 y 49 Hz, respectivamente), y de máxima y mínima tensión (1,1 Um y 0,85 Um respectivamente).

El rearme del sistema de conmutación para la conexión de la instalación con la red de baja tensión será automática una vez reestablecida la tensión de red por la compañía eléctrica distribuidora, con un retardo mínimo de 3 minutos mediante un relé con retardo a la conexión.

1.7.2.8 Puesta a tierra.

Se conectarán a tierra todas las masas de la instalación fotovoltaica, tanto de la parte de continua como de la de alterna. Se realizará de forma que no se alteren las condiciones de puesta a tierra de la red de la compañía eléctrica distribuidora, asegurando que no se produzcan transferencias de defectos a la red de distribución.

La estructura soporte, y con ella los módulos fotovoltaicos, se conectarán a tierra con motivo de reducir el riesgo asociado a la acumulación de cargas estáticas. Con esta medida se consigue limitar la tensión que con respecto a tierra puedan presentar las masas metálicas. También permite a los interruptores diferenciales la detección de corrientes de fuga, así como propiciar el paso a tierra de las corrientes de defecto o descarga de origen atmosférico.

La instalación presenta separación galvánica entre el grupo generador fotovoltaico y la red de distribución de baja tensión por medio de un transformador de aislamiento galvánico que incorpora el propio inversor utilizado.

La puesta a tierra queda como sigue:

Derivaciones de la línea principal de tierra: correspondientes a los diferentes tramos procedentes de cada uno de los grupos de estructuras soporte de los módulos fotovoltaicos hasta llegar al armario de inversores. La sección de los conductores de protección es la misma que la de los conductores activos o polares: 10 mm².

Línea principal de tierra: enlazará el cuadro de inversores con el punto de puesta a tierra. Su sección será como mínimo de 16 mm² para conductores de cobre aislado,
Memoria Descriptiva

canalizándose bajo tubo de 16 mm, mediante montaje superficial por la fachada norte del edificio. El tubo será de P.V.C. curvable en caliente con grado de protección mecánica.

Punto de puesta a tierra: punto situado en el suelo, en una pequeña arqueta, que sirve de unión entre la línea principal de tierra y la línea de enlace con tierra. Estará constituido por un dispositivo de conexión (regleta, placa, borne, etc.), que permita la unión entre ambos tramos, de forma que pueda, mediante útiles apropiados, separarse éstas, con el fin de poder realizar la medida de la resistencia de tierra.

Línea de enlace con tierra: está formada por los conductores que unen los electrodomos con el punto de puesta a tierra.

Electrodos: los forman 2 picas y el conductor enterrado horizontalmente que las une. Las picas son barras de cobre o acero de 14 mm de diámetro como mínimo. Si son de acero, están recubiertas de una capa protectora exterior de cobre de espesor apropiado. Su longitud es de 2 m y la separación entre una y otra es superior a su longitud. Para consultar su disposición física ver plano de detalles.

El conductor enterrado horizontalmente es un cable de cobre desnudo de sección 35 mm².

1.7.3 Instalación eólica.

1.7.3.1 Descripción.

La instalación eólica propuesta estará constituida por un aerogenerador trifásico de 12 kW. Su modelo comercial responde a la referencia BK-12.

El aerogenerador BK-12 es de patente y fabricación totalmente española. Fabricante: BORNAY Aerogeneradores.

Aerogenerador:

El rotor de este aerogenerador es tripala, se puede tener repuesto siempre, y se puede recambiar en el suelo o en la torre en cualquier momento sin mucho esfuerzo con una pequeña grúa pluma de 1.000 kg.

Una pala del rotor mide 3,5 metros, y pesa aproximadamente 20-30 kg, mientras que en los aerogeneradores convencionales, cada pala pesa del orden de 170 kg. Toda la pala es de fabricación nacional, al igual que el resto del aerogenerador, y se puede tener un repuesto en un breve período de tiempo. Ésta puede cambiarse con facilidad con un coste muy bajo, casi insignificante, mientras que el recambio de una pala de fibra de vidrio
La pala con contrapeso en el centro de percusión, adapta su perfil y plano a la presión instantánea del viento.

Como ya se ha indicado, se utiliza una turbina de potencia regulable por cambio de paso centrífugo; este tipo de turbina supone una concepción totalmente distinta de las hasta ahora existentes para las turbinas eólicas debido a su modernidad y a su mejor rendimiento.
Es una turbina eólica de 3 hélices, es decir, tripala, con un diámetro de rotor alrededor de 7 metros.

Las hélices están constituidas por un armazón de poliéster y fibra pultrusionado con un alma central de tejido triaxial. Van unidas al soporte de acero elástico, sobre el cual se calan las palas al bastidor central, y mediante un perfil de goma de poliuretano-epoxi y tornillería de acero inoxidable, que constituye el soporte principal de las palas en la línea de fatiga.

La estructura del molino se soporta sobre la torre, fijándose a ella mediante eje vertical y cojinetes. Esto permite girar 360° libremente. El mástil principal soporta la cabeza del rotor y forma con el eje de giro de la máquina un ángulo de 12° con respecto a la horizontal. En el otro lado dispone de un contrapeso, que es la propia veleta, con sus amortiguadores de goma para la desorientación por exceso de viento.

En la cabeza del rotor se sitúa la trompeta, con las palas, el morro aerodinámico, el contrapeso de regulación centrífuga y el alternador, accionado por el rotor a través de un eje directo, formando un conjunto integrado. Este conjunto se une a la torre a través de un eje de giro con rodamientos y anillos colectores y doble juego de escobillas para evitar el arrollamiento de los cables de bajada. Este eje de giro, que va montado sobre un cojinete, permite la orientación de la turbina, y el eje hueco permite el paso de cables hacia abajo.

Las palas, que forman un triedro de 15° respecto a la perpendicular al eje, se unen a la cabeza del rotor mediante un prisma de acero elástico, ligeramente plegado y solidariamente unido con la cabeza de rotor proporcionando así, un aumento del área proyectada al viento y una disminución de la sombra de las palas con la torre, lo que ayuda a controlar la potencia de la máquina ante vientos fuertes, y separa las palas del influjo de la torre.

El sistema desorientador sólo se produce cuando el viento excede de una velocidad predeterminada, en este caso 14 m/s, limitando la potencia máxima de la máquina, y desorientándola.

Cuando el generador empieza a girar, se produce el acoplamiento a la red de la compañía distribuidora, comprobando los sistemas de seguridad, que la ley estipula y los especificados por la compañía.

1.7.3.2 Características funcionales.

Aerogenerador

Se trata de un aerogenerador autoorientable, con veleta, con velocidad variable en el rotor, y una constitución ligera.
La estructura del aerogenerador se sitúa inclinada y apoyada sobre la torre mediante un eje libre giratorio. El mástil principal que soporta la cabeza del rotor forma un ángulo ideal. Esta disposición minimiza las fatigas en régimen de trabajo y posibilita la auto-orientación. El par de giro de la turbina es función del brazo sobre el que se aplica el empuje axial con respecto al eje de giro de la máquina.

Gracias al efecto de autoorientación, se logra que el aerogenerador esté perfectamente orientado en condiciones de trabajo, mejorando así el rendimiento.

Para desorientar la máquina voluntariamente o para su parada partiendo de la posición de reposo, dispone de una sirga acoplada a la veleta.

En la cabeza del rotor, se sitúa el alternador accionado por el rotor a través de un solo eje de peso aproximado 380 kg. Este conjunto se une al mástil de la veleta con un bulón que le permite oscilar en un ángulo de 105º, controlando su giro por un contrapeso sin muelles.

Las palas se unen a la cabeza del rotor mediante un flector. Este giro sólo se produce cuando el viento excede la velocidad nominal, limitando la potencia máxima de la máquina.

En este tipo de aerogeneradores, la potencia máxima se produce a 12 m/s.

Transformador

El aerogenerador dispone de una unidad de transformación de energía eléctrica, compuesta por transformador de potencia, control y protección, cuya ubicación es fija en la caseta distante en la que se encuentra el actual equipo de medida del instituto.

Torre

Hay que tener en cuenta, que los aerogeneradores convencionales están sujetos a una torre recta que tiene que ser capaz de soportar un gran par de fuerza, proporcional a la altura de la torre y a la presión del viento sobre el rotor. El aerogenerador BK-12 puede ser instalado sobre cualquier torre capaz de soportar una presión lateral de 1.250 kg.

En este caso, la fuerza del viento sobre el rotor se compensa en gran parte por la desorientación de la veleta, con lo cual la torre trabaja menos, de manera que ésta no tiene por qué ser tan robusta, ni su cimentación tan grande, lo que supone una ventaja medioambiental desde el punto de vista del impacto visual. Asimismo, en cuanto a la cimentación, lógicamente tiene unas dimensiones mucho menores, bastando con una pequeña cimentación de unos catorce metros cúbicos de hormigón.

Por otro lado, un aerogenerador convencional tiene gran cantidad de elementos funcionales en su góndola, y por ello la torre tiene que tener un acceso interior (escalera). El aerogenerador propuesto se puede bajar a voluntad con una pequeña pluma, permitiendo
su reparación y mantenimiento en el propio suelo, eliminando la necesidad de escalera interior de acceso, etc. La góndola o habitáculo de máquinas en cabeza no existe.

Captación

El diseño del aerogenerador, en el que las palas se disponen en un diedro de 12°, el centro de percusión de la pala coincide con el centro del empuje aerodinámico de la misma. Esto hace que la resultante entre el empuje del viento y la fuerza centrífuga coincida con la línea longitudinal de la pala, por lo que ésta está sometida a esfuerzos mucho menores.

Por otro lado, los aerogeneradores convencionales no aprovechan bien los vientos bajos por la elevada inercia que tienen que vencer, dado su peso y la necesidad de llegar a un determinado número de vueltas para lograr el sincronismo con la red.

En este caso, con el aerogenerador propuesto, los vientos bajos se aprovechan mejor, ya que desde muy pocas revoluciones del rotor, (desde un viento mayor de 3 m/s), éste se acopla a la red, dado que en el momento de arranque la pala presenta toda su superficie como un plano recto inclinado, logrando así un alto par de arranque.

Cuando la presión del viento sobre el rotor supera la del tarado centrífugo, la pala se desorienta de la perpendicular del viento entrando en pérdidas, disminuyendo su plano de exposición al viento, pero lo hace de un modo lento y controlado, proporcional a la fuerza del viento, permaneciendo en funcionamiento, y por lo tanto, aprovechando los vientos de velocidad superior a 14 m/s. En estas circunstancias, los aerogeneradores convencionales se ven obligados a parar para no destruirse a causa de la fuerza centrífuga y las sobreaceleraciones. Hay que destacar, que modificando el tarado de los contrapesos, se puede regular la potencia a extraer del viento.

La velocidad del viento a la que se obtiene la potencia de régimen se encuentra en el rango de 3 a 14 m/s, ya que no le conviene sobrepasar las velocidades en punta de pala superiores a 65 m/s. Además, se trata de un aerogenerador rápido cuya lambda (λ) oscila entre 4-8, permaneciendo ésta variable. Por este motivo, el número de horas de funcionamiento a potencia nominal es superior para el mismo emplazamiento con el aerogenerador propuesto, que con otro convencional.
1.7.3.3 Aerogenerador Bornay BK-12.

<table>
<thead>
<tr>
<th>Rotor:</th>
<th>Tripala orientado con veleta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control de Potencia:</td>
<td>Por empuje axial y variación de paso</td>
</tr>
<tr>
<td>Diámetro del rotor:</td>
<td>7 m</td>
</tr>
<tr>
<td>Altura del eje:</td>
<td>15 m</td>
</tr>
<tr>
<td>Área barrida:</td>
<td>Variable según la inclinación</td>
</tr>
<tr>
<td>Área barrida máxima:</td>
<td>38 m²</td>
</tr>
<tr>
<td>Velocidad de giro del rotor:</td>
<td>Variable 90-490 r.p.m.</td>
</tr>
<tr>
<td>Velocidad de viento nominal:</td>
<td>12 m/s</td>
</tr>
<tr>
<td>Transmisión:</td>
<td>Directa sin multiplicador</td>
</tr>
<tr>
<td>Potencia individual nominal:</td>
<td>12 kW</td>
</tr>
<tr>
<td>Orientación:</td>
<td>Autoorientable por el empuje del viento</td>
</tr>
</tbody>
</table>
| **Regulación:** | 1) Disminución parcial del área barrida
2) Variación de la carga eléctrica
3) Paso variable rotor |
| **Seguridad:** | Disminución total del área barrida y desorientado |
| **Frenado:** | Cortocircuito del generador |

1 Pala fibra epoxi con perfil aerodinámico y contrapeso equilibrado
1 Con brida intermedia para el cojinete
1 Cojinete
1 Placa de anclaje del cojinete al aerogenerador, con silent-blocs
1 Eje directo
1 Mástil
1 Contrapeso
1 Brida de anclaje a la zapata

Elementos auxiliares

1 Cuadro de mando y control
1 Caja de mando compacta
1 Convertidor / Inversor eléctrico
El cuadro dispondrá de entradas para los diferentes controles de operación y seguridad de la instalación y las salidas de los contactores de accionamiento y freno.

1.7.3.4 Diseño.

El aerogenerador propuesto es capaz de generar hasta 12,2 kW con una velocidad de viento de 14 m/s, a través de su rotor de 7 m de diámetro. Se caracteriza por su diseño, concepto fundamental, que permite a la máquina cambiar el paso y entrar en pérdidas aerodinámicas actuando dinámicamente sobre los contrapesos del rotor evitando sobreesfuerzos no deseados en la máquina cuando el empuje axial generado por el viento es muy elevado.

La diferencia de presión dinámica entre las caras anterior y posterior del rotor genera un empuje axial, parámetro que relaciona los valores de par y velocidad, que en definitiva condicionan la potencia de la máquina.

Controlando el empuje axial se controla la potencia máxima de este aerogenerador.

Cuando el empuje axial supera un valor prefijado, el conjunto rotor-contrapeso retuerce de forma controlada la pala, proporcionando una reducción del área proyectada en la dirección del viento y limitando la potencia captada por la turbina ante vientos fuertes, sin dejar de ceder su potencia nominal, hasta alcanzada la velocidad de frenado, (14 m/s).

No se trata pues, sólo de un sistema de seguridad ante vientos fuertes, sino más bien de un sistema de regulación y control de la potencia de la turbina.

El contrapeso actúa provocando un par que se contrapone al del empuje axial tratando de mantener la turbina en posición vertical pero con un paso límite por retorcimiento de la pala forzado por la fuerza centrífuga en la pala.

El conjunto rotor-mástil se asienta sobre una base que le permite posicionarse en vertical. Se apoya sobre la cara móvil de un casquillo-rodamiento anclado en la parte inferior de la columna, que sirve de soporte al conjunto de la torre y máquina.

Al igual que los diseños clásicos, la columna soporta directamente la cabeza del rotor, necesitando para cumplir su función una altura (envergadura) de un aerogenerador clásico, pero un peso menor, lo que permite una reducción importante de los esfuerzos a que esta máquina está sometida con relación a las máquinas convencionales.

Este concepto de máquina de regulación centrífuga minimiza los esfuerzos sobre la columna y a su vez sobre el terreno, ya que cuando la velocidad del viento excede de la nominal, el punto de aplicación del empuje axial con respecto al plano se reduce a un 15%, y a su vez, el área proyectada por el rotor, formará una elipse cuya base mayor coincidirá con el diámetro del rotor (7 m), y cuya base menor se afectará del coseno de 70º, quedando
un diámetro menor en la elipse de 2,5 m, lo que supone una reducción del área proyectada, es decir, un 16% del área proyectada al viento.

Una disminución de un 88% de los esfuerzos a soportar por el conjunto columna-zapata-terreno.

Resumiendo, los esfuerzos finales serían equivalentes a los de una máquina tradicional, cuyo rotor fuese de 3 m y se situase idealmente a una altura sobre el suelo de 11 m con una velocidad de viento de 10 m/s.

Como se acaba de ver, las ventajas de este diseño de turbina de regulación centrífuga permiten generar 12 kW, con vientos de 12 m/s y comportarse desde el punto de vista de esfuerzos como una máquina de 3 kW, cuyo rotor estuviese a 11 m de altura.

La fiabilidad de este diseño queda fuera de toda duda, ya que las propias fuerzas que genera el viento son empleadas en proteger la máquina teniendo una gran seguridad intrínseca de diseño.

Esta posibilidad de desorientación sirve para girar voluntariamente la máquina e incluso bajarla hasta el suelo, mediante un tractel, lo que facilita las operaciones de supervisión y mantenimiento, y que se realizan desde la plataforma de un camión a nivel del suelo.

Los argumentos aquí expuestos suponen a la vez que un aumento en la seguridad, una economía tanto en la fabricación de columnas fijas como de obra civil de zapatas, así como de las operaciones de mantenimiento.

El BK-12 está protegido contra la corrosión y fabricado con materiales de gran calidad como fibra de vidrio / carbono, acero inoxidable, y materiales bicromatizados, limitando su mantenimiento a una revisión anual de toda la tornillería, así como el engrase de las partes móviles.

Hay que destacar que el aerogenerador tiene una garantía de 2 años.

1.7.3.5 Características eólicas.

El rotor no tiene más misión que transformar la energía cinética del viento en trabajo mecánico (par*velocidad). Un rotor correctamente diseñado decelera la velocidad del viento dejando detrás de él 1/3 de la velocidad de llegada. Este efecto (intercambio de energía cinética entre el rotor y el fluido) debe lograrse comunicando al flujo de aire detrás del rotor la mínima rotacionalidad posible ya que ésta representa una energía perdida, por
eso la turbina es tripala de alta velocidad de rotación. El parámetro que liga estas variables se denomina lambda (λ), y relaciona la velocidad periférica de la punta de la pala con la velocidad de llegada del viento según la relación:

$$\lambda = \frac{V_{pta} \text{ pala}}{V_{viento}},$$

Al ser una turbina rápida, cede su potencia con un bajo par de fuerzas, condición fundamental para garantizar una calidad de la energía enviada a la red, al minimizar los efectos aceleradores de las ráfagas de viento sobre el rotor. Esta condición de bajo par de fuerzas en la cabeza del rotor disminuye los esfuerzos torsionales a soportar por la estructura, permitiendo un aligeramiento de la misma.

Por el contrario, esta alta velocidad de rotación genera un incremento en los esfuerzos centrífugos de las palas, condición que se aprovecha mediante la disposición en triédro de las mismas (es decir, que las palas describen una superficie cónica) para compensar los esfuerzos sustentadores, hasta conseguir que ambos se compongan resultando un esfuerzo dominante en la dirección del alma de la pala, por lo que ésta trabaja fundamentalmente a tracción.

Con el fin de alcanzar el requisito de decelerar las 2/3 partes de la velocidad del viento (Condición de Betz para máximo rendimiento), el ángulo de ataque de los perfiles aerodinámicos que conforman la pala deberá adaptarse al viento incidente en cada momento, por lo cual, el aerogenerador monta un rotor de paso variable centrífugo; esto supone modificar la orientación de la pala para que el coeficiente de sustentación del perfil aerodinámico esté siempre lo más cerca posible del ideal. Para conseguir este efecto, es decir, mantener un alto rendimiento en cualquier régimen de viento, el parámetro que actúa modificando el paso de la turbina es el empuje axial.

El empuje axial generado por la diferencia de presiones dinámicas entre la cara anterior y posterior del rotor es directamente proporcional al cuadrado de la velocidad del viento incidente, dad la breve duración de las ráfagas del viento, se necesita un sistema de alta rapidez de respuesta y baja histéresis que permita captar la energía instantánea de la ráfaga, traduciéndola a par motor. Esta rapidez en la respuesta se consigue gracias al efecto que produce el empuje axial sobre el rotor de paso variable centrífugo incorporado a esta nueva máquina.

El rotor traduce el empuje axial en una adaptación del ángulo de ataque de forma controlada, variando así el coeficiente de sustentación de la pala al necesario para captar las 2/3 partes de la energía de llegada. Ésta variación se consigue al oponerse elásticamente a las variaciones del empuje axial mediante el retorcimiento de la parte exterior del rotor de forma instantánea y desincronizada en cada pala.

La disposición de la pala, formando un triédro, mejora la condición de autoalineación del rotor con respecto al viento, al estar el punto de aplicación del empuje axial
por detrás del punto de oscilación, lo que permite concebir una máquina funcionando a sotavento, efecto buscado para cumplir la condición de auto-orientación.

A pesar de la disposición a sotavento, el diseño de la turbina eólica no acusa los efectos de resonancia producidos al pasar la pala por delante del mástil, gracias a la disposición en ángulo divergente de los mismos, lo que supone una separación entre mástil y pala, de casi 2 m en punta de pala, por lo que no existe ningún tipo de interferencia, ni fatiga por este fenómeno.

Los momentos de cabeceo producidos en el eje del rotor son absorbidos por los amortiguadores gracias al diseño oscilante del rotor. La oscilación se consigue al fijarse el rotor mediante gomas, permitiendo transmitir los esfuerzos derivados del empuje axial y el par de rotación. La amortiguación se realiza al comprimir los silent-blocs, especialmente diseñados para soportar los esfuerzos. El conjunto del rotor se une a la cabeza de rotor a través de rodamientos de gran diámetro encastrado sobre un placa base formando un bloque sólido que se une al mástil central a través de un conjunto de silentblocs que le confieren flotabilidad sin contacto metálico, aislando la cabeza de rotor de toda la estructura y evitando el ruido producido.

El soporte de las palas que constituyen la hélice del rotor está formada por un bastidor de acero endurecido sobre el que se calan los pernos de acero soldados.

Las palas tienen un alma interior triaxial colocada previamente en forma de resorte, de gran fortaleza. Su acabado se realiza por el procedimiento de pultrusión en fibra de vidrio preimpregnada con poliéster y fraguado a una temperatura de 150 ºC, consiguiendo así una gran calidad en la zona de la pala sometida a una alta velocidad.

Ambas partes se unen mediante unión articulada por epoxi-goma, que permite una autoalineación en la dirección de la resultante total de los esfuerzos a los que está sometida la pala. Esta solución supone un fácil transporte, manejo y montaje a la vez que elimina los esfuerzos de flexión no deseados en el centro de la pala, mejorando el rendimiento aerodinámico.

1.7.3.6 Frenado y maniobra.

La seguridad intrínseca del diseño de la turbina elimina la necesidad de un sistema de frenado de emergencia como sucede con los grandes aerogeneradores.

Si cualquiera de los detectores indicase un funcionamiento anormal de la máquina o una ausencia de red eléctrica, se procedería al frenado provocando un cortocircuito en los 6 cables de bajada del alternador, llegando hasta la posición de reposo.
La fase siguiente consiste en desorientar la máquina 90° produciéndose la parada del rotor. En este momento actúa un freno de enclavamiento que bloquea el rotor sin producir ningún tipo de esfuerzo ni calentamiento. Esta forma de frenado no conlleva ningún sobreesfuerzo ni desgaste en los elementos de la máquina.

Por tanto, se trata de un diseño intrínsecamente seguro gracias al concepto de desorientación, ya que aprovechan las mismas fuerzas que tienden a destruir la máquina para protegerla gracias al empuje.

1.7.3.7 Características de los equipos eléctricos.

Generador

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo</td>
<td>Síncrono de imanes permanentes, BORNAY.</td>
</tr>
<tr>
<td>Ejecución</td>
<td>IEC-397</td>
</tr>
<tr>
<td>Potencia</td>
<td>12 kW</td>
</tr>
<tr>
<td>Tensión</td>
<td>120 / 220 V</td>
</tr>
<tr>
<td>Cos φ</td>
<td>0,8</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Tipo de cojinetes</td>
<td>Rodamientos</td>
</tr>
<tr>
<td>Impregnación</td>
<td>VPI</td>
</tr>
<tr>
<td>Forma constructiva</td>
<td>V-10</td>
</tr>
<tr>
<td>Eje</td>
<td>Prolongado estándar</td>
</tr>
<tr>
<td>Tipo de protección</td>
<td>IP-54</td>
</tr>
<tr>
<td>Refrigeración</td>
<td>IC-01</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>94 %</td>
</tr>
<tr>
<td>Factor de servicio</td>
<td>S-1</td>
</tr>
<tr>
<td>Altitud</td>
<td>< 1000 m (sobre nivel del mar)</td>
</tr>
<tr>
<td>Tipo aislamiento</td>
<td>Clase F</td>
</tr>
<tr>
<td>Máxima temperatura ambiente</td>
<td>60ºC</td>
</tr>
<tr>
<td>Calentamiento</td>
<td>B</td>
</tr>
<tr>
<td>Peso</td>
<td>155 kg</td>
</tr>
</tbody>
</table>

Este alternador será suministrado por BORNAY Aerogeneradores, totalmente equipado para el montaje y acondicionamiento en la torre del aerogenerador eólico,
debiendo cumplir los requerimientos exigidos por el fabricante del mismo para quedar previamente probado con su turbina eólica en el taller.

Inversor

Para la conversión de la corriente continua rectificada por los diodos del puente de Graetz en corriente alterna, de las mismas características (tensión y frecuencia) que la del transformador, se utilizará 1 inversores de 15 kW de potencia máxima.

El inversor irá conectado a la línea trifásica procedente del aerogenerador, previa rectificación a corriente continua. De esta manera se adecúa la corriente variable generada por el sistema eólico a las características estables de la corriente que circulará por el transformador, y posteriormente por la Red Eléctrica de Baja Tensión.

El inversores a utilizar corresponde al modelo de aerogenerador propuesto, y también es aportado por la firma **BORNAY**, siendo su designación y parámetros:

Convertidor SVR15 III Senoidal

- **Potencia:** 15 kW
- **Tensión entrada:** hasta 300 Vcc
- **Tensión salida:** 220 Vca
- **Frecuencia:** 50 Hz

Se caracteriza por ser tecnológicamente muy avanzado y cumplir con los requerimientos técnicos y de seguridad necesarios para su interconexión a la red de baja tensión.

Transformador

El transformador de la energía para su conversión de 220 a 380 V III 50 Hz, tendrá la siguiente configuración:

Será de relación de transformación 220/380V, de marca homologada.

Formado por:

1 Celda tipo: para entrada – salida de línea.
1 Celda tipo: para interruptor automático de protección de transformador.
1 Celda tipo: con embarrado para protección y control.
1 Celda tipo: con embarrado y vacía para alojar los transformadores de medida.
Potencia: 16 kVA
Tensión de primario: 3 x 100 / 230 V
Tensión de secundario: 3 x 380 V
Separación galvánica: Protección contra descargas
Conexión bajo tapa
Frecuencia: 50 Hz
Baño: Aceite o aire
Instalación: Interior
Normas: UNE-21428

El transformador irá destinado en un espacio denominado celda, ubicado en la caseta-acometida del instituto, junto al cuadro que albergará el rectificador e inversor trifásico. Se adosará a la celda denominada cuadro de baja tensión, y cuyas características se especifican posteriormente. La celda del transformador quedará alojada sobre cuba de recogida de aceite y aislado mediante separación metálica de sujeción (mampara) y enclavamiento de apertura.

1.7.3.8 Cuadro de control y protecciones.

El conjunto estará formado por dos armarios normalizados. De ellos, uno corresponde a: protección y automatismo, y el segundo a: control medida.

Los paneles de control, protecciones y automatismo, serán dos armarios normalizados grado de protección IP-23, unidos por sus laterales y cerrados por puertas frontales y posteriores con cerraduras, techo elevado y ventilación natural.

En el armario destinado a conectar los equipos electrónicos, se alojarán los chasis soportes de los módulos, cuyo frente será visible a través de una ventana practicada en la puerta frontal y sellada con una placa transparente de metacrilato. Una vez abierta la puerta, quedarán accesibles sus órganos de ajuste.

Los armarios estarán fabricados en carpintería metálica o poliéster y fibra autoportante, basándose en perfiles de acero laminado en frío y planchas de acero o poliéster reforzado de 2 mm de espesor, salvo en las puertas o paneles frontales, que podrán ser mayores.
El tratamiento de superficies y el pintado se realizará de acuerdo con especificación EXIN-400.237, modalidad 2. El color será RAL (a elegir); el acabado podrá ser con texturado de grano fino en el exterior, para mejorar su presentación.

Todos los aparatos montados llevarán una etiqueta con la denominación con que aparecen en los esquemas funcionales.

El cableado de los circuitos auxiliares se realizará con cable no combustible de 1,5 mm² de sección para maniobra y 10/16 mm² para los circuitos de intensidad y potencia, recogiéndose todos ellos en canaletas de dimensiones apropiadas.

Como norma general, se dispondrán regletas terminales de llegada para todo el cableado, excepto para casos justificados en que pueden emplearse conectores.

Los terminales de conexión se marcarán con la borna y el aparato a que van conectados, a fin de facilitar labores de mantenimiento.

Todas las bornas irán numeradas para su fácil identificación, y no se conectarán más de dos conductores por borna, los cuáles irán provistos de su correspondiente terminal.

Tanto las regletas de bornas como los conectores para su interconexión con el exterior, irán convenientemente alojados en los laterales de los paneles en la parte trasera de los mismos, dejando sitio suficiente para el acceso y fijación de los cables del exterior. El acceso a estas regletas de bornas, tanto para realizar el conexionado como para comprobación y chequeo de los circuitos de interconexión, se realizará por la parte posterior del panel.

Los bornes de los circuitos de medida y protección serán todas accesibles y con puentes que permitan su fácil cortocircuito en el caso de los circuitos de intensidad.

La llegada de los cables se realizará por la parte inferior del armario.

En el interior de los armarios se dispondrá de un embarrado de tierra formado pro pletina de cobre, que recorrerá la carpintería metálica por su parte inferior. Este embarrado de tierra deberá ser embornado a la red general de tierras.

La ejecución de estos paneles cumplirá con las prescripciones de las normas CEI, así como con la legislación vigente para este tipo de material.
Alarmas

Defecto regulador/ disparo.
Falta tensión de control.
Tiempo de conexión sobrepasado.

Protecciones generales

Se instalará un interruptor general magnetotérmico de accionamiento manual, tipo tripolar de 40 A, fijado sobre perfil DIN, con una intensidad de cortocircuito superior a la indicada por la compañía eléctrica distribuidora en el punto de conexión. Este interruptor será accesible a dicha compañía en todo momento, con objeto de poder realizar la desconexión manual. Corresponde al bobinado de alta del transformador trifásico.

También se dotará al sistema de protección diferencial para la protección frente a contactos indirectos, mediante la colocación de un interruptor automático diferencial tripolar de 63 A y sensibilidad 30 mA, con objeto de proteger a las personas en caso de derivación de cualquier elemento de la instalación. Se fijará sobre perfil DIN. Además, se colocará otro interruptor magnetotérmico de accionamiento manual, tipo tripolar de 50 A, fijado sobre perfil DIN. Tanto el interruptor diferencial como este segundo interruptor magnetotérmico, corresponden al bobinado de baja del transformador.

Para mayor aclaración consultar planos de esquemas eléctricos.

Protecciones del generador

Sincronización

Esta maniobra se realiza para conectar la instalación eólica con la red de la Compañía Distribuidora. Se compone de todos los elementos necesarios para permitir la sincronización automática, con la excepción de la posición de fuera de servicio. En todas las posiciones queda conectado el equipo de medida, compuesto por un amperímetro, un frecuencímetro y un voltímetro doble.

En la sincronización manual, el ajuste de frecuencia y de tensión se realiza automáticamente.

En la sincronización automática se conecta mediante un contactor actuando sobre el alternador a acoplar a través del dispositivo de ajuste del regulador automático de tensión del alternador.
formación de la orden de acoplamiento entre redes. Genera la orden de puesta en paralelo, el máximo autorizado y toma en consideración el tiempo propio del interruptor de acoplamiento.

- Etapa de salida. Convierte la orden de acoplamiento, cuando todas las demás condiciones han sido cumplidas, mediante el cierre de un contacto libre de potencial.

A fin de evitar un gran número de operaciones en el conjunto de interconexión del generador, tanto al acoplamiento en paralelo como en la desconexión, se dispondrá de temporización mínima de 3 minutos.

1.7.3.9 Canalización de la línea eléctrica.

La canalización está dividida físicamente en tres tramos, según la distribución y trazado de la línea eléctrica: el primer tramo corresponde a la instalación vertical desde el aerogenerador hasta el terreno. El segundo tramo comprende la instalación enterrada entre la base de la torre y la arqueta de registro. Y el tercer tramo corresponde a la conducción enterrada desde la arqueta de registro hasta la caseta de acometida-medición.

La canalización vertical de la torre se realizará mediante tubo de acero de 110 mm, montaje superficial aéreo, amarrado interiormente por la estructura metálica de la torre, intercalando las necesarias abrazaderas de sujeción para fijar dicho tubo. Dichas abrazaderas serán metálicas y fijación mediante tornillería métrica espárrago-arandela-tuerca.

Y finalmente, los dos tramos de canalización enterrada se efectuarán a través de una zanja, cuyo trazado se indica en el plano nº5. dicha zanja tendrá una anchura y una profundidad de 0,60 y 0,80 metros, respectivamente, según lo establecido en el Reglamento Electrotécnico de Baja Tensión.

La excavación de la zanja se ejecutará de forma que no resulten dañadas posibles instalaciones existentes, ni los árboles cercanos al recorrido. El trazado entre la torre del aerogenerador y la caseta contiene un cambio de dirección, a fin de mantener intacta la cimentación de la pista deportiva.

En el punto designado del trazado se intercalará una arqueta de registro de fundición de 600 x 600 mm, con objeto de que pueda confluir hasta ella la canalización enterrada correspondiente a la instalación solar fotovoltaica.

Realizada la zanja, se colocará una primera capa de arena cribada de unos 10 cm y se compactará. Seguidamente se colocará un tubo coarrugado de 110 mm para la conducción establecida, manteniendo su posición en el centro de la zanja. El tubo coarrugado contendrá un alambre guía para facilitar el paso de los cables posteriormente.

A partir de aquí se empezará a rellenar la zanja hasta unos 10 cm por encima del tubo coarrugado, y se volverá a compactar.

Después se colocarán placas de identificación de instalaciones enterradas, y finalmente se acabará de rellenar la zanja con la tierra sobrante de la primera excavación, en dos capas, para ir compactando la parte superior.
1.7.3.10 Línea eléctrica.

La línea está dividida eléctricamente en cuatro tramos según las necesidades y la naturaleza de la corriente: un primer tramo en corriente alterna mediante sistema trifásico de 220 V. Un segundo tramo en corriente continua, tras realizar la conveniente transformación mediante el rectificador trifásico. Un tercer tramo en corriente alterna trifásica de 220 V, tras la etapa de salida del inversor trifásico. Y por último, el cuarto tramo en corriente alterna trifásica de 380 V, tras pasar por el transformador trifásico.

Como norma general los conductores serán de cobre y tendrán la sección adecuada para asegurar caídas de tensión inferiores al 1,5 %, tanto para el tramo de continua como para el tramo de alterna.

El primer tramo, entre aerogenerador y rectificador es una línea trifásica, cuyo voltaje será de 220 V. Lo que ocurre, es que debido a la no constancia de velocidad del viento, la producción eléctrica será variable y proporcional a las rachas de viento. Por este motivo, la tensión generada se rectifica dando lugar al segundo tramo de corriente continua. De esta manera se procede a su conversión a corriente alterna a través del inversor trifásico, logrando el nivel estable de tensión a 220 V mediante sistema trifásico. Y finalmente, aparece el cuarto tramo, donde mediante el transformador trifásico se cambia el nivel de voltaje, es decir, se elevan los 220 V a 380 V, con lo cual, se adapta la energía eléctrica generada a los valores de la Red de Distribución Pública para proceder a su interconexión con la misma.

El primer tramo va desde el aerogenerador, descendiendo la torre y canalizado de forma subterránea hasta la caseta de acometida-medición, donde se ubica el cuadro que contiene el rectificador trifásico y el inversor. Por tanto, el segundo tramo está cableado en el propio cuadro. Del cuadro sale la línea trifásica convertida a 220 V fijada superficialmente a la pared de la caseta con tubo de P.V.C hasta llegar a la toma de baja del transformador. Finalmente sale la línea trifásica por la toma de alta, y mediante fijación superficial con tubo de P.V.C. se conduce hasta los módulos que contienen los equipos de interconexión y medida.

Tanto para la línea tetrapolar de corriente alterna (3 fases + conductor de protección: L1, L2, L3 y PE), como para la línea tripolar de corriente continua (Positivo, Negativo y conductor de protección: +, - y PE), se emplearán conductores flexibles de cobre de doble aislamiento de sección:

Primer tramo: $3 \times 50 + 25 \, \text{mm}^2$

Segundo tramo: $2 \times 10 + 10 \, \text{mm}^2$.

Tercer y cuarto tramo: $3 \times 10 + 10 \, \text{mm}^2$.

Para la identificación de los conductores se utilizarán los siguientes colores: el rojo como indicativo del polo positivo, el negro el indicativo del polo negativo, el amarillo-verde el del conductor de protección, y gris, marrón y negro para cada una de las fases.
Nota: la línea trifásica de corriente alterna irá señalizada y conducida de forma independiente a la línea de corriente continua.

1.7.3.11 Puesta a tierra.

Se conectarán a tierra todas las masas de la instalación eólica, tanto de la parte de continua como de la de alterna. Se realizará de forma que no se alteren las condiciones de puesta a tierra de la red de la compañía eléctrica distribuidora, asegurando que no se produzcan transferencias de defectos a la red de distribución.

La torre, y con ella el aerogenerador, se conectarán a tierra con motivo de reducir el riesgo asociado a la acumulación de cargas estáticas. Con esta medida se consigue limitar la tensión que con respecto a tierra puedan presentar las masas metálicas. También permite a los interruptores diferenciales la detección de corrientes de fuga, así como propiciar el paso a tierra de las corrientes de defecto o descarga de origen atmosférico.

La instalación presenta separación galvánica entre el generador eólico y la red de distribución de baja tensión por medio de un transformador de aislamiento galvánico que incorpora el propio inversor utilizado.

La puesta a tierra queda como sigue:

Puesta a tierra 1: conectará la torre y el aerogenerador con el punto de puesta a tierra, situado a pie de torre. Su sección será como mínimo de 25 mm2 para conductores de cobre aislado y de 35 mm2 para conductores desnudos enterrados horizontalmente hasta la pica. El montaje será directo desde la base de la torre hasta el punto de puesta a tierra.

Puesta a tierra 2: conectará el inversor trifásico con el punto de puesta a tierra, situado en la periferia de la caseta de interconexión sin perturbar la puesta a tierra de la Red de Distribución Pública. Su sección será como mínimo de 25 mm2 para conductores de cobre aislado y de 35 mm2 para conductores desnudos enterrados horizontalmente hasta la pica. El montaje será directo desde el cuadro del inversor hasta el punto de puesta a tierra.

Punto de puesta a tierra: punto situado en el suelo, en una pequeña arqueta. Estará constituido por un dispositivo de conexión (regleta, placa, borne, etc.), que permita la unión entre ambos tramos, de forma que pueda, mediante útiles apropiados, separarse éstas, con el fin de poder realizar la medida de la resistencia de tierra.

Electrodos: los forman 2 picas y el conductor enterrado horizontalmente. Las picas son barras de cobre o acero de 14 mm de diámetro como mínimo. Si son de acero, están recubiertas de una capa protectora exterior de cobre de espesor apropiado. Su longitud es de 2 m.
1.7.3.12 Características básicas de cimentación.

Para su ejecución se describen los siguientes pasos:

Excavación

Para la realización del correspondiente cimiento del aerogenerador deberá efectuarse una excavación por medios mecánicos, con una superficie de 4 x 4 m² y una profundidad mínima de un metro, procurando que el fondo quede perfectamente nivelado y limpio.

Hormigón de limpieza

Sobre el fondo de la excavación, se verterá una capa de hormigón de 10 cm de espesor, tipo medio, con una resistencia de 100 kg/cm², de manera que quede totalmente nivelada. Esta capa dará lugar al fondo de la cimentación.

Armaduras

Las armaduras consistirán en una malla de acero, formada con entramados de tiras cilíndricas de acero tipo AEH 50 N de 16 mm y 10 mm de diámetro, colocadas a 20 x 20 cm, dobladas en sus extremos con un radio de 7 cm.

Una vez formada la malla, ésta se colocará sobre la capa de hormigón anterior con una separación de 7 cm mediante separadores metálicos, totalmente perpendiculares, y unidos con alambre de atar de 1,3 mm.

Virola y brida

Este conjunto corresponde al elemento de unión entre el propio cimiento de hormigón y la torre metálica del aerogenerador. Se suministra en una sola pieza, que en su parte inferior llevará tornillos de nivelación.

Consiste en dejar la brida perfectamente nivelada y centrada en el hueco realizado mediante la excavación, para después proceder al hormigonado definitivo del cimiento, debiendo comprobarse en toda la fase del proceso la correcta nivelación y centrado, tantas veces como sea necesario, con el fin de corregir posibles desviaciones, que afectarían a la correcta verticalidad de la torre del aerogenerador.
Hormigonado

Se llevará a cabo con hormigón en masa fabricado con árido rodado de 20 mm de tamaño máximo y 205 kg/cm² de resistencia, de consistencia plástica.

Se comenzará lentamente por el interior de la virola nivelando interiormente su superficie para garantizar que el espacio hueco quede libre para facilitar la colocación de los tornillos, dejando una altura mínima de 15 cm.

Una vez finalizado el hormigonado, se comprobará y se corregirá si es preciso, el correcto nivel de la brida en todas las direcciones.

Se recomienda la fijación al terreno de la brida horizontalmente, antes de iniciar el hormigonado, mediante al menos tres dobles tablones colocados radialmente, que servirán además para el relleno final.

1.8 PRESCRIPCIONES TÉCNICAS.

Las cajas de derivación de las líneas eléctricas acontecidas en la instalación solar fotovoltaica tendrán un grado de protección IP-55.

Las características de disparo de los Interruptores magnetotérmicos responderán al tipo de curva C y D, para las instalaciones solar fotovoltaica y eólica, respectivamente.

Los cables podrán ser de uno o más conductores y de tensión asignada no inferior a 0,6/1kV. La sección de estos conductores será la adecuada a las intensidades y caídas de tensión previstas.

Los tubos que canalicen los conductores tendrán un grado de protección mecánica adecuado a su ubicación frente a posibles riesgos de impacto.

A continuación se recogen con más detalle los componentes y características específicas de los equipos a instalar para la maniobra, control y protección de la instalacion eólica.

Transformador
Será un transformador trifásico, tipo interior, en baño de aceite o aire. Refrigeración natural (ONAN), mediante radiadores directamente adosados a la cuba.

La tensión de servicio del conjunto será de 400 V, siendo la tensión nominal de diseño de 380 V, a frecuencia de 50 Hz, con intensidad máxima de 60 A.

Las condiciones de prueba serán de 1000 V de tensión de ensayo a 50 Hz – 1 minuto y 2,5 kV de aislamiento a Onda de Choque a 120 Hz.

Estas celdas cumplirán con las normas: UNE-20.009; RU-6404-A; CEI-298/694/517/529/56, así como las especificaciones del Reglamento de Baja Tensión.

Las cabinas metálicas prefabricadas y aparamenta cumplirán las normas antes señaladas, así como las normas particulares de la Compañía Eléctrica.

Características nominales

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión nominal (s/UE21.002):</td>
<td>400 V</td>
</tr>
<tr>
<td>Tensión máxima de servicio (s/UE-21.002):</td>
<td>1000 V</td>
</tr>
<tr>
<td>Número de fases:</td>
<td>3</td>
</tr>
<tr>
<td>Frecuencia nominal:</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Nivel aislamiento a frecuencia industrial (1’):</td>
<td>2,5 kV</td>
</tr>
<tr>
<td>Nivel aislamiento a onda de choque (1,2/50 y seg.):</td>
<td>2,5 kV</td>
</tr>
<tr>
<td>Intensidad nominal en barras:</td>
<td>40 A</td>
</tr>
<tr>
<td>Intensidad límite dinámica en barras:</td>
<td>150 A</td>
</tr>
<tr>
<td>Grado de protección sobre piezas en movimiento (UNE-20.324):</td>
<td>IP-217</td>
</tr>
<tr>
<td>Grado de protección sobre piezas en tensión (UNE-20.324):</td>
<td>IP-317</td>
</tr>
</tbody>
</table>

Condiciones normales de servicio

Las condiciones previstas de utilización serán:

a) En el interior.
b) Temperatura máxima del ambiente 50°C, siendo su valor medio en 24 horas no superior a 45°C.
c) Temperatura mínima del ambiente –15°C.
d) El aire del recinto no contendrá polvo, humo, gases o vapores corrosivos o inflamables, ni sales en cantidad apreciable.
Todas estas condiciones de servicio se corresponden con las exigencias de la Norma UNE-20.099 y la publicación IEC-298.

Cuadro de mando y control

Comprenderá los componentes de los equipos que seguidamente se indican, montados y cableados en armarios normalizados en distribución frontal.

Dimensiones totales:

- Alto: 2.100 mm
- Ancho: 800 mm
- Fondo: 400 mm

Equipos de parada

1 Interruptor de campo con protección ultrarrápida.

* Intensidad nominal 40 A
* Tensión máxima 300 V

Equipos de control

Estarán compuestos por:

1 Sincronizado automático, comprendiendo los siguientes elementos:

- Dispositivo de alimentación c.a./c.c. – c.c./c.a. y filtrado.
- Igualador de tensión.
- Igualador de frecuencia.
- Convertidor regenerativo.
- Formación de la orden de cierre.
- Etapa de salida y filtro.

1 Conmutador de sincronización automático.
1 Relé de enclavamiento sincronismo.

1 Equipo de medida para la sincronización, compuesto por los siguientes indicadores de 96 x 96 mm:

-1 frecuencímetro tipo Hdc-96.
-1 voltímetro doble tipo – 1000 Vdc.

1.9 PUESTA EN MARCHA Y FUNCIONAMIENTO.

Una vez realizado el completo montaje de la instalación fotovoltaica propuesta se procederá a la puesta en marcha verificando un correcto funcionamiento. Para ello se indican los siguientes pasos:

Ante todo, asegurar que el equipo de interconexión de la caseta está desconectado, así como los fusibles seccionadores a la entrada de los inversores.

Se comprobará la resistencia de aislamiento de los inversores, entre la parte de continua y la parte de alterna, y también en los relés de interconexión.

A continuación se medirá el voltaje en cada uno de los módulos fotovoltaicos, asegurando que sea de 12 Vcc.

Seguidamente se comprobará el voltaje de entrada en los inversores, sin manipular aún los fusibles seccionadores. Se verificará que las lecturas obtenidas queden encuadradas en el rango de tensiones de entrada establecidas por el fabricante.

Si las lecturas son correctas se procederá a cerrar los seccionadores, alimentando así a los inversores.

Se comprobarán los valores de tensión e intensidad obtenidos a la salida de los inversores, así como la lectura de armónicos para corroborar que la Tasa de Distorsión Armónica (THD) es inferior al 4 %, tal y como indica el fabricante.

Una vez en la caseta, se medirá la tensión en los bornes de llegada al cuadro de interconexión, comprobando que la caída de tensión en la línea no ha sido superior al 1,5 %, tal como se expresa en la memoria de cálculo.

En este punto, se procederá a dar aviso a la Empresa Distribuidora para efectuar la interconexión de la instalación, esperando respuesta.

Recibida la contestación se conectarán los relés de interconexión, ajustando los niveles de medida de los diferentes parámetros, verificando que funcionan correctamente y que no producen ningún disparo.
A continuación se conectarán interruptor diferencial e interruptor magnetotérmico general, comprobando que el sistema responde adecuadamente, y que no sufre ningún disparo. En caso de disparo ajustar los parámetros de los relés de control.

Una vez todo quede dispuesto correctamente se hará saltar la protección diferencial comprobando su correcto funcionamiento.

Y finalmente, rearmado el sistema se verificará que el contador de energía eléctrica efectúa la correspondiente medición de energía inyectada a la red.

En cuanto a la instalación eólica, se seguirá el mismo procedimiento para realizar los ensayos antes descritos, ya que los equipos de protección son los mismos, y las características de operación serán las mismas, pues también se conecta a la Red de Distribución Pública.

En este caso el funcionamiento es el siguiente:

El sistema se controla de forma manual mediante la posición del interruptor de campo ON/OFF, así como las demás protecciones colocadas en cascada aguas abajo del interruptor general.

Si en ese instante, la velocidad de viento es muy elevada y supera, por decirlo así, el valor de consigna para frenado, (14 m/s), el aerogenerador no girará, permaneciendo frenado a través del contactor de cortocircuito K2M.

Establecida la velocidad mínima de viento para hacerlo, comienza a girar el aerogenerador y se inicia el proceso de generación eléctrica en c.a., transmitiéndose esta energía al cuadro de control y maniobra. Allí se rectificará la corriente generada a través del rectificador trifásico, que a su vez transmitirá esta corriente, ahora en c.c. a la entrada del inversor trifásico. Seguidamente se obtiene c.a. en sistema trifásico, cuyo potencial eléctrico permanecerá en bornes del contactor de conexión a red K1M hasta que los relés de control de tensión y frecuencia verifiquen los correspondientes parámetros. Si todo es correcto, los relés enviarán señal al contactor de red para que éste cierre sus contactos y permita transmitir la energía generada a la red.

Pero antes, dado que el sistema trifásico procedente del inversor es de 220 V entre fases, y la Red de Distribución Pública corresponde a un sistema trifásico de 380 V entra fases, es decir, tensión de línea en ambos casos, hay que adaptar la tensión generada a valores de la red. Para ello se hace uso de un transformador trifásico, que en este caso corresponde a una relación de transformación de 220 / 380 V. Y su potencia es de 16 kVA, con lo cual, no llegará a saturarse, dado que el generador y el inversor no superan los 15 kW.

En caso de funcionamiento anómalo, por causas de tensión o frecuencia, los relés detectarán esa incidencia dando orden al contactor de conexión a red K1M para que se desconecte.

Si el fallo desaparece la instalación generadora no volverá a conectarse hasta pasados 3 minutos desde la desconexión. Si persiste, seguirá desconectada.
También se desconectará si la Red de Distribución Pública queda sin tensión.

1.10 PLANIFICACIÓN Y PROGRAMACIÓN.

Para el total montaje y verificación de ambas instalaciones se planean las siguientes fases y tareas:

Fase 1: Diseño y especificaciones del sistema.

- Revisión general del proyecto y definición de los parámetros más importantes.
- Diseño final de la estructura en base a las características del edificio y de los módulos fotovoltaicos utilizados.
- Especificación de protecciones y sistemas de seguridad a utilizar.
- Definición de la metodología de montaje y conexionado.

Fase 2: Acopio de materiales.

- Emisión de ofertas para la adquisición de los materiales necesarios.
- Evaluación y aceptación de las ofertas recibidas.

Fase 3: Montaje e instalación.

- Fijación de la estructura soporte de los módulos fotovoltaicos.
- Colocación de los módulos e interconexiónado.
- Montaje y conexionado de los inversores.
- Replanteo y apertura de cimiento y zanja subterránea.
- Colocación de tubo, relleno de la zanja y hormigonado del cimiento.
- Izado de la torre y colocación del aerogenerador
- Tirada de cable hasta la caseta de inerconexión.
- Montaje y conexionado de los cuadros eléctricos.
- Conexión a red.
Fase 4: Verificación y puesta en marcha de la instalación.

Revisión general de la instalación para corroborar su buen funcionamiento.
Puesta en marcha de la instalación.

La evolución temporal de las fases anteriormente descritas quedan distribuidas según el diagrama de Gantt, como sigue:

<table>
<thead>
<tr>
<th>FASES</th>
<th>1er mes</th>
<th>2º mes</th>
<th>3er mes</th>
<th>4º mes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diseño y especificaciones del sistema.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acopio de materiales.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instalación y montaje.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verificación y puesta en Marcha</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla-4. Diagrama de Gantt

Todas las fases indicadas requerirán un tiempo para su ejecución y finalización de cuatro meses hábiles.
1.11 RESUMEN DEL PRESUPUESTO.

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Resumen</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>Instalación Solar Fotovoltaica</td>
<td>76,956.44 €</td>
</tr>
<tr>
<td>C02</td>
<td>Instalación Eólica</td>
<td>28,955.15 €</td>
</tr>
<tr>
<td>C03</td>
<td>Obra Civil</td>
<td>2,081.79 €</td>
</tr>
</tbody>
</table>

TOTAL PRESUPUESTO EJECUCIÓN MATERIAL 107,993.38 €

13.00% Gastos Generales, (G.G.) 14,039.14 €

6.00% Beneficio Industrial, (B.I.) 6,479.60 €

Suma de G.G. Y B.I. 20,518.74 €

TOTAL PRESUPUESTO CONTRATA 128,512.12 €

16.00% I.V.A. 20,561.94 €

TOTAL PRESUPUESTO DE LICITACIÓN 149,074.06 €

24,803,837 pta

Asciende el presente proyecto eléctrico a la cantidad de:

CIENTO CUARENTA Y NUEVE MIL SETENTA Y CUATRO EUROS Y SEIS CENT.
1.12 ANEXO: ESTUDIO BÁSICO DE SEGURIDAD Y SALUD.

1.12.1 Introducción.

El presente Estudio Básico de Seguridad y Salud establece, durante la ejecución de las instalaciones, las previsiones respecto a la prevención de riesgos de accidentes y enfermedades profesionales, así como información útil para efectuar los previsibles trabajos posteriores de mantenimiento, en las debidas condiciones de seguridad y salud.

Servirá para dar unas directrices básicas a la empresa constructora para llevar a cabo sus obligaciones en el terreno de la prevención de riesgos profesionales, facilitando su desarrollo, de acuerdo con el Real Decreto 1626/97 de 24 de octubre, por el cual se establecen disposiciones mínimas de seguridad y de salud en las obras de construcción.

De acuerdo con el artículo séptimo, en aplicación de este estudio básico de seguridad y salud, el contratista debe elaborar un plan de seguridad y salud en el trabajo, en el cual se analicen, estudien, desarrollen y complementen las previsiones contenidas en este documento.

El plan de seguridad y salud deberá ser aprobado antes del inicio o durante la ejecución de la obra, por el coordinador de seguridad y salud. En caso de que no haya, lo aprobará la dirección facultativa. En caso de obras de administraciones públicas, se deberá someter a la aprobación de esta Administración.

Cada centro de trabajo debe tener obligatoriamente, un libro de incidencias para el seguimiento del plan. Asimismo, según el artículo decimoquinto del Real Decreto, los contratistas y subcontratistas deberán garantizar que los trabajadores reciban una información adecuada de todas las medidas de seguridad y salud en la obra.

Durante la ejecución de la obra, serán de aplicación los principios de la acción preventiva previstos en el artículo decimoquinto de la “Ley de Prevención de Riesgos Laborales”, y en particular a las siguientes actividades:

Artículo 10: Principios generales aplicables durante la ejecución de la obra.

De conformidad con la Ley de Prevención de Riesgos Laborales, los principios de la acción preventiva que se recogen en su artículo 15 (empresarios) = contratista y subcontratista, se aplicarán durante la ejecución de la obra y, en particular, en las siguientes tareas o actividades:
a) El mantenimiento de la obra en buen estado de orden y limpieza.
b) La elección del emplazamiento de los puestos y áreas de trabajo, teniendo en cuenta sus condiciones de acceso, y la determinación de las vías o zonas de desplazamiento o circulación.
c) La manipulación de los distintos materiales y la utilización de los medios auxiliares.
d) El mantenimiento, el control previo a la puesta en servicio y el control periódico de las instalaciones y dispositivos necesarios para la ejecución de la obra, con objeto de corregir los defectos que pudieran afectar a la seguridad y salud de los trabajadores.
e) La delimitación y el acondicionamiento de las zonas de almacenamiento y depósito de los distintos materiales, en particular si se trata de materias o sustancias peligrosas.
f) La recogida de los materiales peligrosos utilizados.
g) El almacenamiento y la eliminación o evacuación de residuos y escombros.
h) La adaptación, en función de la evolución de la obra, del periodo de tiempo efectivo que habrá de dedicarse a los distintos trabajos o fases de trabajo.
i) La cooperación entre los contratistas, subcontratistas y trabajadores autónomos.
j) Las interacciones e incompatibilidades con cualquier otro tipo de trabajo o actividad que se realice en la obra o cerca del lugar de la obra.

Antes del comienzo de los trabajos, el promotor deberá efectuar un aviso a la autoridad laboral competente, según modelo incluido en el anexo III del Real Decreto.

La comunicación de apertura del centro de trabajo a la autoridad laboral competente deberá incluir el Plan de Seguridad y Salud.

El coordinador de seguridad y salud en la ejecución de la obra, o cualquier integrante de la Dirección Facultativa, en caso de apreciar un riesgo grave inminente para la seguridad de los trabajadores, podrá detener la obra parcialmente o totalmente, comunicándolo a la Inspección de Trabajo y Seguridad Social, al contratista, subcontratista y representantes de los trabajadores.

Las responsabilidades de los coordinadores, de la Dirección Facultativa y del promotor, no eximirán de sus responsabilidades a los contratistas ni a los subcontratistas, (art. 11º).
1.12.2 Identificación de los riesgos.

1.12.2.1 Medios y Maquinaria.

(En cualquier fase de obra).
- Atropellos, choques con otros vehículos, atrapados.
- Interferencias con instalaciones de suministro público (agua, luz, gas, ...).
- Desplome de maquinaria de obra (silgas, grúas, etc).
- Riesgos derivados del funcionamiento de grúas.
- Caída de la carga transportada.
- Generación excesiva de polvo o emanación de gases tóxicos.
- Caídas desde puntos altos y/o desde elementos provisionales de acceso (escaleras, plataformas).
- Golpes y tropiezos.
- Caída de materiales, rebotes y ambiente excesivamente ruidoso.
- Contactos eléctricos directos e indirectos.
- Accidentes derivados de condiciones atmosféricas.

1.12.2.2 Trabajos previos.

- Interferencias con instalaciones de suministro público (agua, luz, gas, ...).
- Caídas desde puntos altos y/o desde elementos provisionales de acceso (escaleras, plataformas).
- Golpes y tropiezos.
- Caída de materiales, rebotes.
- Sobreesfuerzos por posturas incorrectas.
- Vuelco de montones de material.

1.12.2.3 Derribos.

- Interferencias con instalaciones de suministro público (agua, luz, gas, ...).
- Generación excesiva de polvo o emanación de gases tóxicos.
- Proyección de partículas durante los trabajos.
- Caídas desde puntos altos y/o desde elementos provisionales de acceso (escaleras, plataformas).
- Contactos con materiales agresivos.
- Cortes y pinchazos.
- Golpes y tropiezos.
- Caída de materiales, rebotes.
- Ambiente excesivamente ruidoso.
- Sobreesfuerzos por posturas incorrectas.

1.12.2.4 Movimientos de tierras y Excavaciones.

- Interferencias con instalaciones de suministro público (agua, luz, gas, ...).
- Generación excesiva de polvo o emanación de gases tóxicos.
- Caídas desde puntos altos y/o desde elementos provisionales de acceso (escaleras, plataformas).
- Golpes y tropiezos.
- Desprendimiento de tierras y/o rocas.
- Caída de materiales, rebotes.
- Ambiente excesivamente ruidoso.
- Desplome de las paredes de contención, pozos y zanjas.
- Desplome de las edificaciones contiguas.
- Accidentes derivados de condiciones atmosféricas.
- Sobreesfuerzos por posturas incorrectas.

1.12.2.5 Cimientos.

- Interferencias con instalaciones de suministro público (agua, luz, gas, ...).
- Proyección de partículas durante los trabajos.
- Caídas desde puntos altos y/o desde elementos provisionales de acceso (escaleras, plataformas).
- Contactos con materiales agresivos.
- Cortes y pinchazos.
- Golpes y tropiezos.
- Caída de materiales, rebotes.
- Ambiente excesivamente ruidoso.
- Desplome de las paredes de contención, pozos y zanjas.
- Desplome de las edificaciones contiguas.
- Desprendimiento de tierras y/o rocas.
- Contactos eléctricos directos e indirectos.
- Sobreesfuerzos por posturas incorrectas.
- Fallo de encofrados.
- Generación excesiva de polvo o emanación de gases tóxicos.
- Vuelco de montones de material.

1.12.2.6 Estructura.

- Interferencias con instalaciones de suministro público (agua, luz, gas, ...).
- Proyección de partículas durante los trabajos.
- Caídas desde puntos altos y/o desde elementos provisionales de acceso (escaleras, plataformas).
- Contactos con materiales agresivos.
- Cortes y pinchazos.
- Golpes y tropiezos.
- Caída de materiales, rebotes.
- Ambiente excesivamente ruidoso.
- Contactos eléctricos directos e indirectos.
- Sobreesfuerzos por posturas incorrectas.
- Fallo de encofrados.
- Generación excesiva de polvo o emanación de gases tóxicos.
- Vuelco de montones de material.

1.12.2.7 Ramo de paleta.

- Generación excesiva de polvo o emanación de gases tóxicos.
- Proyección de partículas durante los trabajos.
- Caídas desde puntos altos y/o desde elementos provisionales de acceso (escaleras, plataformas).
- Contactos con materiales agresivos.
- Cortes y pinchazos.
- Golpes y tropiezos.
- Caída de materiales, rebotes.
- Ambiente excesivamente ruidoso.
- Sobreesfuerzos por posturas incorrectas.
- Vuelco de montones de material.

1.12.2.8 Cubierta.

- Interferencias con instalaciones de suministro público (agua, luz, gas, ...).
- Proyección de partículas durante los trabajos.
- Caídas desde puntos altos y/o desde elementos provisionales de acceso (escaleras, plataformas).
- Contactos con materiales agresivos.
- Cortes y pinchazos.
- Golpes y tropiezos.
- Caída de materiales, rebotes.
- Ambiente excesivamente ruidoso.
- Sobreesfuerzos por posturas incorrectas.
- Generación excesiva de polvo o emanación de gases tóxicos.
- Caída de palos y antenas.

1.12.2.9 Revestimientos y Acabados.

- Generación excesiva de polvo o emanación de gases tóxicos.
- Proyección de partículas durante los trabajos.
- Caídas desde puntos altos y/o desde elementos provisionales de acceso (escaleras, plataformas).
- Contactos con materiales agresivos.
- Cortes y pinchazos.
- Golpes y tropiezos.
- Caída de materiales, rebotes.
- Sobreesfuerzos por posturas incorrectas.

1.12.2.10 Instalaciones.
- Interferencias con instalaciones de suministro público (agua, luz, gas, ...).
- Caídas desde puntos altos y/o desde elementos provisionales de acceso (escaleras, plataformas).
- Cortes y pinchazos.
- Golpes y tropiezos.
- Caída de materiales, rebotes.
- Emanación de gases en oberturas de pozos muertos.
- Sobreesfuerzos por posturas incorrectas.
- Caída de palos y antenas.

1.12.2.11 Relación no exhaustiva de los trabajadores que impliquen riesgos laborales.

Anexo II
Relación no exhaustiva de los trabajos que implican riesgos especiales para la seguridad y la salud de los trabajadores.

1. Trabajos con riesgos especialmente graves de sepultamiento o caída de altura, por las particulares características de la actividad desarrollada, los procedimientos aplicados.

2. Trabajos en los que la exposición a agentes químicos o biológicos supongan un riesgo de especial gravedad, o para los que la vigilancia específica de la salud de los trabajadores sea legalmente exigible.

3. Trabajos con exposición a radiaciones ionizantes para los que no se especifica la obligatoriedad de la delimitación de zonas controladas y/o vigiladas.

4. Trabajos en la proximidad de líneas eléctricas de alta tensión.

5. Trabajos que expongan a riesgo de ahogamiento por inmersión.

6. Obras de excavación de túneles, pozos y otros trabajos que supongan movimientos de tierra subterráneos.

7. Trabajos realizados en inmersión con equipo subacuático.

8. Trabajos realizados en cajones de aire comprimido.

9. Trabajos que impliquen el uso de explosivos.

10. Trabajos que requieran montar o desmontar elementos prefabricados pesados.
1.12.3 Medidas de Prevención y Protección.

Como criterio general tendrán preferencia las protecciones colectivas frente a las individuales. Además, se deberán de mantener en buen estado de conservación los medios auxiliares, la maquinaria y las herramientas de trabajo. Por otro lado los medios de protección deberán estar homologados según la normativa vigente.

1.12.3.1 Medidas de Protección Colectiva.

Organización y planificación de los trabajos para evitar interferencias entre las diferentes tareas y circulaciones dentro de la obra.

Señalización de las zonas de peligro.

Prever el sistema de circulación de vehículos y su señalización, tanto en el interior de la obra como en relación con los viales exteriores. Dejar una zona libre en el entorno de la zona excavada para el paso de maquinaria.

Inmovilización de camiones mediante falcas y/o topes durante las tareas de carga y descarga.

Respetar las distancias de seguridad con las instalaciones existentes.

Los elementos de las instalaciones deben estar con sus protecciones aislantes.

Cimentación correcta de la maquinaria de obra.

Montaje de grúas hecho por una empresa especializada, con revisiones periódicas, control de la carga máxima, delimitación del radio de acción, frenada, vuelco, etc.

Revisión periódica y mantenimiento de maquinaria y equipos de obra.

Sistema de riego que impide la emisión de polvo en gran cantidad.

Adecuación de soluciones de ejecución al estado real de los elementos (subsuelo, edificaciones vecinas).

Comprobación de apuntalamientos, condiciones de estribados y pantallas de protección de zanjas.

Utilización de pavimentos antideslizantes.

Colocación de barandas de protección en lugares con peligro de caída. Colocación de redes en agujeros horizontales.

Protección de agujeros y fachadas para evitar la caída de objetos (redes, lonas).

Uso de canalizaciones de evacuación de escombros, correctamente instaladas.

Uso de escaleras de mano, plataformas de trabajo y andamios.
1.12.3.2 Medidas de Protección Individual.

Utilización de caretas y gafas homologadas contra el polvo y la proyección de partículas.

Utilización de calzado de seguridad.

En todas las zonas elevadas donde no haya sistemas fijos de protección será necesario establecer puntos de anclaje seguros para poder sujetar el cinturón de seguridad homologado, la utilización del cual será obligatoria.

Utilización de guantes homologados para evitar el contacto directo con materiales agresivos y minimizar el riesgo de cortes y pinchazos.

Utilización del casco.

Utilizaciones de protectores auditivos homologados en ambientes excesivamente ruidosos.

Utilización de delantales.

Sistemas de sujeción permanente y de vigilancia de trabajos con peligro de intoxicación para más de un operario.

Utilización de equipos de suministro de aire.

1.12.3.3 Medidas de Protección a Terceros.

Cierre, señalización y alumbrado de la obra. En caso de que el cierre invada la calzada, ha de preverse un pasillo protegido para el paso de peatones. El cierre debe impedir que personas ajenas a la obra puedan entrar.

Prever el sistema de circulación de vehículos tanto en el interior como en relación con los viales exteriores.

Inmovilización de camiones mediante falcas y/o topes durante las tareas de carga y descarga.

Adecuación de soluciones de ejecución al estado real de los elementos (subsuelo, edificaciones vecinas).

Protección de agujeros y fachadas para evitar la caída de objetos (redes, lonas).

Vuelco de montones de material.

1.12.4 Primeros auxilios.

Se dispondrá de una con el contenido de material especificado en la normativa vigente. Se informará al inicio de la obra, de la situación de los diferentes centros médicos a los cuales se deberán de trasladar a los accidentados. Es conveniente disponer en la obra y en lugar bien visible, de una lista con los teléfonos y direcciones de los centros asignados...
para urgencias, ambulancias, taxis, etc., para garantizar el rápido traslado de los posibles accidentados.

1.12.5 Normativa aplicable.

Relación de normas y reglamentos aplicables

- Directiva 92/97/CEE de 24 de Junio (DO: 26/08/92).
Disposiciones mínimas de Seguridad y de Salud que deben aplicarse en las obras de construcción temporales o móviles.

- RD 1627/1997 de 24 de octubre (BOE: 25/10/97).
Disposiciones mínimas de Seguridad y de Salud en las obras de construcción.
Transposición de la Directiva 92/95/CEE.
Deroga el RD 555/86 sobre obligatoriedad de inclusión de Estudio de Seguridad e Higiene en proyectos de edificación y obras públicas.

Desarrollo de las siguientes disposiciones:

- RD 39/1997 de 17 de enero (BOE: 31/01/97). Reglamento de los Servicios de Prevención.

- RD 485/1997 de 14 de abril (BOE: 23/04/97).
Disposiciones mínimas en materia de señalización, de seguridad y salud en el trabajo.

- RD 486/1997 de 14 de abril (BOE: 23/04/97).
Disposiciones mínimas de seguridad y salud en los lugares de trabajo.
Modifica y deroga algunos capítulos de la Ordenanza de Seguridad e Higiene en el trabajo.

- RD 487/1997 de 14 de abril (BOE: 23/04/97).
Disposiciones mínimas de seguridad y salud relativas a la manipulación manual de cargas que entrañe riesgos, en particular, dorsolumbares para los trabajadores.
- RD 488/1997 de 14 de abril (BOE: 23/04/97).
Disposiciones mínimas de seguridad y salud relativas al trabajo con equipos que incluyen pantallas de visualización.

- Orden de 7 de enero de 1987 (BOE: 15/01/87)
Normas complementarias de Reglamento sobre seguridad de los trabajadores con riesgo de amianto.

- RD 1316/1989 de 27 de octubre (BOE: 02/11/89).
Protección a los trabajadores frente a los riesgos derivados de la erosión al oído durante el trabajo.

- Orden de 9 de marzo de 1971 (BOE: 16 y 17/03/71).
Ordenanza General de Seguridad e Higiene en el trabajo.
Corrección de datos: BOE: 06/04/71.
Modificación: BOE: 02/11/89.

Resoluciones aprobatorias de Normas técnicas Reglamentarias para distintos medios de protección personal de trabajadores:

Normativa de ámbito local (ordenanzas municipales)

- RD 664/1997 de 12 de mayo (BOE: 24/05/97).
 Protección a los trabajadores contra los riesgos relacionados con la erosión de agentes biológicos durante el trabajo.

- RD 665/1997 de 12 de mayo (BOE: 24/05/97).
 Protección a los trabajadores contra los riesgos relacionados con la exposición a agentes cancerígenos durante el trabajo.

- RD 773/1997 de 30 de mayo (BOE: 12/06/97).
 Disposiciones mínimas de seguridad y salud relativas a la utilización por los trabajadores de equipos de protección individual.

- RD 1215/1997 de 18 de julio (BOE: 07/08/97).
 Disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de los equipos de trabajo.

Transposición de la Directiva 89/65 CEE sobre utilización de lo equipos de trabajo. Modifica y deroga algunos capítulos de la “Ordenanza de Seguridad e Higiene en el trabajo” (O. 09/03/1971).

- Orden de 20 de mayo de 1952 (BOE: 15/06/52).
 Reglamento de Seguridad e Higiene del Trabajo en la industria de la construcción.
- Orden de 31 de enero de 1940. Andamios: Cap. VII. Art. 66 a 74 (BOE: 03/02/40).
 Reglamento general sobre Seguridad e Higiene.

- Orden de 20 de septiembre de 1986 (BOE: 13/10/86).
 Modelo de libro de incidencias correspondiente a las obras en que sea obligado el estudio de Seguridad e Higiene.
 Corrección de errores: BOE: 31/10/86.

- Orden de 16 de diciembre de 1987 (BOE: 29/12/87).
 Nuevos modelos para la notificación de accidentes de trabajo e instrucciones para su cumplimiento y tramitación.

- Orden de 31 de agosto de 1987 (BOE: 18/09/87).
 Señalización, balizamiento, limpieza y terminación de obras fijas en vías fuera de poblado.

- Orden de 23 de mayo de 1977 (BOE: 14/06/77).
 Reglamento de aparatos elevadores para obras.
 Modificación: Orden de 7 de marzo de 1981 (BOE: 24/04/90).

- Orden de 28 de junio de 1988 (BOE: 07/07/88).
 Instrucción Técnica Complementaria MIE-AEM 2 del Reglamento de Aparatos de Elevación y Manutención referente a grúa torre desmontable para obras.
 Modificación: Orden de 16 de abril de 1990 (BOE: 24/04/90).

- Orden de 31 de octubre de 1984 (BOE: 07/11/84).
 Reglamento sobre seguridad de los trabajos con riesgo de amianto.
INSTALACIÓN DE EQUIPOS DE GENERACIÓN ELÉCTRICA (SOLAR FOTOVOLTAICA Y EÓLICA) EN LA CIUDAD DE REUS

2. MEMORIA DE CÁLCULO

AUTOR: MANUEL CUENCA ROIG.
DIRECTOR: LLUÍS MASSAGUÉS VIDAL.
MEMORIA DE CÁLCULO
2.1 FÓRMULAS A UTILIZAR ... 4
 2.1.1 Intensidad en corriente alterna monofásica: .. 4
 2.1.2 Caída de tensión: .. 4
 2.1.3 Inclinación de los módulos fotovoltaicos: .. 4
 2.1.4 Número de módulos: ... 6
 2.1.5 Distancia entre filas de módulos: ... 6
 2.1.6 Fuerza del viento sobre los módulos fotovoltaicos:... 6
 2.1.7 Puesta a tierra: .. 7
 2.1.8 Distribución de Weibull: ... 7
 2.1.9 Intensidad en corriente alterna trifásica: .. 8
 2.1.10 Cálculo de la Sección: ... 9
 2.1.11 Dimensionado de la zapata de hormigón: ... 9
 2.1.12 Cálculo de la presión ejercida sobre el terreno... 9

2.2 INSTALACIÓN SOLAR FOTOVOLTAICA... 10
 2.2.1 Consideraciones iniciales. .. 10
 2.2.2 Determinación de Módulos Fotovoltaicos e Inversores 11
 2.2.3 Estudio energético-económico. .. 13
 2.2.3.1 Descripción. ... 13
 2.2.3.2 Hojas de cálculo. .. 16
 2.2.3.3 Conclusiones... 16
 2.2.4 Cálculo de la línea eléctrica... 16
 2.2.5 Protecciones... 19
 2.2.6 Inclinación de los módulos fotovoltaicos: ... 19
 2.2.7 Orientación de los módulos: ... 19
 2.2.8 Distancia entre filas consecutivas .. 20
 2.2.9 Fuerza del viento. ... 21
 2.2.10 Anclaje de la estructura soporte. ... 23
 2.2.11 Cálculo de la puesta a tierra.. 24

2.3 ESTUDIO EÓLICO-ENERGÉTICO .. 25
 2.3.1 Consideraciones iniciales. .. 25
 2.3.2 Variables... 25
 2.3.3 Resultados... 26
 2.3.4 Hojas de cálculo. ... 27
 2.3.5 Conclusiones... 28
2.4 ESTUDIO TÉCNICO-ECONÓMICO... 28
 2.4.1 Generalidades ... 29
 2.4.2 Instrucciones para el método de cálculo ... 29
 2.4.3 Hojas de cálculo .. 30
 2.4.4 Conclusiones y decisión final ... 31
 2.4.5 Cálculo de la línea eléctrica ... 32
 2.4.6 Cálculo de la puesta a tierra ... 34
 2.4.7 Dimensionado de la zapata de hormigón ... 35
 2.4.7.1 Peso de la zapata de hormigón .. 35
 2.4.7.2 Presión ejercida sobre el terreno .. 35
 2.4.8 Cálculo de la estabilidad del aerogenerador 36

2.5 ESTUDIO DEL PUNTO DE INTERCONEXIÓN.. 38
 2.5.1 Consideraciones iniciales .. 38
 2.5.2 Datos del Centro de Transformación afectado 39
 2.5.3 Análisis .. 40
 2.5.4 Conclusiones .. 41

Figura 1: Descripción del ángulo de azimut ... 5
Figura 2: Distancia entre filas de módulos ... 20
Figura 3: Identificación de la fuerza del viento ... 21
Figura 4: Diagrama Sólido Libre ... 36

Tabla-1. Características del inversor SUNNY BOY 2500..................................... 11
Tabla-2. Características del sistema Fotovoltaico según fabricante del inversor SUNNY
 BOY 2500 .. 12
2.1 FÓRMULAS A UTILIZAR.

2.1.1 Intensidad en corriente alterna monofásica:

\[I = \frac{P}{V \cdot \cos \varphi} \quad (1) \]

Donde:

\(I \): Intensidad en amperios [A].
\(P \): Potencia a transportar en vatios [W].
\(V \): Tensión en voltios [V].
\(\cos \varphi \): Factor de potencia. (\(\cos \varphi = 1 \) para corriente continua).

2.1.2 Caída de tensión:

\[e = \frac{2 \cdot L \cdot I \cdot \cos \varphi}{K \cdot S} \quad (2) \]

Donde:

\(e \): Caída de tensión (c.d.t.), en voltios [V].
\(L \): Longitud de la línea en metros [m].
\(I \): Intensidad de la línea en amperios [A].
\(\cos \varphi \): Factor de potencia. (\(\cos \varphi = 1 \) para corriente continua).
\(K \): Conductividad (56 para Cu).
\(S \): Sección del conductor en milímetros cuadrados [mm²].

2.1.3 Inclinación de los módulos fotovoltaicos:

\[\beta = L_a + 10 \quad (3) \]

Donde:

\(\beta \): Inclinación del módulo fotovoltaico con respecto al plano horizontal de montaje.
L_{α}: Latitud de la ciudad o zona.

α: Acimut. Ángulo entre la proyección sobre el plano horizontal de la normal a la superficie del módulo fotovoltaico y el meridiano del lugar. Valores típicos y orientativos, según la figura, son: 0º para módulos orientados al sur, -90º para módulos orientados al este y +90º para módulos orientados al oeste.

Figura 1: Descripción del ángulo de azimut.
2.1.4 Número de módulos:

\[N_{\text{máx}}^o = \frac{P_c}{P_u} \]

Donde:

- \(N_{\text{máx}}^o \): Número máximo de módulos.
- \(P_c \): Potencia de cálculo [Pc].
- \(P_u \): Potencia unitaria [Pu].

2.1.5 Distancia entre filas de módulos:

\[D = L_m \cdot \cos \beta + \left(L_m \cdot \frac{\text{sen} \beta}{\text{tg} H} \right) \]

Donde:

- \(D \): Distancia mínima entre 2 filas consecutivas, en metros [m].
- \(L_m \): Longitud del módulo fotovoltaico en metros [m].
- \(\beta \): Inclinación del módulo fotovoltaico con respecto al plano horizontal de montaje.
- \(H \): Altura solar, es decir, ángulo complementario entre módulo fotovoltaico y plano horizontal de montaje. (\(H = 90^\circ - \beta \)).

2.1.6 Fuerza del viento sobre los módulos fotovoltaicos:

\[F = p \cdot S \cdot \text{sen}^2 \beta \]

Donde:

- \(F \): Fuerza ejercida perpendicularmente en la superficie del módulo, en Newtons [N].
- \(p \): Presión del viento en Newtons dividido por metro cuadrado [N/m²].
- \(S \): Superficie del módulo fotovoltaico, en metros cuadrados [m²].
- \(\beta \): Inclinación del módulo fotovoltaico con respecto al plano horizontal.
2.1.7 Puesta a tierra:

\[R = \frac{\rho}{n \cdot L} \] \hspace{1cm} (7)
\[R = \frac{2 \cdot \rho}{L} \] \hspace{1cm} (8)

Donde:

(7): Caso de pica vertical.
(8): Caso de conductor enterrado horizontalmente.
\(R \): Resistencia de tierra en Ohm \([\Omega]\).
\(\rho \): Resistividad del terreno en Ohm por metro \([\Omega \cdot m]\).
\(n \): Número de picas.
\(L \): Longitud de la pica para (7). Longitud del conductor para (8). Ambos casos en metros \([m]\).

2.1.8 Distribución de Weibull:

Donde:

\[P_{(v)} = \left[\frac{K}{c} \right] \cdot \left[\frac{v_i}{c} \right]^{(k-1)} \cdot e^{-\left[\frac{v_i}{c} \right]^k} \cdot \left(\frac{1}{100} \right) \] \hspace{1cm} (9)

\(K \): factor de escala, (adimensional), muy cercano a 2.
\(c \): factor de forma, en \([m/s]\).
\(v_i \): rango de velocidad, desde \(i = 1 \) hasta \(i = 20 \), en \([m/s]\).

Descripción y aclaraciones:

La distribución de Weibull proporciona la probabilidad de tener una velocidad de viento \(p(v) \), durante un periodo de tiempo considerado.

Entre sus parámetros se encuentran:

* \(K \), considerada constante, igual a 2.
* El factor de forma procede de la relación (cociente), entre la velocidad en el eje del aerogenerador en [m/s] y un valor constante, que en este caso corresponde a 0,89.

Por tanto, \(c = \frac{v_{\text{eje}}}{0,89} \).

La velocidad en el eje se obtiene a partir de:

\[
v = v \cdot \left(\frac{H_t}{H_m} \right)^C \quad (10)
\]

Donde:

- \(v \): velocidad viento en eje, en [m/s].
- \(y \): velocidad media de viento en la zona, en [m/s].
- \(H_t \): Altura de la torre, en metros [m]
- \(H_m \): Altura de medida, en metros [m]
- \(C \): Coeficiente de geometría del terreno, adimensional. (Tablas).

* Finalmente, el rango de velocidad \(v_i \), refleja el intervalo de velocidades en el que pueden operar los aerogeneradores de baja potencia, pero hay que señalar, que a partir de cierta velocidad, estos aerogeneradores se frenan automáticamente y basculan para protegerse de velocidades excesivas a su diseño. Esta velocidad tiende a oscilar entre 14 y 17 m/s.

2.1.9 Intensidad en corriente alterna trifásica:

\[
I = \frac{P}{\sqrt{3} \cdot U \cdot \cos \varphi} \quad (11)
\]

Donde:

- \(I \): Intensidad, en Amperios [A].
- \(P \): Potencia, en vatios [W].
- \(U \): Tensión entre fases, en voltios [V].
- \(\cos \varphi \): Factor de potencia.
2.1.10 Cálculo de la Sección:

\[S = \frac{\sqrt{3} \cdot L \cdot I \cdot \cos \varphi}{K \cdot e} \]

Donde:

- \(S \): Sección de los conductores, en \([\text{mm}^2]\).
- \(L \): Longitud de la línea, en metros \([\text{m}]\).
- \(I \): Intensidad, en Amperios \([\text{A}]\).
- \(\cos \varphi \): Factor de potencia.
- \(K \): Conductividad. (56 para Cu).
- \(e \): Caída de Tensión en la línea, en voltios \([\text{V}]\). Como máximo 1,5 %.

2.1.11 Dimensionado de la zapata de hormigón.

\[P = L_1 \cdot L_2 \cdot h \cdot \gamma_h \]

Como se trata de una zapata cuadrada:

\[P = L^2 \cdot h \cdot \gamma_h \]

Donde:

- \(P \): peso de la zapata, en \([\text{kg}]\).
- \(L \): longitud de la zapata, en \([\text{m}]\).
- \(h \): altura de la zapata, en \([\text{m}]\).
- \(\gamma_h \): peso específico o densidad del hormigón a utilizar, en \([\text{kg/m}^3]\).

2.1.12 Cálculo de la presión ejercida sobre el terreno.

\[P_z = \frac{F}{S} \]

(14)
Donde:

\(P_t \): presión ejercida sobre el terreno, en [N/m²].
\(F \): sumatorio de todas las fuerzas de componente vertical, en [N].
\(S \): superficie de la zapata, en [m²].
\(\gamma_h \): peso específico o densidad del hormigón a utilizar, en [kg/m³].

2.2 INSTALACIÓN SOLAR FOTOVOLTAICA.

2.2.1 Consideraciones iniciales.

a) Dado que la potencia de generación de la instalación fotovoltaica propuesta es de 5 kW, se valorarán las características de los equipos adoptados para la configuración de la instalación.

b) La configuración del generador fotovoltaico viene determinada por el tipo de módulo utilizado, por los requerimientos del inversor y por las condiciones de irradiación solar en el emplazamiento. Los inversores suelen tener un rango de tensiones de entrada bastante amplio, pero para alcanzar el punto óptimo de funcionamiento de éstos, hay que sobredimensionar el generador fotovoltaico del orden de un 15 % respecto a la potencia nominal del inversor. Este criterio permite incrementar la eficiencia de la instalación fotovoltaica al optimizar su producción energética gracias a la obtención de un elevado rendimiento de sus componentes (módulos fotovoltaicos e inversor).

c) Para el estudio de inclinación y orientación de los módulos es necesario disponer de la latitud de la zona, norma de cálculo determinada por la práctica y asociada a instalaciones con periodo de funcionamiento anual, como es el caso.

d) Se cuidará la incidencia de posibles sombras sobre los módulos fotovoltaicos, ocasionadas por la colocación de los módulos en filas consecutivas. Esto determinará la distancia mínima de colocación o separación.

e) Se considerarán valores característicos del viento en la zona para el cálculo del anclaje de los módulos.
(f) Finalmente, se tendrá en cuenta la irradiación solar en la zona propuesta para el montaje de la instalación, con lo cual se obtendrán valores previstos de producción energética a lo largo del año.

2.2.2 Determinación de Módulos Fotovoltaicos e Inversores.

De acuerdo a las consideraciones iniciales expuestas en los puntos a y b del apartado (2.2.1), y atendiendo a la solución adoptada de utilización de módulos fotovoltaicos monocristalinos y dos inversores, se analizan algunos de los catálogos comerciales de fabricantes de módulos e inversores, donde se tendrá en cuenta las características técnicas y físicas del material a utilizar.

Se adopta el kit de conexión a red mediante inversor modelo SUNNY BOY 2500:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia máxima de salida</td>
<td>2.500 W</td>
</tr>
<tr>
<td>Rango de tensión DC de entrada</td>
<td>250-600 Vdc</td>
</tr>
<tr>
<td>Rango de tensión AC de funcionamiento</td>
<td>196-253 Vac</td>
</tr>
<tr>
<td>Rango de frecuencias de red</td>
<td>49-51 Hz</td>
</tr>
<tr>
<td>Tasa de Distorsión Armónica (THD)</td>
<td>< 4%</td>
</tr>
<tr>
<td>Rendimiento aproximado</td>
<td>93%</td>
</tr>
<tr>
<td>Dimensiones</td>
<td>434x295x214 mm</td>
</tr>
<tr>
<td>Peso</td>
<td>34 kg</td>
</tr>
</tbody>
</table>

Tabla-1. Características del inversor SUNNY BOY 2500

Puesto que la instalación fotovoltaica objeto de este proyecto es de 5 kW, la configuración del sistema será doble, es decir, se conectarán dos inversores en paralelo. Con lo cual:

\[2 \times 2.500 \, \text{W} = 5.000 \, \text{W} = 5 \, \text{kW} \]

Nota: la potencia eléctrica contratada por la Compañía Eléctrica para la conexión de la instalación a la red, viene determinada por la potencia de los inversores, que como se ha comprobado, determinan la potencia a conectar: 5 kW.

Para la determinación del número de módulos fotovoltaicos a conectar a los inversores, el fabricante da una configuración expresada como sigue:
Memoria de Cálculo

<table>
<thead>
<tr>
<th>Nº de módulos:</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia de cada módulo:</td>
<td>159 Wp</td>
</tr>
<tr>
<td>Potencia pico del sistema:</td>
<td>2.862 Wp</td>
</tr>
<tr>
<td>Tensión de circuito abierto (Voc):</td>
<td>389 V</td>
</tr>
<tr>
<td>Tensión de máxima potencia (Vmáx):</td>
<td>313,2 V</td>
</tr>
<tr>
<td>Corriente de cortocircuito (Isc):</td>
<td>9,81 A</td>
</tr>
<tr>
<td>Corriente de máxima potencia (Imáx):</td>
<td>9,15 A</td>
</tr>
</tbody>
</table>

Tabla-2. Características del sistema Fotovoltaico según fabricante del inversor SUNNY BOY 2500

Según estas características, conviene utilizar captadores fotovoltaicos del fabricante ISOFOTON, modelo I-159, cuyas características son:

Eléctricas

<table>
<thead>
<tr>
<th>Potencia máxima (Pmáx):</th>
<th>159 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión a máxima Potencia (Vmáx):</td>
<td>17,4 V</td>
</tr>
<tr>
<td>Tensión en circuito abierto (Voc):</td>
<td>21,6 V</td>
</tr>
<tr>
<td>Corriente a máxima potencia (Imáx):</td>
<td>9,14 A</td>
</tr>
<tr>
<td>Corriente en cortocircuito (Isc):</td>
<td>9,81 A</td>
</tr>
</tbody>
</table>

Físicas

<table>
<thead>
<tr>
<th>Altura (mm)</th>
<th>1310</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancho (mm)</td>
<td>969</td>
</tr>
<tr>
<td>Grueso (mm)</td>
<td>40</td>
</tr>
<tr>
<td>Peso (kg)</td>
<td>17</td>
</tr>
</tbody>
</table>

Donde efectivamente, operando y contrastando los parámetros eléctricos, vemos que se ajustan claramente a las necesidades del inversor especificadas por el fabricante:
<table>
<thead>
<tr>
<th>Nº módulos</th>
<th>18</th>
<th>21,6 (Voc)</th>
<th>18</th>
<th>17,4 (Vmáx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>159 Wp</td>
<td></td>
<td>388,8 V</td>
<td>313,2 V</td>
<td></td>
</tr>
<tr>
<td>2,862 Wp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9,81 A</td>
<td>9,14 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pero hay que destacar, que estas características están expresadas en base a que los módulos fotovoltaicos propuestos trabajen en condiciones óptimas de funcionamiento, cosa realmente improbable en diferentes días y épocas del año, donde las condiciones climatológicas cambian.

Para determinar el número de módulos fotovoltaicos, se va a proceder a la realización de un estudio energético y económico, considerando los parámetros aportados por el fabricante de estos módulos, en diferentes curvas representativas, así como un registro de datos de irradiación solar en la zona del emplazamiento de la instalación solar fotovoltaica propuesta.

2.2.3 Estudio energético-económico.

2.2.3.1 Descripción.

Primero es necesario disponer de los datos de irradiación solar del emplazamiento de la instalación proyectada. En este caso, se realiza una estimación diaria en cada mes, de hora solar en hora solar, por lo que las tablas de radiación a utilizar, así deben indicarlo, junto con el ángulo de inclinación de la medición y el acimut correspondiente. Los datos utilizados provienen de l’Atlas de Radiació Solar de Catalunya.

Las lecturas expresadas en la tabla presentación de resultados, vienen expresadas en kJ/m². Dado que además, vienen desglosadas hora a hora, el valor queda expresado en kJ/h·m².

Por otro lado, para poder efectuar la valoración energética con los módulos fotovoltaicos, el fabricante expresa su potencia nominal pico referida a una intensidad de radiación de 1000 W/m², mediante unas curvas características.

Para la curva I-P, (Intensidad de radiación – Potencia), el fabricante indica que la potencia pico para 1000 W/m² es de 159 Wp.
Se trata pues, de evaluar la energía recibida y confrontarla a dicha curva característica, con lo cual se sabrá la potencia unitaria, es decir, de un solo módulo, hora a hora.

Para ello, deben efectuarse las siguientes conversiones:

\[
\frac{kJ}{h\cdot m^2} = \frac{kW\cdot s}{h\cdot m^2} = \frac{kW\cdot s}{h\cdot m^2} \cdot \frac{1000W}{1kW} \cdot \frac{1h}{3600s};
\]

Con lo cual, se obtiene [W/m\(^2\)].

Así pues, se convierten los valores iniciales de la tabla de radiación, de kJ/h·m\(^2\) a W/m\(^2\).

Por otra parte, es necesario saber el número máximo de módulos a conectar para lograr los 5 kW de potencia.

Pero antes hay que tener en cuenta las pérdidas de conversión eléctrica en los inversores y un margen en la captación de energía en los módulos debido a las diferentes condiciones climáticas a lo largo del año:

Cada inversor tiene una potencia de 2.500 W. Por tanto, la potencia total será de 2 x 2.500 = 5.000 W.

Pero como el rendimiento (\(\eta\)) de cada inversor es del 93 %, debido a las pérdidas internas durante la conversión de c.c. a c.a., y si se añade un 3 % por otras pérdidas, debe suponerse una potencia de cálculo de:

\[
\eta_{\text{inversor}} = 93\% \quad \Rightarrow \quad \text{pérdidas} = 7\%
\]

\(\text{otras pérdidas} = 3\%
\]

\(\text{Pérdidas totales} = 10\%
\]

\[P_c = 10\% \text{ de } 5.000 \text{ W} + 5.000 = 5.500 \text{ W}\]

Dividiendo la potencia de cálculo entre la potencia unitaria, se obtiene el número máximo de módulos:

\[N_{\max}^o = \frac{P_c}{P_u} \quad (4)\]

Dado que el mes más desfavorable es el de Diciembre, tras realizar el proceso descrito, conviene adoptar una configuración de 56 módulos fotovoltaicos, para que la potencia de la instalación proyectada en las horas de mayor insolación sea de 5.000 Wp.

Paralelamente se realiza el proceso descrito para los meses sucesivos.
Finalmente se efectúa una aportación extra de módulos para aprovechar las horas de insolación y cuantificar la energía para sopesar el coste añadido.
2.2.3.2 Hojas de cálculo.

Nota: Ver tabla de excel en archivo 2-Estudio energético solar.

2.2.3.3 Conclusiones.

Tras la realización del estudio energético-económico se ha comprobado que el hecho de realizar un aporte extra de unidades fotovoltaicas para obtener un aprovechamiento energético superior durante el día, NO se compensa, ya que los ingresos económicos adquiridos debido a la tarifa estipulada en el RD2818/1998, no son suficientes para equilibrarse a los costes que supone tal incremento en módulos fotovoltaicos.

También hay que apuntar, que los precios de los módulos fotovoltaicos aún permanecen en un nivel un tanto elevado, dado que su utilización aún no se ejerce de forma masiva o a un nivel que repercuta en los costes de adquisición.

Pero en definitiva, se puede destacar, que la energía solar será uno de los principales contribuyentes al equilibrio de la energía; costará un poco de tiempo, pero cuanto antes se conciencie de esta necesidad, antes se logrará una disminución en los costes de los módulos, tanto térmicos como fotovoltaicos, y sus infraestructuras. Sin duda estamos en la década de las energías alternativas.

2.2.4 Cálculo de la línea eléctrica.

Circuito de continua

En condiciones óptimas de funcionamiento de los módulos se tiene la máxima potencia, lo cual, desde el punto de vista para el cálculo de sección, supone el caso más desfavorable. Por tanto se tiene que:

Tensión: 313,2 V
Intensidad máxima: 9,15 A
Longitud de la línea grupo fotovoltaico A: 90 m
Longitud de la línea grupo fotovoltaico B: 113 m
Caída de tensión (e): 1,5 %
Cos ϕ: 1

Multiplicando la Tensión por la Intensidad máxima se obtiene la potencia máxima transportada en el circuito de continua, en cada grupo fotovoltaico. Para determinar la
sección de los conductores se valorará tanto el criterio para capacidad térmica como el de caída de tensión.

Para el criterio de capacidad térmica se empleará una tabla Intensidad-Sección: \textbf{Intensidad máxima admisible para cables conductores de cobre bajo tubo o conducto}.

Para el criterio de caída de tensión se tendrá en cuenta la expresión (2), siendo la máxima c.d.t. de 1,5 %.

\[1,5 \% \text{ de } 313,2 \text{ V } = 4,7 \text{ V} \]

<table>
<thead>
<tr>
<th>(V) [V]</th>
<th>(I_{\text{máx}}) [A]</th>
<th>(P) [W]</th>
<th>(L) [m]</th>
<th>(K) (Cu)</th>
<th>(e) [V]</th>
<th>(S) [mm²] ((2))</th>
<th>(S) [mm²] comercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo A</td>
<td>313,2</td>
<td>9,15</td>
<td>2.865,78</td>
<td>90</td>
<td>56</td>
<td>4,7</td>
<td>6,26</td>
</tr>
<tr>
<td>Grupo B</td>
<td>313,2</td>
<td>9,15</td>
<td>2.865,78</td>
<td>113</td>
<td>56</td>
<td>4,7</td>
<td>7,86</td>
</tr>
</tbody>
</table>

Según el criterio de capacidad térmica y adoptando 2 cables unipolares, corresponde una sección de 2 \(\times 1,5 \text{ mm}^2 \).

Según el criterio de caída de tensión, se obtiene una sección de 2 \(\times 10 \text{ mm}^2 \).

Se adopta como conclusión que la sección será:

Grupo fotovoltaico A: \(2 \times 10 + 10 \text{ mm}^2 \)

Grupo fotovoltaico B: \(2 \times 10 + 10 \text{ mm}^2 \).

Siendo la c.d.t. en ambos casos \(< a 1,5 \% \).

La canalización de ambos grupos hasta el armario de inversores viene determinada según la tabla 7 de la ITC-BT-21, \textbf{Diámetros exteriores mínimos de los tubos en función del número y la sección de los conductores o cables a conducir}.

Considerando la disposición de montaje, el material del tubo y de los conductores, y la sección y número de conductores a albergar, se tiene que:

La disposición de montaje es al aire, mediante tubos metálicos rígidos normales con aislamiento interior.

Puesto que la sección es de 2 \(\times 10 + 10 \text{ mm}^2 \), la tabla asigna a cada tubo un \textbf{diámetro de 25 mm}.

\textbf{Circuito de alterna}

Teniendo en cuenta el apartado 5 de la ITC-BT-40 donde se cita: Los cables de conexión deberán estar dimensionados para una intensidad no inferior al 125% de la máxima intensidad del generador y la caída de tensión entre el generador y el punto de
interconexión a la Red de Distribución Pública o a la instalación interior, no será superior al 1,5%, para la intensidad nominal. Por tanto:

Tensión: 220 V
Potencia a transportar: 5.000 W
Longitud de la línea monofásica: 96 m
Caída de tensión: 1,5 %
Cos φ: 1

Para determinar la sección también se utilizará el criterio para capacidad térmica y el de caída de tensión.

Utilizando la fórmula (1), se obtiene:

\[I = \frac{5.000}{(220 \cdot 1)} = 22,7 \text{ A} \]

Por ser canalización enterrada, la sección no debe ser inferior a 6 mm², según ITC-BT-07, (criterio de capacidad térmica).

Calculando la sección, según la caída de tensión (c.d.t.):

\[1,5 \% \text{ de } 220 \text{ V} = 3,3 \text{ V} \]
\[\text{De (2)} \Rightarrow S = \frac{(2 \cdot 96 \cdot 22,7 \cdot 1)}{(56 \cdot 3,3)} = 23,58 \text{ mm}^2 \]

Se adopta el criterio de caída de tensión. Ajustándonos a las secciones normalizadas del mercado, corresponde una sección de \(2 \times 25 \text{ mm}^2\).

Nota: en este caso no se tiene en cuenta el conductor de protección por realizar su trazado por otro lugar de menor longitud. Su cálculo o adopción de sección se pospone hasta el punto (2.2.11).

Y según la tabla 9 para canalizaciones enterradas bajo tubo, debe emplearse tubo de diámetro 90 mm.
2.2.5 Protecciones.

Circuito de continua

Dado que la intensidad máxima en cada grupo fotovoltaico es de 9,15 A, se instalará 1 fusible seccionador en el conductor de polo positivo a la entrada de cada inversor. Su amperaje será de $I = 10$ A.

Circuito de alterna

De acuerdo a la intensidad monofásica de 22,7 A, y a los requisitos de seguridad y protección de este tipo de instalación, las protecciones de corriente alterna serán:
- Interruptor Magnetotérmico bipolar $I = 40$ A.
- Interruptor Diferencial bipolar $I = 40$ A, $I_{\text{defecto}} = 30$ mA.
- Relé de máxima y mínima tensión
- Relé de máxima y mínima frecuencia

2.2.6 Inclinación de los módulos fotovoltaicos.

Para el estudio de colocación conviene disponer de la latitud de la zona. Con este parámetro se puede llegar a determinar la inclinación de los módulos fotovoltaicos, que según los casos de utilización puede variar. Puesto que se trata de una instalación fotovoltaica, cuyo funcionamiento será anual, para obtener la inclinación adecuada hay que sumar al valor de latitud la cantidad de 10 unidades, es decir:

Latitud de REUS: $41,1^\circ$

$$\beta = 41,1^\circ + 10 = 51,1^\circ$$

La inclinación de los módulos será de 51° con respecto al plano horizontal de montaje.

2.2.7 Orientación de los módulos:

La instalación fotovoltaica contiene los módulos con una orientación fija, por esta razón se deben situar de forma que se mantenga un aprovechamiento máximo de la irradiación solar disponible durante todo el año.

Para conseguir la orientación óptima y poder aprovechar el máximo de horas diarias de radiación solar, los módulos deben orientarse hacia el sur geográfico (azimut 0°). El sur geográfico es la dirección de la sombra a las 12h solares.
2.2.8 Distancia entre filas consecutivas.

Para conseguir un buen funcionamiento de los módulos fotovoltaicos conviene que su superficie quede libre de sombras. En este caso ni la arquitectura del edificio ni sus alrededores, afectan en cuanto a la producción de sombras. Es la propia colocación de los módulos entre filas consecutivas la que influye. Para evitar sombras proyectadas de una fila a otra se calculará la distancia mínima de separación:

\[D = \frac{L_m}{\sin(\beta)} + h \]

Siendo:

- **D**: Distancia mínima entre 2 filas consecutivas, en metros [m].
- **L_m**: Longitud del módulo fotovoltaico en metros [m].
- **\(\beta \)**: Inclinación del módulo fotovoltaico con respecto al plano horizontal de montaje.
- **H**: Altura solar, es decir, ángulo complementario entre módulo fotovoltaico y plano horizontal de montaje. (\(H = 90^\circ - \beta \)).
- **h**: Altura o distancia vertical entre el plano horizontal de montaje y el extremo del módulo fotovoltaico.

Figura 2: Distancia entre filas de módulos.
Medidas adoptadas:

\[L_m: 1,31 \text{ m} \]
\[\beta: 51^\circ \]

\[(5) \quad D = (1,31 \cdot \cos 51^\circ) + (1,31 \cdot \sin 51^\circ / \tan (90^\circ - 51^\circ)) = 2,08 \text{ m} \]

Se adopta la distancia de 2,25 m.

2.2.9 Fuerza del viento.

Atendiendo a que los módulos fotovoltaicos se ubicarán en una de las plantas cubiertas del gimnasio, de forma superpuesta, hay que determinar los esfuerzos que deberán soportar los anclajes de las estructuras soporte.

Por un lado se considera la fuerza del viento. Para ello es necesario disponer de datos significativos en la zona, como son: velocidad y dirección de éste. De esta condición se desprende la tabla de valores expuesta en la documentación de este proyecto, concretamente en el capítulo 6. Anexos.

Además de disponer de los valores indicados anteriormente, hay que identificar la fuerza del viento, que queda como sigue:

Figura 3: Identificación de la fuerza del viento.

\(F_v: \) Fuerza del viento.
\(F_1: \) Componente Normal a la superficie de la placa.
Se sabe que la componente normal F_1 es la fuerza perpendicular a dicha superficie. Para su cálculo se emplea la expresión (6).

De las tablas meteorológicas de la zona, y considerando un historial de datos bianual, referido a los años 2000 y 2001, se obtiene para el aire:

- Racha máxima en km/h para componente Sur = 67 km/h

Realizando conversión de unidades, se tiene que:

$$67 \text{ (km/h)} \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1 \text{ h}}{3600 \text{ s}} = 18,6 \text{ m/s} \approx 19 \text{ m/s}$$

Para determinar la presión del viento sobre los módulos se considera la siguiente tabla:

<table>
<thead>
<tr>
<th>v [m/s]</th>
<th>p [N/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>39</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>61</td>
</tr>
<tr>
<td>11</td>
<td>74</td>
</tr>
<tr>
<td>12</td>
<td>88</td>
</tr>
<tr>
<td>13</td>
<td>103</td>
</tr>
<tr>
<td>14</td>
<td>120</td>
</tr>
<tr>
<td>15</td>
<td>138</td>
</tr>
<tr>
<td>16</td>
<td>157</td>
</tr>
<tr>
<td>17</td>
<td>177</td>
</tr>
<tr>
<td>18</td>
<td>198</td>
</tr>
<tr>
<td>19</td>
<td>221</td>
</tr>
<tr>
<td>20</td>
<td>245</td>
</tr>
<tr>
<td>21</td>
<td>270</td>
</tr>
<tr>
<td>22</td>
<td>296</td>
</tr>
<tr>
<td>23</td>
<td>323</td>
</tr>
</tbody>
</table>

Tabla 3: velocidad – presión del viento
Donde se observa que a cada velocidad le corresponde un valor de presión.

Según la tabla de presión frontal del viento, a la velocidad de 19 m/s corresponde una presión de:

\[p = 221 \text{ N/m}^2 \]

Con lo cual, aplicando la expresión (6), se sabrá la fuerza ejercida en cada módulo fotovoltaico:

\[F_1 = p \cdot S \cdot \text{sen}^2 \beta = 221 \cdot (1,31 \cdot 0,969) \cdot \text{sen}^2 51^\circ = 169 \text{ N} \]

2.2.10 Anclaje de la estructura soporte.

Para el anclaje de la estructura soporte de los módulos fotovoltaicos se utilizarán zapatas de hormigón. Para ello debe estudiarse su estabilidad frente a las acciones del viento, quedando como sigue:

1º) Determinar el peso de la zapata de hormigón.
2º) Calcular el Momento de la zapata.
3º) Calcular el Momento del módulo fotovoltaico debido a la fuerza del viento.

1º) Peso de la zapata:

Volumen hormigón = 2,5 \cdot 2,5 \cdot 12,5 = 78,125 \text{ dm}^3

Densidad hormigón = 2 \text{ kg/dm}^3

Peso hormigón = 78,125 \cdot 2 = 156,25 \text{ kg}

156,25 \cdot 9,8 = 1531,25 \text{ N}

2º) El Momento de una zapata respecto al c.d.g. será:

\[M_2 = 1531,25 \cdot (1,25 / 2) = 957 \text{ Nm} \]
3º) El Momento respecto del punto de inclinación de cada módulo es:

\[
M_1 = F \cdot d = 169 \cdot (1,31 / 2) = 111 \text{ Nm}
\]

Por tanto, si cada módulo fotovoltaico tiene un Momento de 111 Nm, dos zapatas pueden llegar a soportar:

\[
2 \cdot 957 / 111 = 17 \text{ módulos}
\]

En la instalación proyectada se dispone de 1 módulo por cada par de zapatas; esto supone un coeficiente de seguridad en los cálculos efectuados.

2.2.11 Cálculo de la puesta a tierra.

Para la puesta a tierra de la instalación debe estimarse la resistencia eléctrica del terreno.

Para determinar aproximadamente el valor estimado de la resistencia de tierra se tendrá en cuenta la ITC-BT-18, donde se establecen diferentes naturalezas de terreno. A cada tipo le corresponde un valor de resistividad. Y según el método de puesta a tierra empleado, le corresponde una expresión. En este caso se dispone de electrodo como pica vertical y como conductor enterrado horizontalmente.

Naturaleza del terreno: terreno cultivable y fértil.
Resistividad del terreno: 50 Ω · m.
Número de picas clavadas verticalmente: 4
Longitud de las picas: 2 m
Longitud del conductor enterrado: 4 m

\[
(7) \quad R = 50 / (2 \cdot 2) = 12,5 \text{ Ω}
\]

\[
(8) \quad R = 2 \cdot 50 / 4 = 25 \text{ Ω}
\]

Para determinar la resistencia de tierra total estamos ante el caso particular de dos resistencias en paralelo, con lo cual:

\[
R_T = (12,5 \cdot 25) / (12,5 + 25) = 8,3 \text{ Ω}
\]
La resistencia de tierra debe ser tal que cualquier masa no pueda dar lugar a tensiones de contacto superiores a 24 V en local o emplazamiento conductor ó 50 V en los demás casos.

Dado que la protección diferencial es de 30 mA = 0,03 A, se tiene que:

\[U = R_T \cdot I = 8,3 \cdot 0,03 = 0,25 V < 24 V \]

En cuanto a los conductores de protección, la sección a utilizar debe ser como mínimo:

- **16 mm²** para la línea principal de tierra empleando conductores de cobre.
- **35 mm²** para conductores de cobre desnudo enterrados horizontalmente.

2.3 ESTUDIO EÓLICO-ENERGÉTICO.

2.3.1 Consideraciones iniciales.

Para la realización de dicho estudio ha sido necesario, en primer lugar, iniciar una búsqueda exhaustiva de fabricantes de aerogeneradores de baja potencia en el mercado y obtener las características técnicas y constructivas de sus productos.

Ha sido una tarea algo dificultosa, pues la mayoría de fabricantes hallados, lo son para equipos y máquinas de elevada potencia, para uso en parques eólicos.

Tras finalizar la búsqueda y conseguir algunos modelos, se ha elaborado una hoja de cálculo para evaluar los aerogeneradores de acuerdo a sus características y las condiciones de viento en el emplazamiento de la instalación eólica proyectada.

Es por ello, que también ha sido necesario disponer de información meteorológica para la consecución del presente estudio eólico-energético.

Sin más preámbulos, paso a describir el funcionamiento de la hoja de cálculo:

2.3.2 Variables.

Corresponde al apartado de introducción de valores para la realización automática de cálculos. Hay que destacar, que estos valores se diferenciarán unos de otros dependiendo del emplazamiento escogido para efectuar el estudio eólico-energético.
De entre los valores a destacar se encuentran:

Velocidad media: hace referencia a la velocidad media de viento en el emplazamiento de la instalación eólica proyectada. Debe introducirse en [m/s].

Factor de escala, k: factor adimensional de valor muy cercano a 2.

Coeficiente terreno: es un valor correctivo sobre la velocidad del viento, dada la influencia de las características del terreno y sus accidentes geográficos.

Altura de medida: cota a la que se realizan las mediciones de velocidad de viento, en metros [m].

Altura de la torre: altura de la torre que sustenta el aerogenerador, en metros [m].

Velocidad del viento: rango de velocidades establecido entre 0 y 20 m/s, cuyo intervalo engloba la zona, franja o trabajo de actuación de los aerogeneradores propuestos. Aunque hay que tener en cuenta que éstos se frenan y basculan entorno a velocidades de entre 14 y 17 m/s.

Potencia: dependiendo del aerogenerador a analizar, cada fabricante aporta una curva de potencia con su máquina, en la cual, a cada velocidad de viento se le asigna una potencia determinada, de acuerdo a las características constructivas de la misma, y a ensayos efectuados por el fabricante en la fase de diseño, montaje y análisis.

Pues bien, a cada valor de velocidad de la hoja de cálculo, se asignará la potencia especificada a esa velocidad, en kilovatios [kW].

2.3.3 Resultados.

Corresponde al apartado de obtención de valores tras la realización automática de cálculos.

Hay que destacar las diferentes magnitudes analizadas, entre las cuales se encuentran:

Probabilidad de viento: el conocimiento de la distribución de probabilidades de velocidades de viento es fundamental para conocer el potencial eólico disponible. Si no se dispone de series temporales de medidas de velocidad, suficientemente significativas, se han de utilizar aproximaciones estadísticas. En general la probabilidad de la velocidad se
puede aproximarse razonablemente bien por una de las distribuciones de probabilidad usuales en estadística: la distribución de Weibull. Esta distribución, tiene la forma de una expresión matemática de carácter exponencial. Sus parámetros han sido descritos en el apartado de definición de fórmulas, expresión número (9).

A partir de esta distribución de probabilidad, se puede obtener matemáticamente la distribución de probabilidad de que la velocidad de viento sea superior a un valor determinado. Esto da lugar a la llamada curva de duración del viento. Esta curva se representa multiplicando la probabilidad acumulada por el número de horas del período.

La curva de duración puede ser obtenida a partir de la aproximación de la distribución de Weibull, o a través del tratamiento de los datos reales de viento.

Con esta curva se obtiene el periodo en el que el viento se encuentra por encima de un valor dado, o dentro del intervalo de funcionamiento de la aeroturbina.

\textit{Neto kW}: es la potencia extraída del aerogenerador. Se obtiene multiplicando cada valor de la curva de potencia con la correspondiente probabilidad de viento, a una velocidad determinada.

\textit{Velocidad viento en el eje}: valor enunciado en el apartado de definición de fórmulas, expresión (10).

\textit{Media potencia de salida}: es el sumatorio de (Neto kW).

\textit{Energía diaria de salida}: se obtiene multiplicando la \textit{Media potencia de salida} por 24, (horas diarias).

\textit{Energía anual de salida}: es el resultado de multiplicar la \textit{Energía diaria de salida} por 365 (días anuales).

\textit{Porcentaje de funcionamiento}: también conocido como \textit{factor de disponibilidad}, es la relación anual del periodo en que un sistema eólico está operando, en relación al periodo en el que la velocidad de viento se encuentra dentro de su intervalo de funcionamiento.

\textbf{2.3.4 Hojas de cálculo.}\n
\textbf{Nota}: A continuación se expresan las diferentes hojas de cálculo con cada uno de los modelos de aerogeneradores a analizar, según las condiciones de probabilidad. Para ello, ver tabla de excel en archivo 3-Estudio eólico según Distribución Weibull. Ver también curva de Weibull en archivo 4 de excel.
La variación del viento en un emplazamiento típico suele describirse utilizando la llamada “distribución de Weibull”, como la mostrada en la figura anterior.

En el eje de las abscisas se han puesto las velocidades del viento en [m/s], y en el eje de las ordenadas el tiempo que esas velocidades se han conseguido a lo largo del año, frecuencia expresada en tanto por ciento.

Se observa que los fuertes vendavales son raros (v>14 m/s) y que los vientos frescos y moderados son bastante comunes.

En este emplazamiento la velocidad media a lo largo del año es de 5 m/s y la forma de la curva está determinada por el parámetro o factor de forma antes mencionado, cuyo valor es 2.

2.3.5 Conclusiones.

La Distribución de Weibull da una probabilidad de aparición u ocurrencia de viento. Sigue una expresión o ecuación matemática, que a primera vista se puede interpretar como aproximación teórica de lo que va a ocurrir.

Tras obtener los diferentes resultados analizados en la hoja de cálculo se ha podido comprobar la evolución de la velocidad del viento, según su distribución de frecuencias, de acuerdo a la media de velocidad del viento en el emplazamiento. Esto a su vez, ha servido para estimar diferentes parámetros energéticos como consecuencia del aprovechamiento eólico en los diferentes aerogeneradores propuestos.

Pero hay que señalar, que debido a que la distribución de Weibull se interpreta como una aproximación teórica, realmente puede suceder que los recursos energéticos adquiridos del potencial eólico sean sensiblemente inferiores.

Por esta razón se va a proceder, a continuación, a la elaboración de un estudio técnico-económico, que de una visión un poco más cercana a la realidad, considerando los medios y equipos técnicos a instalar, para obtener curvas de producción energética, así como los costes derivados de la instalación, y finalmente el periodo de amortización.

2.4 ESTUDIO TÉCNICO-ECONÓMICO

En este apartado se va a proceder a elaborar una valoración económica de cada modelo de aerogenerador considerado, de acuerdo a sus características técnicas, indicando también sus curvas energéticas de producción.
2.4.1 Generalidades.

Parte técnica

Se basa en la misma búsqueda de fabricantes de aerogeneradores, realizada en el estudio anterior, seleccionando gamas de baja potencia y diferentes modelos, teniendo en cuenta las características técnicas que ofrecen.

Por otro lado, hay que disponer de datos meteorológicos en el emplazamiento objeto de estudio, como son: velocidad media anual del viento, así como una distribución media de velocidades, donde se indican las horas anuales de viento para cada velocidad.

Estos datos pueden obtenerse fácilmente a través de estaciones meteorológicas ubicadas en la zona dirigiéndose a los organismos competentes en el tema. O bien, a través de departamentos medioambientales que pueda tener la Comunidad Autónoma.

Para el apartado de distribución media anual de velocidades existen libros editados con tablas que representan dichos valores.

Parte económica

Deben considerarse diferentes precios de acuerdo al objeto de este estudio:

Por un lado, el coste de compra de energía eléctrica, según la tarifa, en una instalación eléctrica convencional. A través del Real Decreto correspondiente a tarifas eléctricas para el año considerado.

Otro precio a tener en cuenta, es el referente a la venta de energía eléctrica a la red, que en este caso lo estipula el RD2818/1998.

Y finalmente precios asociados a la parte técnica, como son: coste del aerogenerador, equipos auxiliares, obra civil, etc.

2.4.2 Instrucciones para el método de cálculo.

Una vez dispuestos los datos señalados en la recopilación, se procede a efectuar todas las operaciones indicadas tanto en la hoja de cálculo técnico como en la de cálculo económico:

Hoja de Cálculo Técnico.

a) Se cumplimenta la columna designada como (A), según las horas anuales de viento para cada velocidad, en función de la velocidad media anual [V].

Memoria de Cálculo
b) Se repite la operación con la columna (B), con diferentes intervalos de potencia. Estos valores se obtienen directamente de la curva de potencia del aerogenerador facilitada por el fabricante.

c) Se efectúa la operación indicada (A) x (B), para cada velocidad, y mediante sumatorio obtenemos la energía anual producida a través del aerogenerador, [3].

d) Aplicamos el factor de corrección por conexión a red, 0,9, y se obtiene la producción neta anual, [4].

Hoja de Cálculo Económico.

a) Con la producción neta anual, [4] y el coste de compra de energía, [5], se consigue el ahorro económico, [6].

b) Multiplicando la producción neta anual, [4] por el precio de venta de energía, [7], se consiguen los ingresos, [8].

d) Se añaden los costes por sobreinversión: aerogenerador, equipos auxiliares, obra civil y otros, [10], [11], [12] y [13], respectivamente. Y realizando el sumatorio aparece un precio subtotal, [14].

e) Teniendo en cuenta las ayudas estatales, [15], se las descontamos a [14], con lo cual, se consigue la sobreinversión total, [16].

f) A continuación, se calcula el periodo de amortización simple, [17], dividiendo la sobreinversión total, [16] entre el ahorro económico total, [9].

g) Y finalmente, teniendo en cuenta el plazo de amortización y la inversión a corto, medio o largo plazo, se decide si la instalación eólica se lleva a cabo o no.

2.4.3 Hojas de cálculo.

Nota: A continuación se muestran las hojas de cálculo correspondientes al estudio técnico-económico comentado anteriormente. Para ello, ver Estudio eólico tecnico-
económico según frecuencias de viento en archivo 5 de excel. Ver también archivo 6-Curvas de Potencia_aerogeneradores.

A la vista de las curvas correspondientes a los aerogeneradores Bornay, representadas en el archivo 3 de excel, hay que destacar que entre ellas existe una proporcionalidad, de acuerdo a su potencia. Si se comparan los diferentes puntos que conforman la curva de potencia, se aprecia como parece ser la misma curva, pero a diferente escala. De igual forma se puede comprobar en la tabla de puntos elaborada para su representación gráfica.

Interpretación curvas producción

Tras observar la evolución de las curvas energéticas de cada aerogenerador, representadas en las figuras consecutivas anteriores, se aprecia como la producción energética es mayor a bajas velocidades dado que las frecuencias de viento son mayores. A velocidades mayores, la frecuencia es menor, por eso disminuye la producción de energía. Y también cabe señalar el efecto del frenado de las máquinas, donde obviamente también para su producción.

En el caso de análisis de aerogeneradores que den su mayor potencia a velocidades mayores, el rendimiento de éstos disminuirá durante la mayor parte del tiempo, por ser las frecuencias de aparición de viento muy bajas.

2.4.4 *Conclusiones y decisión final.*

A la vista de los resultados obtenidos en el estudio realizado para cada uno de los modelos de aerogeneradores propuestos, se aprecia que el equipo de mayor producción energética anual y menor plazo de amortización, en definitiva, el equipo más rentable, es el modelo BK-12.

Por tanto, se adopta como solución, la instalación del aerogenerador del Fabricante: BORNAY, modelo: BK-12, cuyas características se expresan a continuación:

- Hélices: 3
- Diámetro: 7 m.
- Material: Fibra de vidrio / Carbono
- Sistema eléctrico
- Tipo Alternador: Trifásico de imanes permanentes
- Imanes: Neodimio
Potencia nominal: 12 kW
Voltaje: 120 / 220 V c.a.

Funcionamiento (velocidad del viento)

Para arranque: 3,5 m/s
Para la Potencia nominal: 12 m/s
Para frenado automático: 14 m/s

2.4.5 Cálculo de la línea eléctrica.

Para determinar la sección de los conductores se tendrá en cuenta el apartado 5 de la
ITC-BT-40 del REBT; Real Decreto 842/2002 de 2 de Agosto de 2002, donde cita:

Los cables de conexión deberán estar dimensionados para una intensidad no inferior
al 125 % de la máxima intensidad del generador y la caída de tensión entre el generador y
el punto de interconexión a la Red de Distribución Pública o a la instalación interior, no
será superior al 1,5 %, para la intensidad nominal.

Utilizando la expresión (11) se tiene que:

Potencia a transportar: 12.000 W
Tensión: 220 V c.a.
Cos ϕ: 0,8

\[
I = \frac{12.000}{\sqrt{3} \cdot 220 \cdot 0,8} = 39,36 \, A
\]

\[
39,36 \, A + 125 \% \, de \, 39,36 \, A = 88,56 \, A
\]

Por ser canalización enterrada, la sección no debe ser inferior a 6 mm². Según Tabla
5 de la ITC-BT-07, (criterio de capacidad térmica), corresponde una sección de: S = 10
mm², para aislamiento tipo XLPE, cuya intensidad máxima admisible es de 96 A > 88,56
A.

Para el criterio de máxima caída de tensión se tendrá en cuenta la expresión (12),
being la máxima c.d.t. de 1,5 %.

1,5% de 220 V = 3,3 V
Por tanto, utilizando la citada expresión:

Longitud de la línea = 75 m.
Intensidad = 88,56 A
Cos ϕ = 0,8
K = 56
e = 3,3 V

\[S = \frac{\sqrt{3} \times 75 \times 88,56 \times 0,8}{56 \times 3,3} = 49,8 \, \text{mm}^2 \]

Este valor corresponde a una sección comercial de S = 50 mm².

Se adopta el criterio de máxima caída de tensión. Ajustándonos a las secciones normalizadas del mercado, corresponde una sección de:

\[S = 3 \times 50 + 50 \, \text{mm}^2. \]

Nota: en este caso el conductor de protección solo realizará su trazado desde el aerogenerador hasta la base de su torre, donde se practicará la puesta a tierra.

Y según la tabla 9 de la ITC-BT-21, para la canalización enterrada bajo tubo, debe emplearse tubo de diámetro exterior 110 mm.

En cuanto al otro tramo, posterior al transformador trifásico:

\[I = \frac{12,000}{\sqrt{3} \times 380 \times 0,8} = 22,79 \, \text{A} \]

\[22,79 \, \text{A} + 125\% \, \text{de} \, 22,79 \, \text{A} = 51,27 \, \text{A} \]
Por ser canalización en galería ventilada, según Tabla 12 de la ITC-BT-07, (criterio de capacidad térmica), corresponde una sección de: \(S = 10 \text{ mm}^2 \), para aislamiento tipo XLPE, cuya intensidad máxima admisible es de \(64 \text{ A} > 51.27 \text{ A} \).

Para el criterio de máxima caída de tensión se tendrá en cuenta la expresión (12), siendo la máxima c.d.t. de 1,5 %.

\[
1.5\% \text{ de } 380V = 5.7V
\]

\[
S = \frac{\sqrt{3} \cdot 4 \cdot 51.27 \cdot 0.8}{56 \cdot 5.7} = 0.89\text{mm}^2
\]

Este valor corresponde a una sección comercial de \(S = 1 \text{ mm}^2 \).

Se adopta el criterio de capacidad térmica. Ajustándonos a las secciones normalizadas del mercado, corresponde una sección de:

\[
S = 3 \times 10 + 10 \text{ mm}^2.
\]

Y según la tabla 7 de la ITC-BT-21, para la canalización bajo tubo al aire, debe emplearse tubo de diámetro exterior 32 mm.

2.4.6 Cálculo de la puesta a tierra.

Para la puesta a tierra de la instalación debe estimarse la resistencia eléctrica del terreno.

Para determinar aproximadamente el valor estimado de la resistencia de tierra se tendrá en cuenta la ITC-BT-18, donde se establecen diferentes naturalezas de terreno. A cada tipo le corresponde un valor de resistividad. Y según el método de puesta a tierra empleado, le corresponde una expresión. En este caso se dispone de electrodo como pica vertical.

Naturaleza del terreno: terreno cultivable y fértil.
Resistividad del terreno: \(50 \Omega \cdot \text{m} \).
Número de picas clavadas verticalmente: 1
Longitud de la pica: 2 m
\[
(7) \quad R = \frac{50}{1 \cdot 2} = 25 \, \Omega
\]

La resistencia de tierra debe ser tal que cualquier masa no pueda dar lugar a tensiones de contacto superiores a 24 V en local o emplazamiento conductor ó 50 V en los demás casos.

Dado que la protección diferencial es de 30 mA = 0,03 A, se tiene que:

\[
U = R \cdot I = 25 \cdot 0,03 = 0,75 \, V < 24 \, V
\]

En cuanto a los conductores de protección, la sección a utilizar debe ser como mínimo:

16 mm\(^2\) para la línea principal de tierra empleando conductores de cobre.

2.4.7 Dimensionado de la zapata de hormigón.

Según datos facilitados por el fabricante y proveedor del aerogenerador en cuestión, se calcula a continuación el dimensionado de la zapata de hormigón sobre la que se apoya la torre y el aerogenerador, así como la tensión o esfuerzo en la zapata y la presión ejercida por la torre más el aerogenerador y la zapata sobre el terreno.

2.4.7.1 Peso de la zapata de hormigón.

Se calcula el peso de la losa de hormigón mediante la expresión (13), de forma que:

\[
P = L^2 \cdot h \cdot \gamma_h = 4^2 \cdot 1 \cdot 2.200 = 35.200 \, kg
\]

2.4.7.2 Presión ejercida sobre el terreno.

La presión total que se ejerce sobre el terreno es:

\[
P_t = \frac{F}{S} = \frac{(4.900 + 1.519 + 344.960)}{(4 \cdot 4)} = 21.961 \, N / m^2
\]
Que transformando unidades corresponde a:

\[21.961 \text{ [N/m}^2\text{]} = 21.961 \text{ [N/m}^2\text{]} \times \frac{1}{9.8 \text{ [kg/N]}} \times \frac{1}{10.000 \text{ [m}^2\text{/cm}^2\text{]}} = 0.22 \text{ kg/cm}^2\]

Considerando que se tiene una resistencia del terreno de 1,8 kg/cm², se admite correcta la presión de la estructura y la zapata inferior, que se ejerce sobre la superficie del terreno.

2.4.8 Cálculo de la estabilidad del aerogenerador.

Considerando la siguiente figura representativa del conjunto:

\[\text{Figura 4: Diagrama Sólido Libre}\]

Siendo:

\[F_v: \text{fuerza del viento, en [N].}\]
\[W: \text{peso total del conjunto (aerogenerador-torre-zapata), en [N].}\]
\[O: \text{centro de referencia para momentos producidos por los esfuerzos.}\]
Dimensiones:

<table>
<thead>
<tr>
<th>Torre + aerogenerador</th>
<th>Altura: 12 + 0,5 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zapata de hormigón</td>
<td>Largo: 4 m</td>
</tr>
<tr>
<td></td>
<td>Altura: 1 m</td>
</tr>
</tbody>
</table>

Realizando la suma algebraica de momentos, respecto del punto O, se obtendrá el límite de la estabilidad de la estructura:

\[W = 4.900 + 1.519 + 344.960 = 351.379 \text{ N} \]

Por ser la zapata rectangular, su c.d.g será: Altura = 0,5 m; Ancho = 2 m.

\[\Sigma_O = F_v \cdot (12,5 + 0,5) - W \cdot 2 = 0 \]

\[F_v = 351.379 \cdot 2 / 13 = 54.058 \text{ N} \]

Por tanto, \(F_v \) tiene que ser \(\leq 54.058 \text{ N} \).

Dado que la racha máxima de viento medida es de 19 m/s, le corresponde una presión dinámica de 221 N/m², según la tabla utilizada en el cálculo de la instalación solar fotovoltaica.

Teniendo en cuenta que la fuerza del viento en una superficie vertical es:

\[F_v = p \cdot S \]

Siendo:

\(F_v \): fuerza del viento, en [N].
\(p \): presión dinámica del viento, en [N/m²].
\(S \): superficie vertical que ofrece resistencia, en [m²].

Y que la superficie de barrido del aerogenerador es 38 m², se tiene que:

\[F_v = 221 \cdot 38 = 8.398 \text{ N} < 54.058 \text{ N} \]
Nota: la superficie de barrido es relativa, es decir, no es un obstáculo circular y vertical que ofrezca resistencia al viento mediante toda la superficie, ya que realmente, el área de barrido la forman las tres palas del aerogenerador, dejando los correspondientes intersticios al paso del viento. Además, el viento incide en las palas, deslizándose, produciéndose el intercambio de energías, de cinética a mecánica, con lo cual, la fuerza resultante del viento será mucho menor a la calculada anteriormente.

2.5 ESTUDIO DEL PUNTO DE INTERCONEXIÓN

2.5.1 Consideraciones iniciales.

En este estudio se procederá a analizar el punto de interconexión con la Red de Distribución Pública, de acuerdo a la Normativa y Legislación vigente. Para ello se tendrá especial consideración el REBT, en su ITC-BT-40 “Instalaciones generadoras de baja tensión”.

Una vez aclarados los apartados de actuación, se analizará el Centro de Distribución o Estación Transformadora afectado por la ejecución del presente proyecto.

Según la ITC-BT-40, apartado 2 (Clasificación), las instalaciones eléctricas generadoras propuestas en el presente proyecto, corresponden al punto c) Instalaciones generadoras interconectadas: Aquellas que están, normalmente, trabajando en paralelo con la Red de Distribución Pública.

Asimismo, en el apartado 4.3 (Instalaciones generadoras interconectadas), especifica que la potencia máxima de las centrales interconectadas a una Red de Distribución Pública estará condicionada por las características de ésta:

- Tensión de servicio
- Potencia de cortocircuito
- Capacidad de transporte de línea
- Potencia consumida en la red de baja tensión
- Etc.

Siguiendo, en el subapartado 4.3.1 (Potencias máximas de las centrales interconectadas en baja tensión), se especifica:
Con carácter general, la interconexión de centrales generadoras a las redes de baja tensión de 3x400/230 V será admisible cuando la suma de las potencias nominales de los generadores no exceda de 100 kVA, ni de la mitad de la capacidad de la salida del centro de transformación correspondiente a la línea de la Red de Distribución Pública a la que se conecte la central.

En los generadores eólicos, para evitar fluctuaciones en la red, la potencia de los generadores no será superior al 5% de la potencia de cortocircuito en el punto de conexión a la Red de Distribución Pública.

En el subapartado 4.3.3 y en el apartado 7 se hace referencia a los equipos de maniobra y protección para realizar la interconexión.

Dichas consideraciones ya han sido observadas y descritas en la correspondiente Memoria Descriptiva del presente proyecto.

2.5.2 Datos del Centro de Transformación afectado.

Tras toda esta selección de apartados asociados a la ejecución del presente proyecto, se pasa a analizar el punto de interconexión con la Red de Distribución Pública.

En este caso, el Centro de Distribución o Estación Transformadora a analizar se encuentra justo al lado de la acometida del emplazamiento del instituto donde se ejecutarán ambas instalaciones generadoras.

Pertenece a la Compañía Eléctrica FECSA-ENDESA, cuya designación es E.T. XR608.

A través del correspondiente programa informático empleado por FECSA-ENDESA, se pueden obtener las características del Centro de Distribución afectado o deseado para estudio. En este caso tenemos:

Nombre: XR608
Alias: POLITÈCNIC
Municipio: REUS
Dirección: CTRA. CASTELLVELL

Compañía: FECSA-ENHER
Província: TARRAGONA
Código I.N.E.: 43123000601

Potencia Total Contratada: 278,3
Potencia Doméstica: 0,0
Potencia Servicios: 263,3
2.5.3 Análisis.

Para confeccionar este subapartado, es necesario el empleo de unas hojas de cálculo elaboradas de acuerdo a los criterios que sigue la Compañía Eléctrica Distribuidora, en este caso FECSA-ENDESA.

Por un lado se analiza la saturación del transformador del Centro de Distribución, lo cual permite observar el estado actual del transformador, en cuanto a carga conectada a sus salidas de baja tensión. Y además se puede analizar su comportamiento si se cambia el transformador, por uno de mayor potencia.

Y por otra parte, conviene saber el estado de las líneas de baja tensión procedentes del transformador, y que constituyen las diferentes acometidas que de él se derivan. Para ello se valoran dos criterios:

- **Saturación de la línea:** se refiere a la potencia que transporta, de acuerdo a un valor porcentual, que siempre permanecerá por debajo de un valor permisible, en este caso 100%.

- **Caída de tensión:** el nivel de tensión debe permanecer por debajo de un valor estable, también en valor porcentual. Debe ser en todo momento inferior al 7%.
Nota: ver archivos excel:

7- Análisis Centro de Distribución
8- Línea eléctrica (estado actual)
9- Línea eléctrica (estado previsto)

2.5.4 Conclusiones.

Una vez efectuado el análisis del punto de interconexión, se pueden establecer los resultados y conclusiones, de acuerdo a las consideraciones iniciales señaladas anteriormente en el apartado 2.5.1.

La suma de las potencias nominales de los generadores no excederá de 100 kVA.
Efectivamente, sumando las potencias, se tiene que:

\[
5 \text{ kW} + 12 \text{ kW} = 17 \text{ kW}
\]

Considerando un factor de potencia, \(\cos \varphi = 0,86 \) y el triángulo de potencias:

\[
\begin{align*}
S \ [\text{kVA}] & \quad Q \ [\text{kVAR}] \\
\varphi & \\
P \ [\text{kW}]
\end{align*}
\]

\[
\cos \varphi = \frac{P}{S} \Rightarrow S = \frac{P}{\cos \varphi} = \frac{17}{0,86} = 19,77 \text{ kVA}
\]

Siendo 19,77 kVA < **100 kVA**

En cuanto a la capacidad de la línea eléctrica, que conectará las instalaciones generadoras con el Centro de Transformación, ésta no debe superarse en un 50 %.

Observando las anteriores hojas de cálculo se aprecia que en el estado **ACTUAL** (suministro al instituto), la capacidad de la línea tiene una saturación del 75,97 %. En el estado **PREVISTO** (suministro al instituto + instalaciones generadoras), la saturación será del 88,88 %. Esto supone un incremento del 12,91 %, que en cualquier caso, no representa más de un 50 % en cuanto a aumento en la capacidad de la línea eléctrica.
Y finalmente, la potencia del aerogenerador no será superior al 5 % de la potencia de cortocircuito en el punto de conexión a la Red de Distribución Pública.

Potencia de cortocircuito: 13 MVA

\[
5 \% \text{ de 13 MVA} = 0,65 \text{ MVA} = 650 \text{ kVA}
\]

\[
12 \text{ kW} / 0,86 = 14 \text{ kVA} < 650 \text{ kVA}
\]
Enero

Pot. inversores

Aporte extra de 20 módulos

Límite precio venta

0,3967 € (66ptas)

Pot = 5 kW

Producción extra de Energía

<table>
<thead>
<tr>
<th>hora solar</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>P [W]</td>
<td></td>
<td>0</td>
<td>1000</td>
<td>2000</td>
<td>3000</td>
<td>4000</td>
<td>5000</td>
</tr>
</tbody>
</table>
Febrero

Potencia inversores
Aporte extra de 20 módulos FV
Límite precio venta
0,3967 €, (66ptas)
Pot = 5 kW

Producción extra de Energía

hora solar
Marzo

Pot. inversores

Aporte extra
de 20 módulos FV

Límite precio venta
0,3967 €, (66ptas)
Pot = 5 kW

Producción extra de Energía

P [W]
Pot. inversor

Producción extra de Energía

Aporte extra de 20 módulos FV

Límite precio venta
0,3967 €, (66ptas)
Pot = 5 kW
Mayo

Pot. inversor

Aportación extra

Límite precio venta
0,3967 € (66ptas)

Pot = 5 kW

Producción extra de Energía
Junio

Producción extra de Energía

Aporte extra de 20 módulos FV y **Límite precio venta 0.3967 € (66ptas)** Pot = 5 kW

- **Pot. inversor**
- **Aportación extra**

hora solar
Pot. inversor

Aportación extra

Límite precio venta
0,3967 €, (66ptas)

Pot = 5 kW

Aporte extra de Energía de 20 módulos FV
Agosto

Pot. inversor
Aporte extra
Límite precio venta
0,3967 € (66ptas)
Pot = 5 kW

hora solar

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

P [W]
Septiembre

Pot. inversor

Aportación extra

Límite precio venta
0,3967 € (66 ptas)
Pot = 5 kW

Producción extra de Energía

hora solar
Octubre

Pot. inversor

Aportación extra de 20 módulos FV

Límite precio venta
0,3967 €, (66ptas)

Pot. = 5 kW
Noviembre

P [W]

Límite precio venta
0,3967 €, (66ptas)
Pot = 5 kW

Aporte extra de 20 módulos FV
Dicembre

P [W]

Aporte extra de 20 módulos FV

Límite precio venta 0,3967 € (66 ptas)

Pot. inversor Aporte extra
Enero

VALORACIÓN ENERGÉTICA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5_6</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>6_7</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>7_8</td>
<td>0,404</td>
<td>1</td>
<td>0,40</td>
<td>1,227</td>
<td>1</td>
<td>1,23</td>
</tr>
<tr>
<td>8_9</td>
<td>1,811</td>
<td>1</td>
<td>1,81</td>
<td>3,137</td>
<td>1</td>
<td>3,14</td>
</tr>
<tr>
<td>9_10</td>
<td>3,210</td>
<td>1</td>
<td>3,21</td>
<td>5,035</td>
<td>1</td>
<td>5,04</td>
</tr>
<tr>
<td>10_11</td>
<td>4,345</td>
<td>1</td>
<td>4,35</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>11_12</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>12_13</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>13_14</td>
<td>4,345</td>
<td>1</td>
<td>4,35</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>14_15</td>
<td>3,210</td>
<td>1</td>
<td>3,21</td>
<td>5,035</td>
<td>1</td>
<td>5,04</td>
</tr>
<tr>
<td>15_16</td>
<td>1,811</td>
<td>1</td>
<td>1,81</td>
<td>3,137</td>
<td>1</td>
<td>3,14</td>
</tr>
<tr>
<td>16_17</td>
<td>0,404</td>
<td>1</td>
<td>0,40</td>
<td>1,227</td>
<td>1</td>
<td>1,23</td>
</tr>
<tr>
<td>17_18</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>18_19</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Total [kW-h/día]

<table>
<thead>
<tr>
<th>[kW-h/día]</th>
<th>PR</th>
<th>[kW-h/día]</th>
<th>días mes</th>
<th>[kW-h/mes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29,54</td>
<td>0,851</td>
<td>25,14</td>
<td>31</td>
<td>779</td>
</tr>
<tr>
<td>38,80</td>
<td>0,851</td>
<td>33,02</td>
<td>31</td>
<td>1024</td>
</tr>
</tbody>
</table>

VALORACIÓN ECONÓMICA

<table>
<thead>
<tr>
<th>[kW-h/mes]</th>
<th>precio venta*</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>779</td>
<td>0,3967 €</td>
<td>309,15 €</td>
</tr>
<tr>
<td>1024</td>
<td>0,3967 €</td>
<td>406,03 €</td>
</tr>
</tbody>
</table>

diferencia 96,89 € 16.121 Pts

* según RD 2818/1998*
VALORACIÓN ENERGÉTICA

<table>
<thead>
<tr>
<th>hora solar</th>
<th>Pot. F [kW]</th>
<th>t [h]</th>
<th>E1 [kW·h]</th>
<th>Pot. t E2 [kW]</th>
<th>t [h]</th>
<th>E2 [kW·h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5_6</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>6_7</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>7_8</td>
<td>0,900</td>
<td>1</td>
<td>0,90</td>
<td>1,900</td>
<td>1</td>
<td>1,90</td>
</tr>
<tr>
<td>8_9</td>
<td>2,363</td>
<td>1</td>
<td>2,36</td>
<td>3,885</td>
<td>1</td>
<td>3,89</td>
</tr>
<tr>
<td>9_10</td>
<td>3,836</td>
<td>1</td>
<td>3,84</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>10_11</td>
<td>5,023</td>
<td>1</td>
<td>5,02</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>11_12</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>12_13</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>13_14</td>
<td>5,023</td>
<td>1</td>
<td>5,02</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>14_15</td>
<td>3,836</td>
<td>1</td>
<td>3,84</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>15_16</td>
<td>2,363</td>
<td>1</td>
<td>2,36</td>
<td>3,885</td>
<td>1</td>
<td>3,89</td>
</tr>
<tr>
<td>16_17</td>
<td>0,900</td>
<td>1</td>
<td>0,90</td>
<td>1,900</td>
<td>1</td>
<td>1,90</td>
</tr>
<tr>
<td>17_18</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>18_19</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>[kW-h/día]</th>
<th>PR</th>
<th>[kW-h/día]</th>
<th>días mes</th>
<th>[kW-h/mes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>34,24</td>
<td>0,844</td>
<td>28,90</td>
<td>28</td>
<td>809</td>
</tr>
<tr>
<td></td>
<td>41,57</td>
<td>0,844</td>
<td>35,09</td>
<td>28</td>
<td>982</td>
</tr>
</tbody>
</table>

VALORACIÓN ECONÓMICA

<table>
<thead>
<tr>
<th>[kW-h/mes]</th>
<th>precio venta*</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>809</td>
<td>0,3967 €</td>
<td>321,03 €</td>
</tr>
<tr>
<td>982</td>
<td>0,3967 €</td>
<td>389,71 €</td>
</tr>
</tbody>
</table>

| diferencia | 68,68 € | 11.427 Pts |

(* según RD 2818/1998)
VALORACIÓN ENERGÉTICA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5_6</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>6_7</td>
<td>0,016</td>
<td>1</td>
<td>0,02</td>
<td>0,700</td>
<td>1</td>
<td>0,70</td>
</tr>
<tr>
<td>7_8</td>
<td>1,365</td>
<td>1</td>
<td>1,37</td>
<td>2,531</td>
<td>1</td>
<td>2,53</td>
</tr>
<tr>
<td>8_9</td>
<td>2,927</td>
<td>1</td>
<td>2,93</td>
<td>4,651</td>
<td>1</td>
<td>4,65</td>
</tr>
<tr>
<td>9_10</td>
<td>4,445</td>
<td>1</td>
<td>4,45</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>10_11</td>
<td>4,997</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>11_12</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>12_13</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>13_14</td>
<td>4,997</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>14_15</td>
<td>4,445</td>
<td>1</td>
<td>4,45</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>15_16</td>
<td>2,927</td>
<td>1</td>
<td>2,93</td>
<td>4,651</td>
<td>1</td>
<td>4,65</td>
</tr>
<tr>
<td>16_17</td>
<td>1,365</td>
<td>1</td>
<td>1,37</td>
<td>2,531</td>
<td>1</td>
<td>2,53</td>
</tr>
<tr>
<td>17_18</td>
<td>0</td>
<td>1</td>
<td>0,02</td>
<td>0,700</td>
<td>1</td>
<td>0,70</td>
</tr>
<tr>
<td>18_19</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
</tr>
</tbody>
</table>

| Total [kW-h/día] | 37,50 | 45,76 |

<table>
<thead>
<tr>
<th>[kW-h/día]</th>
<th>PR</th>
<th>[kW-h/día]</th>
<th>días</th>
<th>mes</th>
<th>[kW-h/mes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>37,50</td>
<td>0,801</td>
<td>30,04</td>
<td>31</td>
<td>931</td>
<td>con aporte extra</td>
</tr>
<tr>
<td>45,76</td>
<td>0,801</td>
<td>36,66</td>
<td>31</td>
<td>1136</td>
<td></td>
</tr>
</tbody>
</table>

VALORACIÓN ECONÓMICA

<table>
<thead>
<tr>
<th>[kW-h/mes]</th>
<th>precio venta*</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>931</td>
<td>0,3967 €</td>
<td>369,39 €</td>
</tr>
<tr>
<td>1136</td>
<td>0,3967 €</td>
<td>450,80 €</td>
</tr>
</tbody>
</table>

| diferencia | 81,40 € | 13.545 Pts |

* según RD 2818/1998
VALORACIÓN ENERGÉTICA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5_6</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,050</td>
<td>1</td>
<td>0,05</td>
</tr>
<tr>
<td>6_7</td>
<td>0,261</td>
<td>1</td>
<td>0,26</td>
<td>1,032</td>
<td>1</td>
<td>1,03</td>
</tr>
<tr>
<td>7_8</td>
<td>1,657</td>
<td>1</td>
<td>1,66</td>
<td>2,927</td>
<td>1</td>
<td>2,93</td>
</tr>
<tr>
<td>8_9</td>
<td>3,222</td>
<td>1</td>
<td>3,22</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>9_10</td>
<td>4,714</td>
<td>1</td>
<td>4,71</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>10_11</td>
<td>4,975</td>
<td>1</td>
<td>4,98</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>11_12</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>12_13</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>13_14</td>
<td>4,975</td>
<td>1</td>
<td>4,98</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>14_15</td>
<td>4,714</td>
<td>1</td>
<td>4,71</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>15_16</td>
<td>3,222</td>
<td>1</td>
<td>3,22</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>16_17</td>
<td>1,657</td>
<td>1</td>
<td>1,66</td>
<td>2,927</td>
<td>1</td>
<td>2,93</td>
</tr>
<tr>
<td>17_18</td>
<td>0,261</td>
<td>1</td>
<td>0,26</td>
<td>1,032</td>
<td>1</td>
<td>1,03</td>
</tr>
<tr>
<td>18_19</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,050</td>
<td>1</td>
<td>0,05</td>
</tr>
</tbody>
</table>

| Total [kW-h/día] | 39,66 | 48,02 |

<table>
<thead>
<tr>
<th>[kW-h/día]</th>
<th>PR</th>
<th>[kW-h/día]</th>
<th>días mes</th>
<th>[kW-h/mes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>39,66</td>
<td>0,802</td>
<td>31,81</td>
<td>30</td>
<td>954</td>
</tr>
<tr>
<td>48,02</td>
<td>0,802</td>
<td>38,51</td>
<td>30</td>
<td>1155</td>
</tr>
</tbody>
</table>

VALORACIÓN ECONÓMICA

<table>
<thead>
<tr>
<th>[kW-h/mes] [precio venta*]</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>954</td>
<td>0,3967 €</td>
</tr>
<tr>
<td>1155</td>
<td>0,3967 €</td>
</tr>
</tbody>
</table>

| diferencia | 79,79 € | 13.276 Pts |

(* según RD 2818/1998)
VALORACIÓN ENERGÉTICA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5_6</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,368</td>
<td>1</td>
<td>0,37</td>
</tr>
<tr>
<td>6_7</td>
<td>0,309</td>
<td>1</td>
<td>0,31</td>
<td>1,098</td>
<td>1</td>
<td>1,10</td>
</tr>
<tr>
<td>7_8</td>
<td>1,721</td>
<td>1</td>
<td>1,72</td>
<td>3,014</td>
<td>1</td>
<td>3,01</td>
</tr>
<tr>
<td>8_9</td>
<td>3,235</td>
<td>1</td>
<td>3,24</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>9_10</td>
<td>4,651</td>
<td>1</td>
<td>4,65</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>10_11</td>
<td>4,969</td>
<td>1</td>
<td>4,97</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>11_12</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>12_13</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>13_14</td>
<td>4,969</td>
<td>1</td>
<td>4,97</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>14_15</td>
<td>4,651</td>
<td>1</td>
<td>4,65</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>15_16</td>
<td>3,235</td>
<td>1</td>
<td>3,24</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>16_17</td>
<td>1,721</td>
<td>1</td>
<td>1,72</td>
<td>3,014</td>
<td>1</td>
<td>3,01</td>
</tr>
<tr>
<td>17_18</td>
<td>0,309</td>
<td>1</td>
<td>0,31</td>
<td>1,098</td>
<td>1</td>
<td>1,10</td>
</tr>
<tr>
<td>18_19</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,368</td>
<td>1</td>
<td>0,37</td>
</tr>
</tbody>
</table>

Total [kW-h/día]

<table>
<thead>
<tr>
<th>[kW-h/día]</th>
<th>PR</th>
<th>[kW-h/día]</th>
<th>días mes</th>
<th>[kW-h/mes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>39,77</td>
<td>0,796</td>
<td>31,66</td>
<td>31</td>
<td>981</td>
</tr>
<tr>
<td>48,96</td>
<td>0,796</td>
<td>38,97</td>
<td>31</td>
<td>1208</td>
</tr>
</tbody>
</table>

VALORACIÓN ECONÓMICA

<table>
<thead>
<tr>
<th>[kW-h/mes]</th>
<th>precio venta*</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>981</td>
<td>0,3967 €</td>
<td>389,31 €</td>
</tr>
<tr>
<td>1208</td>
<td>0,3967 €</td>
<td>479,27 €</td>
</tr>
</tbody>
</table>

diferencia

| 89,96 € | 14.968 Pts |
VALORACIÓN ENERGÉTICA

<table>
<thead>
<tr>
<th>hora solar</th>
<th>Pot. F [kW]</th>
<th>t [h]</th>
<th>E1 [kW-h]</th>
<th>Pot. t [kW]</th>
<th>t [h]</th>
<th>E2 [kW-h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5_6</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,468</td>
<td>1</td>
<td>0,47</td>
</tr>
<tr>
<td>6_7</td>
<td>0,337</td>
<td>1</td>
<td>0,34</td>
<td>1,136</td>
<td>1</td>
<td>1,14</td>
</tr>
<tr>
<td>7_8</td>
<td>1,712</td>
<td>1</td>
<td>1,71</td>
<td>3,003</td>
<td>1</td>
<td>3,00</td>
</tr>
<tr>
<td>8_9</td>
<td>3,196</td>
<td>1</td>
<td>3,20</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>9_10</td>
<td>4,568</td>
<td>1</td>
<td>4,57</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>10_11</td>
<td>4,970</td>
<td>1</td>
<td>4,97</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>11_12</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>12_13</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>13_14</td>
<td>4,970</td>
<td>1</td>
<td>4,97</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>14_15</td>
<td>4,568</td>
<td>1</td>
<td>4,57</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>15_16</td>
<td>3,196</td>
<td>1</td>
<td>3,20</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>16_17</td>
<td>1,712</td>
<td>1</td>
<td>1,71</td>
<td>3,003</td>
<td>1</td>
<td>3,00</td>
</tr>
<tr>
<td>17_18</td>
<td>0,337</td>
<td>1</td>
<td>0,34</td>
<td>1,136</td>
<td>1</td>
<td>1,14</td>
</tr>
<tr>
<td>18_19</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,468</td>
<td>1</td>
<td>0,47</td>
</tr>
</tbody>
</table>

Total [kW-h/día] 39,57 49,21

[kW-h/día] PR [kW-h/día] días mes [kW-h/mes]

| 39,57 | 0,768 | 30,39 | 30 | 912 |
| 49,21 | 0,768 | 37,80 | 30 | 1134 |

con aporte extra

VALORACIÓN ECONÓMICA

[kW-h/mes] precio venta* total

| 912 | 0,3967 € | 361,63 € | 60.170 Pts |
| 1134 | 0,3967 € | 449,81 € | 74.843 Pts |

diferencia 88,18 € 14.672 Pts

(* según RD 2818/1998)
VALORACIÓN ENERGÉTICA

<table>
<thead>
<tr>
<th>hora solar</th>
<th>Pot. F [kW]</th>
<th>t [h]</th>
<th>E1 [kW·h]</th>
<th>Pot. [kW]</th>
<th>t [h]</th>
<th>E2 [kW·h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5_6</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,410</td>
<td>1</td>
<td>0,41</td>
</tr>
<tr>
<td>6_7</td>
<td>0,310</td>
<td>1</td>
<td>0,31</td>
<td>1,099</td>
<td>1</td>
<td>1,10</td>
</tr>
<tr>
<td>7_8</td>
<td>1,724</td>
<td>1</td>
<td>1,72</td>
<td>3,018</td>
<td>1</td>
<td>3,02</td>
</tr>
<tr>
<td>8_9</td>
<td>3,231</td>
<td>1</td>
<td>3,23</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>9_10</td>
<td>4,630</td>
<td>1</td>
<td>4,63</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>10_11</td>
<td>4,937</td>
<td>1</td>
<td>4,94</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>11_12</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>12_13</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>13_14</td>
<td>4,937</td>
<td>1</td>
<td>4,94</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>14_15</td>
<td>4,630</td>
<td>1</td>
<td>4,63</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>15_16</td>
<td>3,231</td>
<td>1</td>
<td>3,23</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>16_17</td>
<td>1,724</td>
<td>1</td>
<td>1,72</td>
<td>3,018</td>
<td>1</td>
<td>3,02</td>
</tr>
<tr>
<td>17_18</td>
<td>0,310</td>
<td>1</td>
<td>0,31</td>
<td>1,099</td>
<td>1</td>
<td>1,10</td>
</tr>
<tr>
<td>18_19</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,410</td>
<td>1</td>
<td>0,41</td>
</tr>
</tbody>
</table>

Total [kW·h/día]

<table>
<thead>
<tr>
<th>[kW·h/día]</th>
<th>PR</th>
<th>[kW·h/día]</th>
<th>días mes</th>
<th>[kW·h/mes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>39,66</td>
<td>0,753</td>
<td>29,87</td>
<td>31</td>
<td>926</td>
</tr>
<tr>
<td>49,05</td>
<td>0,753</td>
<td>36,94</td>
<td>31</td>
<td>1145</td>
</tr>
</tbody>
</table>

con aporte extra

VALORACIÓN ECONÓMICA

<table>
<thead>
<tr>
<th>[kW·h/mes]</th>
<th>precio venta*</th>
<th>total</th>
<th>(* según RD 2818/1998)</th>
</tr>
</thead>
<tbody>
<tr>
<td>926</td>
<td>0,3967 €</td>
<td>367,30 €</td>
<td>61.113 Pts</td>
</tr>
<tr>
<td>1145</td>
<td>0,3967 €</td>
<td>454,25 €</td>
<td>75.581 Pts</td>
</tr>
</tbody>
</table>

diferencia 86,95 € 14.468 Pts
VALORACIÓN ENERGÉTICA

<table>
<thead>
<tr>
<th>hora solar</th>
<th>Pot. F [kW]</th>
<th>t [h]</th>
<th>E1 [kW·h]</th>
<th>Pot. t E2 [kW]</th>
<th>t [h]</th>
<th>E2 [kW·h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5_6</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,019</td>
<td>1</td>
<td>0,02</td>
</tr>
<tr>
<td>6_7</td>
<td>0,296</td>
<td>1</td>
<td>0,30</td>
<td>1,081</td>
<td>1</td>
<td>1,08</td>
</tr>
<tr>
<td>7_8</td>
<td>1,711</td>
<td>1</td>
<td>1,71</td>
<td>3,001</td>
<td>1</td>
<td>3,00</td>
</tr>
<tr>
<td>8_9</td>
<td>3,274</td>
<td>1</td>
<td>3,27</td>
<td>5,001</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>9_10</td>
<td>4,748</td>
<td>1</td>
<td>4,75</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>10_11</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>11_12</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>12_13</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>13_14</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>14_15</td>
<td>4,748</td>
<td>1</td>
<td>4,75</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>15_16</td>
<td>3,274</td>
<td>1</td>
<td>3,27</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>16_17</td>
<td>1,711</td>
<td>1</td>
<td>1,71</td>
<td>3,001</td>
<td>1</td>
<td>3,00</td>
</tr>
<tr>
<td>17_18</td>
<td>0,296</td>
<td>1</td>
<td>0,30</td>
<td>1,081</td>
<td>1</td>
<td>1,08</td>
</tr>
<tr>
<td>18_19</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,019</td>
<td>1</td>
<td>0,02</td>
</tr>
</tbody>
</table>

| Total [kW·h/día] | 40,06 | 48,20 |

<table>
<thead>
<tr>
<th>[kW-h/día]</th>
<th>PR</th>
<th>[kW-h/día]</th>
<th>días mes</th>
<th>[kW-h/mes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>40,06</td>
<td>0,757</td>
<td>30,32</td>
<td>31</td>
<td>940</td>
</tr>
<tr>
<td>48,20</td>
<td>0,757</td>
<td>36,49</td>
<td>31</td>
<td>1,131</td>
</tr>
</tbody>
</table>

con aporte extra

VALORACIÓN ECONÓMICA

<table>
<thead>
<tr>
<th>[kW-h/mes]</th>
<th>precio venta*</th>
<th>total</th>
<th>(* según RD 2818/1998)</th>
</tr>
</thead>
<tbody>
<tr>
<td>940</td>
<td>0,3967 €</td>
<td>372,91 €</td>
<td>62.048 Pts</td>
</tr>
<tr>
<td>1,131</td>
<td>0,3967 €</td>
<td>448,73 €</td>
<td>74.662 Pts</td>
</tr>
</tbody>
</table>

| diferencia | 75,82 € | 12.615 Pts |
VALORACIÓN ENERGÉTICA

<table>
<thead>
<tr>
<th>hora solar</th>
<th>Pot. F [kW]</th>
<th>t [h]</th>
<th>E1 [kW·h]</th>
<th>Pot. t E2 [kW]</th>
<th>t [h]</th>
<th>E2 [kW·h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5_6</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,00</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>6_7</td>
<td>0,137</td>
<td>1</td>
<td>0,14</td>
<td>0,864</td>
<td>1</td>
<td>0,86</td>
</tr>
<tr>
<td>7_8</td>
<td>1,518</td>
<td>1</td>
<td>1,52</td>
<td>2,739</td>
<td>1</td>
<td>2,74</td>
</tr>
<tr>
<td>8_9</td>
<td>3,096</td>
<td>1</td>
<td>3,10</td>
<td>4,881</td>
<td>1</td>
<td>4,88</td>
</tr>
<tr>
<td>9_10</td>
<td>4,619</td>
<td>1</td>
<td>4,62</td>
<td>5,00</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>10_11</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>11_12</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>12_13</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>13_14</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>14_15</td>
<td>4,619</td>
<td>1</td>
<td>4,62</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>15_16</td>
<td>3,096</td>
<td>1</td>
<td>3,10</td>
<td>4,881</td>
<td>1</td>
<td>4,88</td>
</tr>
<tr>
<td>16_17</td>
<td>1,518</td>
<td>1</td>
<td>1,52</td>
<td>2,739</td>
<td>1</td>
<td>2,74</td>
</tr>
<tr>
<td>17_18</td>
<td>0,137</td>
<td>1</td>
<td>0,14</td>
<td>0,864</td>
<td>1</td>
<td>0,86</td>
</tr>
<tr>
<td>18_19</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,000</td>
<td>1</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Total [kW·h/día] 38,74 46,97

<table>
<thead>
<tr>
<th>[kW·h/día]</th>
<th>PR</th>
<th>[kW·h/día]</th>
<th>días mes</th>
<th>[kW·h/mes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>38,74</td>
<td>0,769</td>
<td>29,79</td>
<td>30</td>
<td>894</td>
</tr>
<tr>
<td>46,97</td>
<td>0,769</td>
<td>36,12</td>
<td>30</td>
<td>1084</td>
</tr>
</tbody>
</table>

con aporte extra

VALORACIÓN ECONÓMICA

<table>
<thead>
<tr>
<th>[kW-h/mes]</th>
<th>precio venta*</th>
<th>total</th>
<th>58.991 Pts</th>
<th>71.520 Pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>894</td>
<td>0,3967 €</td>
<td>354,54 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1084</td>
<td>0,3967 €</td>
<td>429,84 €</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

diferencia 75,30 € 12.529 Pts
VALORACIÓN ENERGÉTICA

Aporte extra

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5_6</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,00</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>6_7</td>
<td>0,000</td>
<td>1</td>
<td>0,00</td>
<td>0,00</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>7_8</td>
<td>1,108</td>
<td>1</td>
<td>2,65</td>
<td>4,268</td>
<td>1</td>
<td>4,27</td>
</tr>
<tr>
<td>8_9</td>
<td>2,645</td>
<td>1</td>
<td>4,16</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>9_10</td>
<td>4,160</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>10_11</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>11_12</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>12_13</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>13_14</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>14_15</td>
<td>4,160</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>15_16</td>
<td>2,645</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>16_17</td>
<td>1,108</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>17_18</td>
<td>0,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>18_19</td>
<td>0</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>[kW-h/día]</th>
<th>35,83</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>42,90</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[kW-h/día]</th>
<th>PR [kW-h/día]</th>
<th>días mes</th>
<th>[kW-h/mes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>35,83</td>
<td>0,807</td>
<td>28,91</td>
<td>31</td>
</tr>
<tr>
<td>42,90</td>
<td>0,807</td>
<td>34,62</td>
<td>31</td>
</tr>
</tbody>
</table>

con aporte extra

VALORACIÓN ECONÓMICA

<table>
<thead>
<tr>
<th>[kW-h/mes]</th>
<th>precio venta*</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>896</td>
<td>0,3967 €</td>
<td>355,55 €</td>
</tr>
<tr>
<td>1073</td>
<td>0,3967 €</td>
<td>425,75 €</td>
</tr>
</tbody>
</table>

(* según RD 2818/1998)

| diferencia | 70,20 € | 11.681 Pts |

(con aporte extra)
VALORACIÓN ENERGÉTICA

<table>
<thead>
<tr>
<th>hora solar</th>
<th>F [kW]</th>
<th>t [h]</th>
<th>E1 [kW·h]</th>
<th>Pot. [kW]</th>
<th>t [h]</th>
<th>E2 [kW·h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5_6</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,00</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>6_7</td>
<td>0,000</td>
<td>1</td>
<td>0,00</td>
<td>0,00</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>7_8</td>
<td>0,566</td>
<td>1</td>
<td>0,57</td>
<td>1,447</td>
<td>1</td>
<td>1,45</td>
</tr>
<tr>
<td>8_9</td>
<td>2,007</td>
<td>1</td>
<td>2,01</td>
<td>3,402</td>
<td>1</td>
<td>3,40</td>
</tr>
<tr>
<td>9_10</td>
<td>3,435</td>
<td>1</td>
<td>3,44</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>10_11</td>
<td>4,591</td>
<td>1</td>
<td>4,59</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>11_12</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>12_13</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>13_14</td>
<td>4,591</td>
<td>1</td>
<td>4,59</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>14_15</td>
<td>3,435</td>
<td>1</td>
<td>3,44</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>15_16</td>
<td>2,007</td>
<td>1</td>
<td>2,01</td>
<td>3,402</td>
<td>1</td>
<td>3,40</td>
</tr>
<tr>
<td>16_17</td>
<td>0,566</td>
<td>1</td>
<td>0,57</td>
<td>1,447</td>
<td>1</td>
<td>1,45</td>
</tr>
<tr>
<td>17_18</td>
<td>0,000</td>
<td>1</td>
<td>0,00</td>
<td>0,000</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>18_19</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,000</td>
<td>1</td>
<td>0,00</td>
</tr>
</tbody>
</table>

| Total [kW·h/día] | 31,20 | 39,70 |

<table>
<thead>
<tr>
<th>[kW-h/día]</th>
<th>PR</th>
<th>[kW-h/día]</th>
<th>días mes</th>
<th>[kW-h/mes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>31,20</td>
<td>0,837</td>
<td>26,11</td>
<td>30</td>
<td>783</td>
</tr>
<tr>
<td>39,70</td>
<td>0,837</td>
<td>33,23</td>
<td>30</td>
<td>997</td>
</tr>
</tbody>
</table>

con aporte extra

VALORACIÓN ECONÓMICA

<table>
<thead>
<tr>
<th>[kW-h/mes]</th>
<th>precio venta*</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>783</td>
<td>0,3967 €</td>
<td>310,77 €</td>
</tr>
<tr>
<td>997</td>
<td>0,3967 €</td>
<td>395,44 €</td>
</tr>
</tbody>
</table>

(* según RD 2818/1998)

| diferencia | 84,67 € | 14,088 Pts |

con aporte extra
VALORACIÓN ENERGÉTICA

<table>
<thead>
<tr>
<th>hora solar</th>
<th>Pot. F [kW]</th>
<th>t [h]</th>
<th>E1 [kW·h]</th>
<th>Pot. t E2 [kW]</th>
<th>t [h]</th>
<th>E2 [kW·h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5_6</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,000</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>6_7</td>
<td>0,000</td>
<td>1</td>
<td>0,00</td>
<td>0,000</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>7_8</td>
<td>0,262</td>
<td>1</td>
<td>0,26</td>
<td>1,034</td>
<td>1</td>
<td>1,03</td>
</tr>
<tr>
<td>8_9</td>
<td>1,649</td>
<td>1</td>
<td>1,65</td>
<td>2,917</td>
<td>1</td>
<td>2,92</td>
</tr>
<tr>
<td>9_10</td>
<td>3,029</td>
<td>1</td>
<td>3,03</td>
<td>4,790</td>
<td>1</td>
<td>4,79</td>
</tr>
<tr>
<td>10_11</td>
<td>4,152</td>
<td>1</td>
<td>4,15</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>11_12</td>
<td>4,783</td>
<td>1</td>
<td>4,78</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>12_13</td>
<td>4,783</td>
<td>1</td>
<td>4,78</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>13_14</td>
<td>4,152</td>
<td>1</td>
<td>4,15</td>
<td>5,000</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>14_15</td>
<td>3,029</td>
<td>1</td>
<td>3,03</td>
<td>4,790</td>
<td>1</td>
<td>4,79</td>
</tr>
<tr>
<td>15_16</td>
<td>1,649</td>
<td>1</td>
<td>1,65</td>
<td>2,917</td>
<td>1</td>
<td>2,92</td>
</tr>
<tr>
<td>16_17</td>
<td>0,262</td>
<td>1</td>
<td>0,26</td>
<td>1,034</td>
<td>1</td>
<td>1,03</td>
</tr>
<tr>
<td>17_18</td>
<td>0,000</td>
<td>1</td>
<td>0,00</td>
<td>0,000</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>18_19</td>
<td>0</td>
<td>1</td>
<td>0,00</td>
<td>0,000</td>
<td>1</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Total [kW·h/día]

<table>
<thead>
<tr>
<th>[kW·h/día]</th>
<th>PR</th>
<th>[kW·h/día]</th>
<th>días mes</th>
<th>[kW·h/mes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>27,75</td>
<td>0,850</td>
<td>23,59</td>
<td>31</td>
<td>731</td>
</tr>
<tr>
<td>37,48</td>
<td>0,850</td>
<td>31,86</td>
<td>31</td>
<td>988</td>
</tr>
</tbody>
</table>

VALORACIÓN ECONÓMICA

<table>
<thead>
<tr>
<th>[kW·h/mes]</th>
<th>precio venta*</th>
<th>total</th>
<th>(*) según RD 2818/1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>731</td>
<td>0,3967 €</td>
<td>290,07 €</td>
<td>48.264 Pts</td>
</tr>
<tr>
<td>988</td>
<td>0,3967 €</td>
<td>391,80 €</td>
<td>65.190 Pts</td>
</tr>
</tbody>
</table>

diferencia: 101,73 € 16,926 Pts
Inversión módulos fotovoltaicos

<table>
<thead>
<tr>
<th>Precio unid.</th>
<th>Nº unid.</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.228,17</td>
<td>56</td>
<td>68777,52 11.443.616 Pts</td>
</tr>
<tr>
<td></td>
<td>76</td>
<td>93340,92 15.530.622 Pts</td>
</tr>
</tbody>
</table>

El aporte extra de 20 unidades más supone un incremento de:

24563,40 4.087.006 Pts

Ingresos por venta a la red eléctrica con aporte extra

<table>
<thead>
<tr>
<th>Diferencia entre ingresos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero 96,89 € 16.121 Pts</td>
</tr>
<tr>
<td>Febrero 68,68 € 11.427 Pts</td>
</tr>
<tr>
<td>Marzo 81,40 € 13.545 Pts</td>
</tr>
<tr>
<td>Abril 79,79 € 13.276 Pts</td>
</tr>
<tr>
<td>Mayo 89,96 € 14.968 Pts</td>
</tr>
<tr>
<td>Junio 88,18 € 14.672 Pts</td>
</tr>
<tr>
<td>Julio 86,95 € 14.468 Pts</td>
</tr>
<tr>
<td>Agosto 75,82 € 12.615 Pts</td>
</tr>
<tr>
<td>Septiembre 75,30 € 12.529 Pts</td>
</tr>
<tr>
<td>Octubre 70,20 € 11.681 Pts</td>
</tr>
<tr>
<td>Noviembre 84,67 € 14.088 Pts</td>
</tr>
<tr>
<td>Diciembre 101,73 € 16.926 Pts</td>
</tr>
</tbody>
</table>

| Total 999,58 € 166.316 Pts |

Ayudas I.D.A.E.

Dentro del Programa de ayudas a instalaciones de energía solar fotovoltaica, para la generación de electricidad, el Instituto para la Diversificación y Ahorro de la Energía (IDAE), establece una convocatoria pública anual para la acreditación de empresas colaboradoras.

El objeto de esta convocatoria es la acreditación de empresas instaladoras o proveedoras de bienes y servicios en el sector de la energía solar fotovoltaica para la ejecución de instalaciones de aprovechamiento de la energía solar para la generación de electricidad, en el marco del Programa de ayudas
para el apoyo de la energía solar fotovoltaica, de conformidad con las previsiones contenidas dentro del Plan de Fomento de las Energías Renovables aprobado el 30 de diciembre de 1999.

El plazo máximo para presentar solicitudes de acreditación concluye 15 días antes de que finalice la convocatoria de usuarios.

La ayuda consiste en el pago directo de la cuantía de la ayuda a la empresa colaboradora, que a su vez debe ejecutar la instalación en modalidad llave en mano, cumpliendo los requisitos técnicos exigidos por el IDAE. El importe así recibido será deducido del coste total a abonar por el beneficiario por la instalación.

En este caso, la ayuda tiene una cuantía máxima de 2,25 €/Wp, para instalaciones conectadas a la red con potencia inferior a 5 kWp.

<table>
<thead>
<tr>
<th>Wp</th>
<th>€ / Wp</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.500</td>
<td>2,25</td>
<td>12.375,00 €</td>
</tr>
</tbody>
</table>
Curvas Bornay

$P \text{ [kW]}$

$v \text{ [m/s]}$
HOJA 1

Aerogenerador:

VELTER XV

Potencia:

15 kW

<table>
<thead>
<tr>
<th>Variables</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad media [m/s]</td>
<td>Velocidad viento en el eje [m/s]: 5,49</td>
</tr>
<tr>
<td>Constante zona, k</td>
<td>Media potencia de salida, [kW]: 1,553</td>
</tr>
<tr>
<td>Coeficiente terreno</td>
<td>Energía diaria de salida, [kWh]: 37,278</td>
</tr>
<tr>
<td>Altura de medida</td>
<td>Energía anual de salida, [kWh]: 13606,604</td>
</tr>
<tr>
<td>Altura de la torre</td>
<td>Porcentaje de funcionamiento, (%): 72,52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velocidad del viento [m/s]</th>
<th>Potencia [kW]</th>
<th>Probabilidad de viento</th>
<th>Neto kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,00</td>
<td>5,12%</td>
<td>0,000</td>
</tr>
<tr>
<td>2</td>
<td>0,00</td>
<td>9,47%</td>
<td>0,000</td>
</tr>
<tr>
<td>3</td>
<td>0,00</td>
<td>12,45%</td>
<td>0,000</td>
</tr>
<tr>
<td>4</td>
<td>0,20</td>
<td>13,81%</td>
<td>0,028</td>
</tr>
<tr>
<td>5</td>
<td>0,60</td>
<td>13,63%</td>
<td>0,082</td>
</tr>
<tr>
<td>6</td>
<td>1,20</td>
<td>12,24%</td>
<td>0,147</td>
</tr>
<tr>
<td>7</td>
<td>2,00</td>
<td>10,15%</td>
<td>0,203</td>
</tr>
<tr>
<td>8</td>
<td>2,80</td>
<td>7,82%</td>
<td>0,219</td>
</tr>
<tr>
<td>9</td>
<td>4,00</td>
<td>5,63%</td>
<td>0,225</td>
</tr>
<tr>
<td>10</td>
<td>5,30</td>
<td>3,79%</td>
<td>0,201</td>
</tr>
<tr>
<td>11</td>
<td>6,40</td>
<td>2,40%</td>
<td>0,154</td>
</tr>
<tr>
<td>12</td>
<td>8,20</td>
<td>1,43%</td>
<td>0,117</td>
</tr>
<tr>
<td>13</td>
<td>9,80</td>
<td>0,80%</td>
<td>0,079</td>
</tr>
<tr>
<td>14</td>
<td>11,20</td>
<td>0,43%</td>
<td>0,048</td>
</tr>
<tr>
<td>15</td>
<td>13,20</td>
<td>0,21%</td>
<td>0,028</td>
</tr>
<tr>
<td>16</td>
<td>15,00</td>
<td>0,10%</td>
<td>0,015</td>
</tr>
<tr>
<td>17</td>
<td>18,60</td>
<td>0,04%</td>
<td>0,008</td>
</tr>
<tr>
<td>18</td>
<td>0,00</td>
<td>0,02%</td>
<td>0,000</td>
</tr>
<tr>
<td>19</td>
<td>0,00</td>
<td>0,01%</td>
<td>0,000</td>
</tr>
<tr>
<td>20</td>
<td>0,00</td>
<td>0,00%</td>
<td>0,000</td>
</tr>
</tbody>
</table>

| | 99,56% | 1,553 |
HOJA 2

Aerogenerador:

| INCLIN 3000 |

Potencia:

| 3 kW |

<table>
<thead>
<tr>
<th>Variables</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad media [m/s]</td>
<td>5</td>
</tr>
<tr>
<td>Constante zona, k</td>
<td>2</td>
</tr>
<tr>
<td>Coeficiente terreno</td>
<td>0,23</td>
</tr>
<tr>
<td>Altura de medida</td>
<td>10</td>
</tr>
<tr>
<td>Altura de la torre</td>
<td>15</td>
</tr>
<tr>
<td>Velocidad viento en el eje [m/s]:</td>
<td>5,49</td>
</tr>
<tr>
<td>Media potencia de salida, [kW]:</td>
<td>0,974</td>
</tr>
<tr>
<td>Energía diaria de salida, [kWh]:</td>
<td>23,369</td>
</tr>
<tr>
<td>Energía anual de salida, [kWh]:</td>
<td>8529,842</td>
</tr>
<tr>
<td>Porcentaje de funcionamiento, (%):</td>
<td>72,52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velocidad del viento [m/s]</th>
<th>Potencia [kW]</th>
<th>Probabilidad de viento</th>
<th>Neto kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,00</td>
<td>5,12%</td>
<td>0,000</td>
</tr>
<tr>
<td>2</td>
<td>0,00</td>
<td>9,47%</td>
<td>0,000</td>
</tr>
<tr>
<td>3</td>
<td>0,00</td>
<td>12,45%</td>
<td>0,000</td>
</tr>
<tr>
<td>4</td>
<td>0,50</td>
<td>13,81%</td>
<td>0,069</td>
</tr>
<tr>
<td>5</td>
<td>0,75</td>
<td>13,63%</td>
<td>0,102</td>
</tr>
<tr>
<td>6</td>
<td>1,00</td>
<td>12,24%</td>
<td>0,122</td>
</tr>
<tr>
<td>7</td>
<td>1,50</td>
<td>10,15%</td>
<td>0,152</td>
</tr>
<tr>
<td>8</td>
<td>2,00</td>
<td>7,82%</td>
<td>0,156</td>
</tr>
<tr>
<td>9</td>
<td>2,25</td>
<td>5,63%</td>
<td>0,127</td>
</tr>
<tr>
<td>10</td>
<td>2,50</td>
<td>3,79%</td>
<td>0,095</td>
</tr>
<tr>
<td>11</td>
<td>2,75</td>
<td>2,40%</td>
<td>0,066</td>
</tr>
<tr>
<td>12</td>
<td>3,00</td>
<td>1,43%</td>
<td>0,043</td>
</tr>
<tr>
<td>13</td>
<td>3,25</td>
<td>0,80%</td>
<td>0,026</td>
</tr>
<tr>
<td>14</td>
<td>3,50</td>
<td>0,43%</td>
<td>0,015</td>
</tr>
<tr>
<td>15</td>
<td>0,00</td>
<td>0,21%</td>
<td>0,000</td>
</tr>
<tr>
<td>16</td>
<td>0,00</td>
<td>0,10%</td>
<td>0,000</td>
</tr>
<tr>
<td>17</td>
<td>0,00</td>
<td>0,04%</td>
<td>0,000</td>
</tr>
<tr>
<td>18</td>
<td>0,00</td>
<td>0,02%</td>
<td>0,000</td>
</tr>
<tr>
<td>19</td>
<td>0,00</td>
<td>0,01%</td>
<td>0,000</td>
</tr>
<tr>
<td>20</td>
<td>0,00</td>
<td>0,00%</td>
<td>0,000</td>
</tr>
</tbody>
</table>

| 99,56% | 0,974 |
Variables

<table>
<thead>
<tr>
<th>Velocidad media [m/s]</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constante zona, k</td>
<td>2</td>
</tr>
<tr>
<td>Coeficiente terreno</td>
<td>0,23</td>
</tr>
<tr>
<td>Altura de medida</td>
<td>10</td>
</tr>
<tr>
<td>Altura de la torre</td>
<td>15</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th></th>
<th>Velocidad viento en el eje [m/s]: 5,49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media potencia de salida, [kW]:</td>
<td>1,906</td>
</tr>
<tr>
<td>Energía diaria de salida, [kWh]:</td>
<td>45,735</td>
</tr>
<tr>
<td>Energía anual de salida, [kWh]:</td>
<td>16693,253</td>
</tr>
<tr>
<td>Porcentaje de funcionamiento, (%):</td>
<td>72,52</td>
</tr>
</tbody>
</table>

Velocidad del viento [m/s] | Potencia [kW] | Probabilidad de viento | Neto kW |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,00</td>
<td>5,12%</td>
<td>0,000</td>
</tr>
<tr>
<td>2</td>
<td>0,00</td>
<td>9,47%</td>
<td>0,000</td>
</tr>
<tr>
<td>3</td>
<td>0,00</td>
<td>12,45%</td>
<td>0,000</td>
</tr>
<tr>
<td>4</td>
<td>0,90</td>
<td>13,81%</td>
<td>0,124</td>
</tr>
<tr>
<td>5</td>
<td>1,50</td>
<td>13,63%</td>
<td>0,204</td>
</tr>
<tr>
<td>6</td>
<td>2,00</td>
<td>12,24%</td>
<td>0,245</td>
</tr>
<tr>
<td>7</td>
<td>3,00</td>
<td>10,15%</td>
<td>0,304</td>
</tr>
<tr>
<td>8</td>
<td>3,70</td>
<td>7,82%</td>
<td>0,289</td>
</tr>
<tr>
<td>9</td>
<td>4,50</td>
<td>5,63%</td>
<td>0,253</td>
</tr>
<tr>
<td>10</td>
<td>5,00</td>
<td>3,79%</td>
<td>0,190</td>
</tr>
<tr>
<td>11</td>
<td>5,50</td>
<td>2,40%</td>
<td>0,132</td>
</tr>
<tr>
<td>12</td>
<td>6,00</td>
<td>1,43%</td>
<td>0,086</td>
</tr>
<tr>
<td>13</td>
<td>6,25</td>
<td>0,80%</td>
<td>0,050</td>
</tr>
<tr>
<td>14</td>
<td>6,40</td>
<td>0,43%</td>
<td>0,027</td>
</tr>
<tr>
<td>15</td>
<td>0,00</td>
<td>0,21%</td>
<td>0,000</td>
</tr>
<tr>
<td>16</td>
<td>0,00</td>
<td>0,10%</td>
<td>0,000</td>
</tr>
<tr>
<td>17</td>
<td>0,00</td>
<td>0,04%</td>
<td>0,000</td>
</tr>
<tr>
<td>18</td>
<td>0,00</td>
<td>0,02%</td>
<td>0,000</td>
</tr>
<tr>
<td>19</td>
<td>0,00</td>
<td>0,01%</td>
<td>0,000</td>
</tr>
<tr>
<td>20</td>
<td>0,00</td>
<td>0,00%</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Total: 99,56% 1,906
Aerogenerador:

BORNAY BK-12

Potencia:

12 kW

<table>
<thead>
<tr>
<th>Variables</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad media [m/s]</td>
<td>Velocidad viento en el eje [m/s]: 5,49</td>
</tr>
<tr>
<td>Constante zona, k</td>
<td>Media potencia de salida, [kW]: 3,747</td>
</tr>
<tr>
<td>Coeficiente terreno</td>
<td>Energía diaria de salida, [kWh]: 89,932</td>
</tr>
<tr>
<td>Altura de medida</td>
<td>Energía anual de salida, [kWh]: 32825,023</td>
</tr>
<tr>
<td>Altura de la torre</td>
<td>Porcentaje de funcionamiento, (%): 72,52</td>
</tr>
</tbody>
</table>

Velocidad del viento [m/s]

<table>
<thead>
<tr>
<th>Velocidad del viento [m/s]</th>
<th>Potencia [kW]</th>
<th>Probabilidad de viento</th>
<th>Neto kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,00</td>
<td>5,12%</td>
<td>0,000</td>
</tr>
<tr>
<td>2</td>
<td>0,00</td>
<td>9,47%</td>
<td>0,000</td>
</tr>
<tr>
<td>3</td>
<td>0,00</td>
<td>12,45%</td>
<td>0,000</td>
</tr>
<tr>
<td>4</td>
<td>1,30</td>
<td>13,81%</td>
<td>0,180</td>
</tr>
<tr>
<td>5</td>
<td>3,00</td>
<td>13,63%</td>
<td>0,409</td>
</tr>
<tr>
<td>6</td>
<td>4,00</td>
<td>12,24%</td>
<td>0,490</td>
</tr>
<tr>
<td>7</td>
<td>6,00</td>
<td>10,15%</td>
<td>0,609</td>
</tr>
<tr>
<td>8</td>
<td>7,50</td>
<td>7,82%</td>
<td>0,586</td>
</tr>
<tr>
<td>9</td>
<td>9,00</td>
<td>5,63%</td>
<td>0,506</td>
</tr>
<tr>
<td>10</td>
<td>10,00</td>
<td>3,79%</td>
<td>0,379</td>
</tr>
<tr>
<td>11</td>
<td>11,00</td>
<td>2,40%</td>
<td>0,264</td>
</tr>
<tr>
<td>12</td>
<td>12,00</td>
<td>1,43%</td>
<td>0,172</td>
</tr>
<tr>
<td>13</td>
<td>12,25</td>
<td>0,80%</td>
<td>0,098</td>
</tr>
<tr>
<td>14</td>
<td>12,60</td>
<td>0,43%</td>
<td>0,054</td>
</tr>
<tr>
<td>15</td>
<td>0,00</td>
<td>0,21%</td>
<td>0,000</td>
</tr>
<tr>
<td>16</td>
<td>0,00</td>
<td>0,10%</td>
<td>0,000</td>
</tr>
<tr>
<td>17</td>
<td>0,00</td>
<td>0,04%</td>
<td>0,000</td>
</tr>
<tr>
<td>18</td>
<td>0,00</td>
<td>0,02%</td>
<td>0,000</td>
</tr>
<tr>
<td>19</td>
<td>0,00</td>
<td>0,01%</td>
<td>0,000</td>
</tr>
<tr>
<td>20</td>
<td>0,00</td>
<td>0,00%</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Promedio%: 99,56%
Media Potencia: 3,747 kW
Aerogenerador:

BWC EXCEL

Potencia:

10 kW

Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad media [m/s]</td>
<td>5</td>
</tr>
<tr>
<td>Constante zona, k</td>
<td>2</td>
</tr>
<tr>
<td>Coeficiente terreno</td>
<td>0,23</td>
</tr>
<tr>
<td>Altura de medida</td>
<td>10</td>
</tr>
<tr>
<td>Altura de la torre</td>
<td>15</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Velocidad del viento [m/s]</th>
<th>Potencia [kW]</th>
<th>Probabilidad de viento</th>
<th>Neto kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,00</td>
<td>5,12%</td>
<td>0,00</td>
</tr>
<tr>
<td>2</td>
<td>0,00</td>
<td>9,47%</td>
<td>0,00</td>
</tr>
<tr>
<td>3</td>
<td>0,00</td>
<td>12,45%</td>
<td>0,00</td>
</tr>
<tr>
<td>4</td>
<td>0,30</td>
<td>13,81%</td>
<td>0,041</td>
</tr>
<tr>
<td>5</td>
<td>1,00</td>
<td>13,63%</td>
<td>0,136</td>
</tr>
<tr>
<td>6</td>
<td>1,80</td>
<td>12,24%</td>
<td>0,220</td>
</tr>
<tr>
<td>7</td>
<td>2,70</td>
<td>10,15%</td>
<td>0,274</td>
</tr>
<tr>
<td>8</td>
<td>4,00</td>
<td>7,82%</td>
<td>0,313</td>
</tr>
<tr>
<td>9</td>
<td>5,20</td>
<td>5,63%</td>
<td>0,293</td>
</tr>
<tr>
<td>10</td>
<td>6,70</td>
<td>3,79%</td>
<td>0,254</td>
</tr>
<tr>
<td>11</td>
<td>8,20</td>
<td>2,40%</td>
<td>0,197</td>
</tr>
<tr>
<td>12</td>
<td>9,80</td>
<td>1,43%</td>
<td>0,140</td>
</tr>
<tr>
<td>13</td>
<td>10,00</td>
<td>0,80%</td>
<td>0,080</td>
</tr>
<tr>
<td>14</td>
<td>10,00</td>
<td>0,43%</td>
<td>0,043</td>
</tr>
<tr>
<td>15</td>
<td>9,80</td>
<td>0,21%</td>
<td>0,021</td>
</tr>
<tr>
<td>16</td>
<td>0,00</td>
<td>0,10%</td>
<td>0,000</td>
</tr>
<tr>
<td>17</td>
<td>0,00</td>
<td>0,04%</td>
<td>0,000</td>
</tr>
<tr>
<td>18</td>
<td>0,00</td>
<td>0,02%</td>
<td>0,000</td>
</tr>
<tr>
<td>19</td>
<td>0,00</td>
<td>0,01%</td>
<td>0,000</td>
</tr>
<tr>
<td>20</td>
<td>0,00</td>
<td>0,00%</td>
<td>0,000</td>
</tr>
<tr>
<td>Total</td>
<td>99,56%</td>
<td>2,013</td>
<td></td>
</tr>
</tbody>
</table>
COMPARATIVA DE RESULTADOS

<table>
<thead>
<tr>
<th>Velocidad viento en el eje [m/s]:</th>
<th>5,49</th>
<th>5,49</th>
<th>5,49</th>
<th>5,49</th>
<th>5,49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media potencia de salida, [kW]:</td>
<td>1,553</td>
<td>0,974</td>
<td>1,906</td>
<td>3,747</td>
<td>2,013</td>
</tr>
<tr>
<td>Energía diaria de salida, [kWh]:</td>
<td>37,278</td>
<td>23,369</td>
<td>45,735</td>
<td>89,932</td>
<td>48,301</td>
</tr>
<tr>
<td>Energía anual de salida, [kWh]:</td>
<td>13607</td>
<td>8530</td>
<td>16693</td>
<td>32825</td>
<td>17630</td>
</tr>
<tr>
<td>Porcentaje de funcionamiento, (%):</td>
<td>72,52</td>
<td>72,52</td>
<td>72,52</td>
<td>72,52</td>
<td>72,52</td>
</tr>
</tbody>
</table>
Distribución de Weibull
CURVA DE PRODUCCIÓN

E [kWh]

0 2 4 6 8 10 12 14 16 18 20

v [m/s]

VELTER XV
CURVA DE PRODUCCIÓN

E [kWh]

v [m/s]

INCLIN 6000
CURVA DE PRODUCCIÓN

E [kWh]

v [m/s]
CURVA DE PRODUCCIÓN

E [kWh]

v [m/s]

--- BWC EXCEL
Velocidad media anual:

5 [m/s] [V]

Modelo de aerogenerador:

VELTER XV [1]

Potencia:

15 [kW] [2]

<table>
<thead>
<tr>
<th>Velocidad del viento, [m/s]</th>
<th>Horas anuales Tabla 5 (A)</th>
<th>Curva de Potencia, [kW] (B)</th>
<th>Energía producida, [kWh] (A) x (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1,5</td>
<td>560,85</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>2</td>
<td>966,11</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>3</td>
<td>1.276,79</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>4</td>
<td>1.386,57</td>
<td>0,2</td>
<td>277,31</td>
</tr>
<tr>
<td>5</td>
<td>1.308,15</td>
<td>0,6</td>
<td>784,89</td>
</tr>
<tr>
<td>6</td>
<td>1.098,49</td>
<td>1,2</td>
<td>1.318,19</td>
</tr>
<tr>
<td>7</td>
<td>831,42</td>
<td>2</td>
<td>1.662,84</td>
</tr>
<tr>
<td>8</td>
<td>571,31</td>
<td>2,8</td>
<td>1.599,67</td>
</tr>
<tr>
<td>9</td>
<td>358,00</td>
<td>4</td>
<td>1.432,00</td>
</tr>
<tr>
<td>10</td>
<td>205,16</td>
<td>5,3</td>
<td>1.087,35</td>
</tr>
<tr>
<td>11</td>
<td>107,73</td>
<td>6,4</td>
<td>689,47</td>
</tr>
<tr>
<td>12</td>
<td>51,90</td>
<td>8,2</td>
<td>425,58</td>
</tr>
<tr>
<td>13</td>
<td>22,96</td>
<td>9,8</td>
<td>225,01</td>
</tr>
<tr>
<td>14</td>
<td>9,34</td>
<td>11,2</td>
<td>104,61</td>
</tr>
<tr>
<td>15</td>
<td>3,49</td>
<td>13,2</td>
<td>46,07</td>
</tr>
<tr>
<td>16</td>
<td>1,20</td>
<td>15</td>
<td>18,00</td>
</tr>
<tr>
<td>17</td>
<td>0,37</td>
<td>18,6</td>
<td>6,88</td>
</tr>
<tr>
<td>18</td>
<td>0,11</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>19</td>
<td>0,03</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>20</td>
<td>0,01</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>>20</td>
<td>0,00</td>
<td>0</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Total: 9.677,87 [kWh] [3]

Factor de Corrección de la producción: 0,90

Producción neta anual: [3] x 0,9 = 8.710,08 [kWh] [4]
Ahorro Económico Anual

<table>
<thead>
<tr>
<th>Producción neta anual:</th>
<th>8.710,08 kWh</th>
<th>[4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coste de compra de la energía:</td>
<td>0,081104 € / kWh</td>
<td>[5]</td>
</tr>
<tr>
<td>Precio de venta de la energía:</td>
<td>0,0662 € / kWh</td>
<td>[7]</td>
</tr>
</tbody>
</table>

Sobreinversión

<table>
<thead>
<tr>
<th>Inversión del aerogenerador:</th>
<th>15.025,30 €</th>
<th>[10]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coste de equipos auxiliares:</td>
<td>8.841,78 €</td>
<td>[11]</td>
</tr>
<tr>
<td>Obra Civil:</td>
<td>3.055,08 €</td>
<td>[12]</td>
</tr>
<tr>
<td>Otros:</td>
<td>90,00 €</td>
<td>[13]</td>
</tr>
<tr>
<td>Subtotal:</td>
<td>27.012,16 €</td>
<td>[14]</td>
</tr>
<tr>
<td>Ayudas estatales:</td>
<td>9.653,22 €</td>
<td>[15]</td>
</tr>
</tbody>
</table>

Período de Amortización Simple:

\[
\frac{[16]}{[9]} = 13,53 \text{ años} \quad [17]
\]

<table>
<thead>
<tr>
<th>Plazo de Amortización</th>
<th>Inversión</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 a 1 año</td>
<td>CORTO PLAZO</td>
</tr>
<tr>
<td>1 a 5 años</td>
<td>MEDIO PLAZO</td>
</tr>
<tr>
<td>más de 5 años</td>
<td>LARGO PLAZO</td>
</tr>
</tbody>
</table>
HOJA DE CÁLCULO TÉCNICO 2

Velocidad media anual: 5 [m/s] [1]
Modelo de aerogenerador: INCLIN 3000 de BORNAY
Potencia: 3 [kW] [2]

<table>
<thead>
<tr>
<th>Velocidad del viento, [m/s]</th>
<th>Horas anuales Tabla 5 (A)</th>
<th>Curva de Potencia, [kW] (B)</th>
<th>Energía producida, [kWh] (A) x (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1,5</td>
<td>560,85</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>2</td>
<td>966,11</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>3</td>
<td>1.276,79</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>4</td>
<td>1.386,57</td>
<td>0,5</td>
<td>693,29</td>
</tr>
<tr>
<td>5</td>
<td>1.308,15</td>
<td>0,75</td>
<td>981,11</td>
</tr>
<tr>
<td>6</td>
<td>1.098,49</td>
<td>1</td>
<td>1.098,49</td>
</tr>
<tr>
<td>7</td>
<td>831,42</td>
<td>1,5</td>
<td>1.247,13</td>
</tr>
<tr>
<td>8</td>
<td>571,31</td>
<td>2</td>
<td>1.142,62</td>
</tr>
<tr>
<td>9</td>
<td>358,00</td>
<td>2,25</td>
<td>805,50</td>
</tr>
<tr>
<td>10</td>
<td>205,16</td>
<td>2,5</td>
<td>512,90</td>
</tr>
<tr>
<td>11</td>
<td>107,73</td>
<td>2,75</td>
<td>296,26</td>
</tr>
<tr>
<td>12</td>
<td>51,90</td>
<td>3</td>
<td>155,70</td>
</tr>
<tr>
<td>13</td>
<td>22,96</td>
<td>3,25</td>
<td>74,62</td>
</tr>
<tr>
<td>14</td>
<td>9,34</td>
<td>3,5</td>
<td>32,69</td>
</tr>
<tr>
<td>15</td>
<td>3,49</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>16</td>
<td>1,20</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>17</td>
<td>0,37</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>18</td>
<td>0,11</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>19</td>
<td>0,03</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>20</td>
<td>0,01</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>>20</td>
<td>0,00</td>
<td>0</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Total: 7.040,31 [kWh] [3]

Factor de Corrección de la producción: 0,90

Producción neta anual: [3] x 0,9 = 6.336,27 [kWh] [4]
Ahorro Económico Anual

Producción neta anual: \[6.336,27 \text{ kWh} \] \[4\]

Coste de compra de la energía: \[0,081104 \text{ € / kWh} \] \[5\]

Ahorro económico: \[4 \times 5 = 513,90 \text{ €} \] \[6\]

Precio de venta de la energía: \[0,0662 \text{ € / kWh} \] \[7\]

Ingresos: \[4 \times 7 = 419,46 \text{ €} \] \[8\]

Ahorro económico total: \[6 + 8 = 933,36 \text{ €} \] \[9\]

Sobreinversión

Inversión del aerogenerador: \[4.810,00 \text{ €} \] \[10\]

Coste de equipos auxiliares: \[5.529,48 \text{ €} \] \[11\]

Obra Civil: \[1.554,86 \text{ €} \] \[12\]

Otros: \[90,00 \text{ €} \] \[13\]

Subtotal: \[11.984,34 \text{ €} \] \[14\]

Ayudas estatales: \[4.254,44 \text{ €} \] \[15\]

Total sobreinversión: \[14 - 15 = 7.729,90 \text{ €} \] \[16\]

Período de Amortización Simple:

\[\frac{16}{9} = 8,28 \text{ años} \] \[17\]

<table>
<thead>
<tr>
<th>Plazo de Amortización</th>
<th>Inversión</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 a 1 año</td>
<td>CORTO PLAZO</td>
</tr>
<tr>
<td>1 a 5 años</td>
<td>MEDIO PLAZO</td>
</tr>
<tr>
<td>más de 5 años</td>
<td>LARGO PLAZO</td>
</tr>
</tbody>
</table>
HOJA DE CÁLCULO TÉCNICO 3

Velocidad media anual: 5 [m/s]
Aerogenerador: INCLIN 6000 de BORNAY
Potencia: 6 [kW]

<table>
<thead>
<tr>
<th>Velocidad del viento, [m/s]</th>
<th>Horas anuales (A)</th>
<th>Curva de Potencia, [kW] (B)</th>
<th>Energía producida, [kWh] (A) x (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1,5</td>
<td>560,85</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>2</td>
<td>966,11</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>3</td>
<td>1.276,79</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>4</td>
<td>1.386,57</td>
<td>0,9</td>
<td>1.247,91</td>
</tr>
<tr>
<td>5</td>
<td>1.308,15</td>
<td>1,5</td>
<td>1.962,23</td>
</tr>
<tr>
<td>6</td>
<td>1.098,49</td>
<td>2</td>
<td>2.196,98</td>
</tr>
<tr>
<td>7</td>
<td>831,42</td>
<td>3</td>
<td>2.494,26</td>
</tr>
<tr>
<td>8</td>
<td>571,31</td>
<td>3,7</td>
<td>2.113,85</td>
</tr>
<tr>
<td>9</td>
<td>358,00</td>
<td>4,5</td>
<td>1.611,00</td>
</tr>
<tr>
<td>10</td>
<td>205,16</td>
<td>5</td>
<td>1.025,80</td>
</tr>
<tr>
<td>11</td>
<td>107,73</td>
<td>5,5</td>
<td>592,52</td>
</tr>
<tr>
<td>12</td>
<td>51,90</td>
<td>6</td>
<td>311,40</td>
</tr>
<tr>
<td>13</td>
<td>22,96</td>
<td>6,25</td>
<td>143,50</td>
</tr>
<tr>
<td>14</td>
<td>9,34</td>
<td>6,4</td>
<td>59,78</td>
</tr>
<tr>
<td>15</td>
<td>3,49</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>16</td>
<td>1,20</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>17</td>
<td>0,37</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>18</td>
<td>0,11</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>19</td>
<td>0,03</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>20</td>
<td>0,01</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>>20</td>
<td>0,00</td>
<td>0</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Total: 13.759,22 [kWh]
Factor de Corrección de la producción: 0,90

Producción neta anual: [3] x 0,9 = 12.383,29 [kWh]
Ahorro Económico Anual

Producción neta anual: \(12.383,29\) [kWh] [4]

Coste de compra de la energía: \(0,081104\) € / kWh [5]

Precio de venta de la energía: \(0,0662\) € / kWh [7]

Sobreinversión

Inversión del aerogenerador: \(17.100,00\) € [10]

Coste de equipos auxiliares: \(220,42\) € [11]

Obra Civil: \(2.936,38\) € [12]

Otros: \(90,00\) € [13]

Subtotal: \(20.346,80\) € [14]

Ayudas estatales: \(7.223,11\) € [15]

Período de Amortización Simple:

<table>
<thead>
<tr>
<th>Plazo de Amortización</th>
<th>Inversión</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 a 1 año</td>
<td>CORTO PLAZO</td>
</tr>
<tr>
<td>1 a 5 años</td>
<td>MEDIO PLAZO</td>
</tr>
<tr>
<td>más de 5 años</td>
<td>LARGO PLAZO</td>
</tr>
</tbody>
</table>
Velocidad media anual:

5 [m/s] [1]

Aerogenerador:

BORNAY BK-12

Potencia:

12 [kW] [2]

<table>
<thead>
<tr>
<th>Velocidad del viento, [m/s]</th>
<th>Horas anuales, Tabla 5 (A)</th>
<th>Curva de Potencia, [kW] (B)</th>
<th>Energía producida, [kWh] (A) x (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1,5</td>
<td>560,85</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>2</td>
<td>966,11</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>3</td>
<td>1.276,79</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>4</td>
<td>1.386,57</td>
<td>1,3</td>
<td>1.802,54</td>
</tr>
<tr>
<td>5</td>
<td>1.308,15</td>
<td>3</td>
<td>3.924,45</td>
</tr>
<tr>
<td>6</td>
<td>1.098,49</td>
<td>4</td>
<td>4.393,96</td>
</tr>
<tr>
<td>7</td>
<td>831,42</td>
<td>6</td>
<td>4.988,52</td>
</tr>
<tr>
<td>8</td>
<td>571,31</td>
<td>7,5</td>
<td>4.284,83</td>
</tr>
<tr>
<td>9</td>
<td>358,00</td>
<td>9</td>
<td>3.222,00</td>
</tr>
<tr>
<td>10</td>
<td>205,16</td>
<td>10</td>
<td>2.051,60</td>
</tr>
<tr>
<td>11</td>
<td>107,73</td>
<td>11</td>
<td>1.185,03</td>
</tr>
<tr>
<td>12</td>
<td>51,90</td>
<td>12</td>
<td>622,80</td>
</tr>
<tr>
<td>13</td>
<td>22,96</td>
<td>12,25</td>
<td>281,26</td>
</tr>
<tr>
<td>14</td>
<td>9,34</td>
<td>12,6</td>
<td>117,68</td>
</tr>
<tr>
<td>15</td>
<td>3,49</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>16</td>
<td>1,20</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>17</td>
<td>0,37</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>18</td>
<td>0,11</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>19</td>
<td>0,03</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>20</td>
<td>0,01</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>>20</td>
<td>0,00</td>
<td>0</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Total: 26.874,67 [kWh] [3]

Factor de Corrección de la producción: 0,90

Producción neta anual: [3] x 0,9 = 24.187,20 [kWh] [4]
Ahorro Económico Anual

Coste de compra de la energía: 0,081104 € / kWh [5]

Precio de venta de la energía: 0,0662 € / kWh [7]

Sobreinversión

Inversión del aerogenerador: 25.700,00 € [10]

Coste de equipos auxiliares: 450,00 € [11]

Obra Civil: 2.708,34 € [12]

Otros: 90,00 € [13]

Subtotal: 28.948,34 € [14]

Ayudas estatales: 10.276,66 € [15]

Período de Amortización Simple:

<table>
<thead>
<tr>
<th>Plazo de Amortización</th>
<th>Inversión</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 a 1 año</td>
<td>CORTO PLAZO</td>
</tr>
<tr>
<td>1 a 5 años</td>
<td>MEDIO PLAZO</td>
</tr>
<tr>
<td>más de 5 años</td>
<td>LARGO PLAZO</td>
</tr>
</tbody>
</table>
Velocidad media anual: 5 [m/s] [1]
Aerogenerador: BWC EXCEL
Potencia: 10 [kW] [2]

<table>
<thead>
<tr>
<th>Velocidad del viento, [m/s]</th>
<th>Horas anuales Tabla 5 (A)</th>
<th>Curva de Potencia, [kW] (B)</th>
<th>Energía producida, [kWh] (A) x (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1.5</td>
<td>560,85</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>2</td>
<td>966,11</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>3</td>
<td>1.276,79</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>4</td>
<td>1.386,57</td>
<td>0,3</td>
<td>415,97</td>
</tr>
<tr>
<td>5</td>
<td>1.308,15</td>
<td>1</td>
<td>1.308,15</td>
</tr>
<tr>
<td>6</td>
<td>1.098,49</td>
<td>1,8</td>
<td>1.977,28</td>
</tr>
<tr>
<td>7</td>
<td>831,42</td>
<td>2,7</td>
<td>2.244,83</td>
</tr>
<tr>
<td>8</td>
<td>571,31</td>
<td>4</td>
<td>2.285,24</td>
</tr>
<tr>
<td>9</td>
<td>358,00</td>
<td>5,2</td>
<td>1.861,60</td>
</tr>
<tr>
<td>10</td>
<td>205,16</td>
<td>6,7</td>
<td>1.374,57</td>
</tr>
<tr>
<td>11</td>
<td>107,73</td>
<td>8,2</td>
<td>883,39</td>
</tr>
<tr>
<td>12</td>
<td>51,90</td>
<td>9,8</td>
<td>508,62</td>
</tr>
<tr>
<td>13</td>
<td>22,96</td>
<td>10</td>
<td>229,60</td>
</tr>
<tr>
<td>14</td>
<td>9,34</td>
<td>10</td>
<td>93,40</td>
</tr>
<tr>
<td>15</td>
<td>3,49</td>
<td>9,8</td>
<td>34,20</td>
</tr>
<tr>
<td>16</td>
<td>1,20</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>17</td>
<td>0,37</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>18</td>
<td>0,11</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>19</td>
<td>0,03</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>20</td>
<td>0,01</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>>20</td>
<td>0,00</td>
<td>0</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Total: 13.216,86 [kWh] [3]

Factor de Corrección de la producción: 0,90

Producción neta anual: [3] x 0,9 = 11.895,17 [kWh] [4]
Ahorro Económico Anual

Producción neta anual: \(11.895,17\) [kWh] [4]

Coste de compra de la energía: \(0,081104\) € / kWh [5]

Precio de venta de la energía: \(0,0662\) € / kWh [7]

Ahorro económico total: \([6] + [8] = 1.752,21\) € [9]

Sobreinversión

Inversión del aerogenerador: \(13.383,04\) € [10]

Coste de equipos auxiliares: \(8.678,28\) € [11]

Obra Civil: \(833,34\) € [12]

Otros: \(90,00\) € [13]

Subtotal: \(22.984,66\) € [14]

Ayudas estatales: \(8.159,55\) € [15]

Período de Amortización Simple:

<table>
<thead>
<tr>
<th>Plazo de Amortización</th>
<th>Inversión</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 a 1 año</td>
<td>CORTO PLAZO</td>
</tr>
<tr>
<td>1 a 5 años</td>
<td>MEDIO PLAZO</td>
</tr>
<tr>
<td>más de 5 años</td>
<td>LARGO PLAZO</td>
</tr>
</tbody>
</table>
Curvas aerogeneradores

P [kW]

VELTER XV
INCLIN 3000
INCLIN 6000
BK-12
BWC EXCEL

v [m/s]
CÁLCULO SATURACIÓN DEL TRANSFORMADOR

<table>
<thead>
<tr>
<th>Nº CT</th>
<th>XR608</th>
</tr>
</thead>
<tbody>
<tr>
<td>POTENCIA TRANSFORMADOR</td>
<td>400 kVA</td>
</tr>
<tr>
<td>POTENCIA CONTRATADA</td>
<td>278,3 kW</td>
</tr>
<tr>
<td>CONSTANTE K ACTUAL</td>
<td>1,15</td>
</tr>
<tr>
<td>POTENCIA A CONTRATAR</td>
<td>17,0 kW</td>
</tr>
<tr>
<td>POTENCIA TOTAL</td>
<td>295,3 kW</td>
</tr>
<tr>
<td>CONSTANTE K</td>
<td>1,08</td>
</tr>
</tbody>
</table>

TRANSFORMADOR **OK**

TRANSFORMADOR A INSTALAR : 0 kVA

<table>
<thead>
<tr>
<th>Nº CT</th>
<th>XR608</th>
</tr>
</thead>
<tbody>
<tr>
<td>POTENCIA TRAFO</td>
<td>0 kVA</td>
</tr>
<tr>
<td>POTENCIA CONTRATADA</td>
<td>278,3 kW</td>
</tr>
<tr>
<td>CONSTANTE K ACTUAL</td>
<td>0,00</td>
</tr>
<tr>
<td>POTENCIA A CONTRATAR</td>
<td>17,0 kW</td>
</tr>
<tr>
<td>POTENCIA TOTAL</td>
<td>295,3 kW</td>
</tr>
<tr>
<td>CONSTANTE K</td>
<td>0,00</td>
</tr>
</tbody>
</table>

TRANSFORMADOR **SATURADO**
<table>
<thead>
<tr>
<th>NODO</th>
<th>CONEXIÓN 1 kW Viviendas</th>
<th>KW Industrial</th>
<th>Servicios Viviendas</th>
<th>TOTAL kW VIVIENDAS</th>
<th>TOTAL SERV. VIVIENDAS</th>
<th>TOTAL kWh INDUSTRIAL</th>
<th>Coef. Simult. Viviendas</th>
<th>TOTAL kW INDUSTRIAL</th>
<th>Potencia Total</th>
<th>Intensidad (cosθ = 0,80)</th>
<th>Longitud (m)</th>
<th>Conductor</th>
<th>Abreviatura</th>
<th>Intensidad max. (A)</th>
<th>Momento Específico</th>
<th>Saturación (%)</th>
<th>C.d.t. parcial (%)</th>
<th>C.d.t. Acumulada (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>1</td>
<td>0</td>
<td>0,0</td>
<td>1,000</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>189,9</td>
<td>6 041 AL 150</td>
<td>250</td>
<td>5140</td>
<td>76,0</td>
<td>0,12</td>
<td>0,12</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

NOTA: Este cálculo corresponde a la situación actual del Instituto.

Se observa que la potencia actual es de 100 kW Industriales.

Los valores de caída de tensión y saturación son admisibles por la Compañía Eléctrica.
<table>
<thead>
<tr>
<th>NODO</th>
<th>CONEXIÓN 1</th>
<th>CONEXIÓN 2</th>
<th>CONEXIÓN 3</th>
<th>kW Viviendas</th>
<th>kW Industrial</th>
<th>TOTAL kW VIVIENDAS</th>
<th>TOTAL SERV. VIVIENDAS</th>
<th>kW INDUSTRIAL</th>
<th>TOTAL kW INDUSTRIAL</th>
<th>Coef. Simult. Viviendas</th>
<th>Coef. Simult. Industriales</th>
<th>TOTAL kW VIVIENDAS</th>
<th>TOTAL SERV. VIVIENDAS</th>
<th>kW INDUSTRIAL</th>
<th>TOTAL kW INDUSTRIAL</th>
<th>TOTAL kW VIVIENDAS</th>
<th>TOTAL SERV. VIVIENDAS</th>
<th>kW INDUSTRIAL</th>
<th>TOTAL kW INDUSTRIAL</th>
<th>Coef. Simult. Viviendas</th>
<th>Coef. Simult. Industriales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>1</td>
<td>0,0</td>
<td>0,00</td>
<td>117,0</td>
<td>117,0</td>
<td>117,0</td>
<td>222,2</td>
<td>117,0</td>
<td>117,0</td>
<td>222,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>1</td>
<td>0,0</td>
<td>0,00</td>
<td>17,0</td>
<td>17,0</td>
<td>17,0</td>
<td>32,3</td>
<td>17,0</td>
<td>17,0</td>
<td>32,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTA: Este cálculo corresponde a la situación prevista en el Instituto.

Se observa que habrá un aporte extra de 17 kW, (5 kW de la Instalación Solar Fotovoltaica y 12 kW de la Instalación Eólica).

Los valores de caída de tensión y saturación de la línea eléctrica seguirán siendo admisibles por la Compañía Eléctrica.
EMPLAZAMIENTO

EDIFICIO 1: Aulas (2 plantas)
EDIFICIO 2: Aulas (planta baja)
EDIFICIO 3: Talleres Mecánico y Electrónico
EDIFICIO 4: Talleres Eléctricos
EDIFICIO 5: Gimnasio
EDIFICIO 6: Vivienda Conserje

EXPLANADA LIMPIA DE VEGETACIÓN (FUTURA CARRETERA)
Hacia Castellvell del Camp
Caseta Acometida, Medición e Intercimiento
E.T. XR608 FESMA-ENDESA
PISTA DEPORTIVA
Entrada del Instituto
Salones de viviendas unicifamiliares
Ctra. de Reus a Castellvell
Hacia Reus centro

Final calle asfaltada, Continúa camino con salido
COMPROBACIÓN REALIZADA PARA EL MES DE DICIEMBRE,
CUYA ALTURA SOLAR (h) ES LA MÁS DESFAVORABLE (26°).
LATITUD DEL EMPLAZAMIENTO: 41°

PINOS SITUADOS EN EL JARDÍN DE LA VIVIENDA 1
RAYO SOLAR A LAS 12 H (medidía)
RAYA SOLAR A LA QUE EMPIEZA LA SOMBRA
Hora solar: 16 h
RAYA SOLAR AL AMANECER. Hora solar: 9 h

MÓDULOS FOTOVOLTAICOS
PLANTA CUBIERTA 1
PLANTA CUBIERTA 2

SUR

5.20 m

GIMNASIO

ACCESO AL RECINTO DEPORTIVO:
(Gimnasio y Pista Deportiva)

VIVIENDAS
-

9m

VIVIENDA 1
VIVIENDA 2
C/. MASPUIOLS
VIVIENDA DEL CONSERJE

PRINCIPAL OBSTÁCULO A ANALIZAR:
Pino de 9 m de altura situado en el jardín de la vivienda 1.
Se observa que la proyección de la sombra producida por el rayo solar a las 12h, no afecta a la ubicación de los módulos.

INFLUIENCIA DE OBSTÁCULOS

INSTITUCIÓN DE EQUIPOS DE GENERACIÓN ELÉCTRICA (Solar Fotovoltaica y Eólica)
EN LA CIUDAD DE REUS

PLANO N.º 6

1/200

M. Cuenca
Dibujado: Abril '03
Comprobado: Abril '03
S. normas: UNE

Instalador: M. Cuenca
Nº Colegiado: 15.279
NOTA: entre ambas plantas hay diferencia de alturas. La planta cubierta 1 es más alta que la 2.
Unión compuesta por perfil trasero y perfil soporte del módulo. Ambos realizados con perfil L 50.40.5.8. Realizar soldadura eléctrica mediante electrodo.

Capa superficial de grava

Estructura de hormigón del edificio (techo)

1310

Ensamblaje

Puntos de ensamblaje del módulo con su estructura soporte.

SECCIÓN A-A: Contenga la fila de módulos según la disposición en planta representada en el plano núm. 7

INSTALACIÓN DE EQUIPOS DE GENERACIÓN ELÉCTRICA (Solar Fotovoltaica y Eólica) EN LA CIUDAD DE REUS

MANUEL CUÉNCA REDO
Ingeniero Técnico
Nº Colegiado: 15.279

Dibujado: Abril '03
Comprobado: Abril '03
Normas: UNE

Escala: 1/20
K1M: Contactor de desconexión de red por fallo de frecuencia o tensión
K2M: Contactor de frenado
K1A: Relé de máxima y mínima Tensión
K2A: Relé de máxima y mínima Frecuencia
K3A: Relé Temporizado a la conexión (1)
K4A: Relé Auxiliar
Detalle de zapata de hormigón para cimentación torre aerogenerador

ZAPATA DE HORMIGÓN – 4.00x4.00x1.00 m.

HORMIGÓN HA–25
ACERO B–400S
RECUBRIMIENTO 10 cm
Montaje de la torre del aerogenerador

INSTALACIÓN DE EQUIPOS DE GENERACIÓN
ELÉCTRICA (Solar Fotovoltaico y Eólica)
EN LA CIUDAD DE REUS

PLANO N.º 15

Fecha:
Nombre:

MONTAJE DE LA TORRE
DEL AEROGENERADOR

PUNTO DE UNIÓN A:
UNIÓN DEL ANCLAJE DE LA TORRE CON LA
ZAPATA DE HORMIGÓN – 4,00x4,00x1,00 m.

PUNTO DE UNIÓN B:
TRAMOS TORRE INFERIOR–SUPERIOR

PLACA DE ACERO

TORRE: 2 TRAMOS
6 + 6 m, celosía 4 patas
1. Contadores actuales
2. Embarrado trifásico + N
3. Fusibles de la acometida
4. Interruptor General Acometida
5. Salidas circuitos generales
6. Contador E. Fotovoltaica
7. Contador E. Eléctrica
8. Transformador
9. Inversor y rectificador

CANALIZACIÓN ELÉCTRICA SUBTERRÁNEA PROCEDENTE DE LOS EQUIPOS GENERADORES.

CASA DE OBRA CIVIL -2.00x5.40x3.00 m.

PLANTA DE LA CASETA ACOMETIDA-INTERCONEXIÓN

PLANOS N.º 16
CONTADOR MONOFÁSICO

CONTADOR TRIFÁSICO

 EQUIPO DE MEDIDA T-30

Equipo General (Protecciones)

HACIA DIFERENTES CIRCUITOS
Y SUBDICASOS DEL INSTITUTO

NOTA: este esquema reúne de forma general los planos 8 y 12.

2. Contador de Energía Eléctrica vendida (Instalación Élica).
3. Contadores de Energía Eléctrica comprada (Instalación del Instituto).
<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Uds</th>
<th>Long</th>
<th>Ancho</th>
<th>Alto</th>
<th>Parcial</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISFV1</td>
<td>Pan. sol, ISOF.T-I-159, mono. CR.</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56,00</td>
</tr>
<tr>
<td></td>
<td>Panel solar ISOFOTÓN I-159 monocristalino de gran potencia, tipo conexión a red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>Conv. CC/CA monof. CR 2500 W.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,00</td>
</tr>
<tr>
<td>ISFV3</td>
<td>Perf. lamin L</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>264,00</td>
</tr>
<tr>
<td></td>
<td>Perfil laminado L 50.40.5,8 para montaje de la estructura soporte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>264,00</td>
</tr>
<tr>
<td>ISFV4</td>
<td>Base mod port-fus sec.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>Base modular portafusible-seccionador para la colocación del fusible de protección, motaje sobre perfil DIN.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,00</td>
</tr>
</tbody>
</table>

CAPÍTULO 1: INSTALACIÓN SOLAR FOTOVOLTAICA.
<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Uds</th>
<th>Long</th>
<th>Ancho</th>
<th>Alto</th>
<th>Parcial</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISFV5</td>
<td>u Fus 10 A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fusible de 10 A colocado en su base correspondiente.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>ISFV6 u Arm. est. dobl.,ais IP55 pmec.9, 600x400x230mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Armario estanco de doble aislamiento IP55, grado de protección mecánica 9, 600x400x230mm y fijado en tejado para colocaciónde equipos inversores y fusibles de protección.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>ISFV7 ml Tubo met, rig.,ais int. dim 20mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubo metálico rígido normal con aislamiento interior, diámetro 20 mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,00</td>
</tr>
<tr>
<td></td>
<td>ISFV8 ml Tubo met, rig.,ais int. dim 25mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubo metálico rígido normal con aislamiento interior, diámetro 25 mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>35,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35,00</td>
</tr>
<tr>
<td>Código</td>
<td>Descripción</td>
<td>Uds</td>
<td>Long</td>
<td>Ancho</td>
<td>Alto</td>
<td>Parcial</td>
<td>Canidad</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>ISFV9</td>
<td>Tubo flex P.V.C., dim 25mm</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>63,00</td>
<td>63,00</td>
</tr>
<tr>
<td></td>
<td>Tubo flexible de P.V.C. Conexión entre módulos, diámetro 25 mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV10</td>
<td>Tubo met, rig.,ais int.dim 90mm</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2,50</td>
<td>2,50</td>
</tr>
<tr>
<td></td>
<td>Tubo metálico rígido, grado de protección mecánica 7, con aislamiento interior, diámetro 90mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV11</td>
<td>Tubo.flex.coarru.PVC dn 90mm resist.choq 7,coent.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>96,00</td>
<td>96,00</td>
</tr>
<tr>
<td></td>
<td>Tubo flexible coarrugado de PVC de 90 mm de diámetro nominal y 3.5 mm de grueso con grado de resistencia al choque de 7 y montado en canalización enterrada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV12</td>
<td>Cond Cu 1x16mm² v500F</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>7,00</td>
<td>7,00</td>
</tr>
<tr>
<td></td>
<td>Conductor de cobre 1x16 mm², UNE 21031V500F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Descripción</td>
<td>Uds</td>
<td>Long</td>
<td>Ancho</td>
<td>Alto</td>
<td>Parcial</td>
<td>Cantidad</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>ISFV13</td>
<td>Cab. Cu VV UNE 21029 1 x 10 mm²</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>101,50</td>
<td>304,50</td>
</tr>
<tr>
<td></td>
<td>Cable de cobre designación V V UNE 21029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>de sección 10 mm² y colocado en tubo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV14</td>
<td>Cond Cu 1x25 mm² V500F</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>96,00</td>
<td>192,00</td>
</tr>
<tr>
<td></td>
<td>Conductor de cobre 1x25 mm², UNE 21031 V500F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV15</td>
<td>Tub. rig. de PVC dn= 90 mm resist. choq 5, rosc. + mont sup</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>6,00</td>
<td>6,00</td>
</tr>
<tr>
<td></td>
<td>Tubo rígido de PVC de 90 mm de diámetro nominal,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>resistencia al choque de grado 5, roscado, curvable en</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>caliente y montado en superficie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV16</td>
<td>Arm poliest., 270x360x160mm, tap fij, y obert maniobra mont sup.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>Armario de poliéster de 270x360x160mm con capa fija y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>obertura protegida para posible maniobra y montado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>superficialmente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Descripción</td>
<td>Uds</td>
<td>Long</td>
<td>Ancho</td>
<td>Alto</td>
<td>Parcial</td>
<td>Cantidad</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>ISFV17</td>
<td>Int. dif. bip. 40A, sensib. 30mA, fij. pres.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interruptor diferencial 40A de Intensidad nominal, bipolar con sensibilidad 30mA y fijación a presión sobre perfil DIN-35.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,00</td>
</tr>
<tr>
<td>ISFV18</td>
<td>Int. magnet. Bip. 40A fij. pres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interruptor magnetotérmico bipolar de 40 A, fijado a presión sobre perfil DIN 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,00</td>
</tr>
<tr>
<td>ISFV19</td>
<td>Rel. max-min frec. fij. pres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relé de máxima y mínima frecuencia fijado a presión sobre perfil DIN 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,00</td>
</tr>
<tr>
<td>ISFV20</td>
<td>Rel. max-min ten. fij. pres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relé de máxima y mínima tensión fijado a presión sobre perfil DIN 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,00</td>
</tr>
<tr>
<td>Código</td>
<td>Descripción</td>
<td>Uds</td>
<td>Long</td>
<td>Ancho</td>
<td>Alto</td>
<td>Parcial</td>
<td>Cantidad</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>ISFV21</td>
<td>Cond.Cu des 1x35 mm², mont, sup.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,00</td>
</tr>
<tr>
<td></td>
<td>Conductor de cobre desnudo de sección 1x35 mm², montado bajo tierra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,00</td>
</tr>
<tr>
<td>ISFV22</td>
<td>Pica.ace. Recu. Cu lon 2 m</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>Pica de acero, recubrimiento de cobre, montada verticalmente, longitud 2 m, diámetro 14 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,00</td>
</tr>
<tr>
<td>ISFV23</td>
<td>Arq.pto.P.T.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>Arqueta punto puesta a tierra y 200x200 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,00</td>
</tr>
<tr>
<td>ISF24</td>
<td>Caj.emp.grad.prot. 55 cuad. 50x150x100</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,00</td>
</tr>
<tr>
<td></td>
<td>Caja de empalmes de grado de protección 55, tapa atornillada cuadrada 50x150x100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,00</td>
</tr>
<tr>
<td>ISF25</td>
<td>Cont.monof.E.act.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>Contador monofásico de energía activa, tensión 220 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,00</td>
</tr>
<tr>
<td>Código</td>
<td>Descripción</td>
<td>Uds</td>
<td>Long</td>
<td>Ancho</td>
<td>Alto</td>
<td>Parcial</td>
<td>Cantidad</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>IE01</td>
<td>Aerog. BORN.BK-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aerogenerador BORNAY BK-12/220R neo 220V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 palas, conexión a red.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incluye cuadro de interconexión a red 16 kVA, trifásico, 50 Hz. 220/380 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>IE02</td>
<td>Tor. Cuat. Aut. P1250 12 m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Torre cuatripata auto-soportada para presión lateral de viento-1250 kg, doce metros de altura con dos tramos de seis metros.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>IE03</td>
<td>Tubo met, rig.,ais int. dim 110mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubo metálico rígido normal con aislamiento interior, diámetro 110 mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>14.00</td>
<td></td>
<td></td>
<td></td>
<td>14.00</td>
</tr>
<tr>
<td>IE04</td>
<td>Tubo flex P.V.C., dim 110mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubo flexible de P.V.C. Conexión entre cuadros, diámetro 110 mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>Código</td>
<td>Descripción</td>
<td>Uds</td>
<td>Long</td>
<td>Ancho</td>
<td>Alto</td>
<td>Parcial</td>
<td>Cantidad</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>IE05</td>
<td>Tubo.flex.coarru.PVC dn 110mm resist.choq 7,col.ent.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubo flexible coarrugado de PVC de 110 mm de diámetro nominal y 3.5 mm de grueso con grado de resistencia al choque de 7 y montado en canalización enterrada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64,00</td>
<td>64,00</td>
</tr>
<tr>
<td>IE06</td>
<td>Cond Cu 1x16mm² v500F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conductor de cobre 1x16 mm², UNE 21031V500F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,00</td>
<td>4,00</td>
</tr>
<tr>
<td>IE07</td>
<td>Cab.Cu VV UNE 21029 1 x 50 mm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cable de cobre designación V V UNE 21029 de sección 50 mm² y colocado en tubo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75,00</td>
<td>164,00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14,00</td>
<td></td>
</tr>
<tr>
<td>IE08</td>
<td>Cond Cu 1x10mm² v500F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conductor de cobre 1x10 mm², UNE 21031V500F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,00</td>
<td>21,00</td>
</tr>
<tr>
<td>IE09</td>
<td>Arm poliest., 270x360x160mm, tap fij, y obert maniobra mont sup.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Armario de poliéster de 270x360x160mm con capa fija y obertura protegida para posible maniobra y montado superficialmente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Código</td>
<td>Descripción</td>
<td>Uds</td>
<td>Long</td>
<td>Ancho</td>
<td>Alto</td>
<td>Parcial</td>
<td>Cantidad</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE10</td>
<td>Cond. Cu des 1x35 mm², mont, sup.</td>
<td>1</td>
<td>6,00</td>
<td></td>
<td></td>
<td>6,00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conductor de cobre desnudo de sección 1x35mm², montado bajo tierra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE11</td>
<td>Pica. ace. Recu. Cu lon 2 m</td>
<td>1</td>
<td>2,00</td>
<td></td>
<td></td>
<td>2,00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pica de acero, recubrimiento de cobre, montada verticalmente, longitud 2 m, diámetro 14 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE12</td>
<td>Arq. pto. P. T.</td>
<td>1</td>
<td>2,00</td>
<td></td>
<td></td>
<td>2,00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arqueta punto puesta a tierra y medición periódica 200x200 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE13</td>
<td>Cont. trif. E. act.</td>
<td>1</td>
<td>1,00</td>
<td></td>
<td></td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contador trifásico de energía activa, tensión 380 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Código Descripción Uds Long Ancho Alto Parcial Cantidad

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Uds</th>
<th>Long</th>
<th>Ancho</th>
<th>Alto</th>
<th>Parcial</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC01</td>
<td>m3 excav. Zanja instal. H<= 1m ter. Compact., m.mec.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excavación de zanja para paso de instalaciones hasta un metro de profundidad, en terreno compacto, con medios mecánicos y con las tierras dejadas al lado.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tramo A-B 1</td>
<td>45,20</td>
<td>0,60</td>
<td>0,80</td>
<td></td>
<td>21,70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tramo B-C 1</td>
<td>33,30</td>
<td>0,60</td>
<td>0,80</td>
<td></td>
<td>15,98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tramo C-D 1</td>
<td>31,00</td>
<td>0,60</td>
<td>0,80</td>
<td></td>
<td>14,88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52,56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC02</td>
<td>m3 suminist. Tierra selec. Aport.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suministro de tierra seleccionada de aportación.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tramo A-B 1</td>
<td>45,20</td>
<td>0,60</td>
<td>0,30</td>
<td></td>
<td>8,14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tramo B-C 1</td>
<td>33,30</td>
<td>0,60</td>
<td>0,30</td>
<td></td>
<td>5,99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tramo C-D 1</td>
<td>31,00</td>
<td>0,60</td>
<td>0,80</td>
<td></td>
<td>14,88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC03</td>
<td>m3 recubri. + apison. Zanja a <=0.6m, mat. select.g<=30 cm, apison. vibrant, 95.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recubrimiento y apisonamiento de zanja de ancho hasta 0.6 metros con material seleccionado en capas de grueso hasta 30 cm, utilizando apisonadora vibrante con compactación del 95 % PM.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tramo A-B 1</td>
<td>45,20</td>
<td>0,60</td>
<td>0,30</td>
<td></td>
<td>8,14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tramo B-C 1</td>
<td>33,30</td>
<td>0,60</td>
<td>0,30</td>
<td></td>
<td>5,99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tramo C-D 1</td>
<td>31,00</td>
<td>0,60</td>
<td>0,80</td>
<td></td>
<td>14,88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Descripción</td>
<td>Uds</td>
<td>Long</td>
<td>Ancho</td>
<td>Alto</td>
<td>Parcial</td>
<td>Cantidad</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>OC04</td>
<td>m3 recub. + apison. Zanja a <=0.6m, mat. toler.g<=30 cm, apison. vibrant, 95.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recubrimiento y apisonamiento de zanja de ancho hasta 0.6 metros con material tolerable en capas de grueso hasta 30 cm, utilizando apisonadora vibrante con compactación del 95 % PM.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tramo A-B 1</td>
<td>45,20</td>
<td>0,60</td>
<td>0,60</td>
<td></td>
<td>16,27</td>
<td>43,14</td>
</tr>
<tr>
<td></td>
<td>Tramo B-C 1</td>
<td>33,30</td>
<td>0,60</td>
<td>0,60</td>
<td></td>
<td>11,99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tramo C-D 1</td>
<td>31,00</td>
<td>0,60</td>
<td>0,80</td>
<td></td>
<td>14,88</td>
<td></td>
</tr>
<tr>
<td>OC05</td>
<td>m3 carga mec. + trans. tierras vert., camión 7 T, rec 5-10 Km</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carga con medios mecánicos y transporte de tierras al vertedero, con camión de 7 T, con recorrido de más de 5 y hasta 10 Km.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tramo A-B 1</td>
<td>45,20</td>
<td>0,60</td>
<td>0,30</td>
<td></td>
<td>8,14</td>
<td>29,01</td>
</tr>
<tr>
<td></td>
<td>Tramo B-C 1</td>
<td>33,30</td>
<td>0,60</td>
<td>0,30</td>
<td></td>
<td>5,99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tramo C-D 1</td>
<td>31,00</td>
<td>0,60</td>
<td>0,80</td>
<td></td>
<td>14,88</td>
<td></td>
</tr>
<tr>
<td>OC06</td>
<td>m3 vuelco, m. tierra escom. resid. excav., mov. tierras</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vuelco, en monodepósito de tierras y escombros autorizado, de residuos de excavación y movimiento de tierras.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tramo A-B 1</td>
<td>45,20</td>
<td>0,60</td>
<td>0,30</td>
<td></td>
<td>8,14</td>
<td>29,01</td>
</tr>
<tr>
<td></td>
<td>Tramo B-C 1</td>
<td>33,30</td>
<td>0,60</td>
<td>0,30</td>
<td></td>
<td>5,99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tramo C-D 1</td>
<td>31,00</td>
<td>0,60</td>
<td>0,80</td>
<td></td>
<td>14,88</td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Descripción</td>
<td>Uds</td>
<td>Long</td>
<td>Ancho</td>
<td>Alto</td>
<td>Parcial</td>
<td>Cantidad</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>OC07</td>
<td>m3 const. arq.dim 0,80x0,60x0,60, lad.15cm,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0,80</td>
<td>0,60</td>
<td>0,60</td>
<td>0,29</td>
<td>0,58</td>
</tr>
<tr>
<td>OC08</td>
<td>m3 excav. cim. H<= 1m ter. Compact., m.mec.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>4,00</td>
<td>4,00</td>
<td>1,00</td>
<td>16,00</td>
<td>16,00</td>
</tr>
<tr>
<td>OC09</td>
<td>m3 const. cim.dim 4.00x4.00x1.00,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>4,00</td>
<td>4,00</td>
<td>1,00</td>
<td>16,00</td>
<td>16,00</td>
</tr>
<tr>
<td>OC10</td>
<td>m2 const. hue.par cas vent trafo,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0,40</td>
<td>0,30</td>
<td>0,12</td>
<td>0,12</td>
<td>0,12</td>
</tr>
<tr>
<td>Código</td>
<td>Uds</td>
<td>Descripción</td>
<td>Precio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV1</td>
<td>u</td>
<td>Pan. sol, ISO.F.I-159, mono. CR.</td>
<td>1.228,17 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Panel solar ISOFOTÓN I-159 monocristalino de gran potencia, tipo conexión a red</td>
<td>MIL DOSCIENTOS VEINTIOCHO EUROS Y DIECISIETE CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV2</td>
<td>u</td>
<td>Conv. CC/CA monof. CR 2500 W.</td>
<td>2.962,00 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Convertidor CC/AC monofásica, SUNNY BOY 2500, conexión a red, potencia: 2500 W</td>
<td>DOS MIL NOVECIENTOS SESENTA Y DOS EUROS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV3</td>
<td>ml</td>
<td>Perf. lamin L</td>
<td>0,35 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perfil laminado L 50.40.5,8 para montaje de la estructura soporte.</td>
<td>TREINTA Y CINCO CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV4</td>
<td>u</td>
<td>Base mod port-fus sec.</td>
<td>4,09 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Base modular portafusible-seccionador para la colocación del fusible de protección, montaje sobre perfil DIN.</td>
<td>CUATRO EUROS Y NUEVE CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV5</td>
<td>u</td>
<td>Fus 10 A.</td>
<td>5,91 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fusible de 10 A colocado en su base correspondiente.</td>
<td>CINCO EUROS Y NOVENTA Y UN CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Uds</td>
<td>Descripción</td>
<td>Precio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV6</td>
<td>u</td>
<td>Arm. est. dobl.,ais IP55 pmec.9, 600x400x230mm</td>
<td>50,00 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Armario estanco de doble aislamiento IP55, grado de protección mecánica 9, 600x400x230mm y fijado en tejado para colocación de equipos inversores y fusibles de protección.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CINCUENTA EUROS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV7</td>
<td>ml</td>
<td>Tubo met., rig.,ais int. dim 20mm</td>
<td>2,45 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubo metálico rígido normal con aislamiento interior, diámetro 20 mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOS EUROS Y CUARENTA Y CINCO CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV8</td>
<td>ml</td>
<td>Tubo met., rig.,ais int. dim 25mm</td>
<td>1,70 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubo metálico rígido normal con aislamiento interior, diámetro 25 mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UN EURO Y SETENTA CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV9</td>
<td>ml</td>
<td>Tubo flex P.V.C., dim 25mm</td>
<td>1,70 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubo flexible de P.V.C. Conexión entre módulos, diámetro 25 mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UN EURO Y SETENTA CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV10</td>
<td>ml</td>
<td>Tubo met., rig.,ais int. dim 90mm</td>
<td>6,30 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubo metálico rígido, grado de protección mecánica 7, con aislamiento interior, diámetro 90mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEIS EUROS Y TREINTA CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Uds</td>
<td>Descripción</td>
<td>Precio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV11</td>
<td>ml</td>
<td>Tubo.flex.coarru.PVC dn 90mm resist.choq 7, col.ent.</td>
<td>1,45 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubo flexible coarrugado de PVC de 90 mm de diámetro nominal y 3.5 mm de grueso con grado de resistencia al choque de 7 y montado en canalización enterrada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UN EURO Y CUARENTA Y CINCO CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV12</td>
<td>ml</td>
<td>Cond Cu 1x16mm² v500F</td>
<td>2,00 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conductor de cobre 1x16 mm², UNE 21031V500F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOS EUROS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV13</td>
<td>ml</td>
<td>Cab.Cu VV UNE 21029 1 x 10 mm²</td>
<td>1,37 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable de cobre designación V V UNE 21029 de sección 10 mm² y colocado en tubo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UN EURO Y TREINTA Y SIETE CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV14</td>
<td>ml</td>
<td>Cond Cu 1x25mm² v500F</td>
<td>2,93 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conductor de cobre 1x25 mm², UNE 21031V500F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOS EUROS Y NOVENTA Y TRES CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV15</td>
<td>ml</td>
<td>Tub.rig. de PVC dn= 90mm resist.choq 5, rosc.+ mont su</td>
<td>7,60 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubo rígido de PVC de 90 mm de diámetro nominal, resistencia al choque de grado 5, roscado, curvable en caliente y montado en superficie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SIETE EUROS Y SESENTA CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Uds</td>
<td>Descripción</td>
<td>Precio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>--</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV16</td>
<td>1</td>
<td>Armario poliest. 270x360x160mm, tap fij, y obert maniobra mont sup.</td>
<td>42,70 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Armario de poliéster de 270x360x160mm con capa fija y obertura protegida para posible maniobra y montado superficialmente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CUARENTA Y DOS EUROS Y SETENTA CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV17</td>
<td>1</td>
<td>Int. dif. bip. 40A, sensib. 30mA, fij pres.</td>
<td>62,00 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interruptor diferencial 40A de Intensidad nominal, bipolar con sensibilidad 30mA y fijación a presión sobre perfil DIN-35.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SESENTA Y DOS EUROS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV18</td>
<td>1</td>
<td>Int. magnet. Bip. 40 A fij. pres</td>
<td>18,60 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interruptor magnetotérmico bipolar de 40 A, fijado a presión sobre perfil DIN 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIECIOCHO EUROS Y SESENTA CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV19</td>
<td>1</td>
<td>Rel. max-min frec. fij. pres</td>
<td>171,36 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relé de máxima y mínima frecuencia fijado a presión sobre perfil DIN 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIENTO SETENTA Y UN EUROS Y TREINTA Y SEIS CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV20</td>
<td>1</td>
<td>Rel. max-min ten. fij. pres</td>
<td>157,80 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relé de máxima y mínima tensión fijado a presión sobre perfil DIN 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIENTO CINCUENTA Y SIETE EUROS Y OCHENTA CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Uds</td>
<td>Descripción</td>
<td>Precio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>--</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV21</td>
<td>ml</td>
<td>Cond.Cu des 1x35 mm², mont, sup.</td>
<td>7,30 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conductor de cobre desnudo de sección 1x35 mm²,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>montado bajo tierra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SIETE EUROS Y TREINTA CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV22</td>
<td>u</td>
<td>Pica.ace. Recu. Cu lon 2 m</td>
<td>11,00 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pica de acero, recubrimiento de cobre, montada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>verticalmente, longitud 2 m, diámetro 14 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ONCE EUROS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV23</td>
<td>u</td>
<td>Arq. pto. P.T.</td>
<td>0,19 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arqueta punto puesta a tierra y medición periódica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>200x200 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIECINUEVE CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISF24</td>
<td>u</td>
<td>Caj. emp. grad. prot. 55 cuad. 50x150x100</td>
<td>10,63 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caja de empalmes de grado de protección 55, tapa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>atornillada cuadrada 50x150x100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIEZ EUROS Y SESENTA Y TRES CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISF25</td>
<td>u</td>
<td>Cont. monof. E. act.</td>
<td>120,20 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contador monofásico de energía activa, tensión 220 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIENTO VEINTE EUROS Y VEINTE CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Uds</td>
<td>Descripción</td>
<td>Precio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE01</td>
<td>u</td>
<td>Aerog. BORN.BK-12</td>
<td>25.700,00€</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aerogenerador BORNAY BK-12/220R neo 220V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 palas, conexión a red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incluye cuadro de interconexión a red 16 kVA,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>trifásico, 50 Hz. 220/380 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VEINTICINCO MIL SETECIENTOS EUROS.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE02</td>
<td>u</td>
<td>Tor. Cuat. Aut. P1250 12 m.</td>
<td>1.575,00€</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Torre cuatripata autosoportada para presión lateral de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>viento-1250 kg, doce metros de altura con dos tramos de seis metros.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIL QUINIENTOS SETENTA Y CINCO EUROS.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE03</td>
<td>ml</td>
<td>Tubo met, rig.,ais int. dim 110mm</td>
<td>4,30 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubo metálico rígido normal con aislamiento interior,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>diámetro 110 mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CUATRO EUROS Y TREINTA CENT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE04</td>
<td>ml</td>
<td>Tubo flex P.V.C., dim 110mm</td>
<td>4,00 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubo flexible de P.V.C. Conexión entre cuadros,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>diámetro 110 mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CUATRO EUROS.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE05</td>
<td>ml</td>
<td>Tubo.flex.coarru.PVC dn 110mm resist.choq 7, col. ent.</td>
<td>3,80 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubo flexible coarrugado de PVC de 110 mm de diámetro nominal y 3.5 mm de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>grueso con grado de resistencia al choque de 7 y montado en canalización</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>enterrada.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRES EUROS Y OCHENTA CENT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Uds</td>
<td>Descripción</td>
<td>Precio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE06</td>
<td>ml</td>
<td>Cond Cu 1x16mm² v500F</td>
<td>2,00 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conductor de cobre 1x16 mm², UNE 21031V500F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOS EUROS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE07</td>
<td>ml</td>
<td>Cab.Cu VV UNE 21029 1 x 50 mm²</td>
<td>6,05 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable de cobre designación V V UNE 21029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>de sección 50 mm² y colocado en tubo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEIS EUROS Y CINCO CENT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE08</td>
<td>ml</td>
<td>Cond Cu 1x10mm² v500F</td>
<td>1,37 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conductor de cobre 1x10 mm², UNE 21031V500F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UN EURO Y TREINTA Y SIETE CENT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE09</td>
<td>u</td>
<td>Arm poliest., 270x360x160mm, tap fij, y obert maniobra mont sup.</td>
<td>42,70 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Armario de poliéster de 270x360x160mm con capa fija y obertura protegida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>para posible maniobra y montado superficialmente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CUARENTA Y DOS EUROS Y SETENTA CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE10</td>
<td>ml</td>
<td>Cond.Cu des 1x35 mm²,mont,sup.</td>
<td>7,30 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conductor de cobre desnudo de sección 1x35mm²,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>montado bajo tierra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SIETE EUROS Y TREINTA CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Uds</td>
<td>Descripción</td>
<td>Precio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-------------------------------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE11</td>
<td>u</td>
<td>Pica.ace. Recu. Cu lon 2 m</td>
<td>11,00 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pica de acero, recubrimiento de cobre, montada verticalmente, longitud 2 m, diámetro 14 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ONCE EUROS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE12</td>
<td>u</td>
<td>Arq.pto.P.T.</td>
<td>0,19 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arqueta punto puesta a tierra y medición periódica 200x200 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIECINUEVE CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE13</td>
<td>u</td>
<td>Cont.trif.E.act.</td>
<td>180,20 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contador trifásico de energía activa, tensión 380 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIENTO OCHENTA EUROS Y VEINTE CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Uds</td>
<td>Descripción</td>
<td>Precio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>--</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAPÍTULO 3: OBRA CIVIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC01</td>
<td>m3</td>
<td>excav. Zanja instal. H<= 1m ter. Compact., m.mec.</td>
<td>5,59 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Excavación de zanja para paso de instalaciones hasta un metro de profundidad, en terreno compacto, con medios mecánicos y con las tierras dejadas al lado.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CINCO EUROS Y CINCUENTA Y NUEVE CENT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC02</td>
<td>m3</td>
<td>suminist. Tierra selec. Aport.</td>
<td>8,11 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suministro de tierra seleccionada de aportación.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OCHO EUROS Y ONCE CENT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC03</td>
<td>m3</td>
<td>recubri. + apison. Zanja a <=0.6m, mat. select.g<=30 cm, apison. vibrant, 95.</td>
<td>13,31 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recubrimiento y apisonamiento de zanja de ancho hasta 0.6 metros con material seleccionado en capas de grueso hasta 30 cm, utilizando apisonadora vibrante con compactación del 95 % PM.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRECE EUROS Y TREINTA Y UN CENT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC04</td>
<td>m3</td>
<td>recubri. + apison. Zanja a <=0.6m, mat. toler.g<=30 cm, apison. vibrant, 95.</td>
<td>15,32 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recubrimiento y apisonamiento de zanja de ancho hasta 0.6 metros con material tolerable en capas de grueso hasta 30 cm, utilizando apisonadora vibrante con compactación del 95 % PM.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUINCE EUROS Y TREINTA Y DOS CENT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Uds</td>
<td>Descripción</td>
<td>Precio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>---</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC05</td>
<td>m3</td>
<td>carga mec. + trans. tierras vert., camión 7 T, rec 5-10 km</td>
<td>4,36 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carga con medios mecánicos y transporte de tierras al vertedero, con camión de 7 T, con recorrido de más de 5 y hasta 10 km.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CUATRO EUROS Y TREINTA Y SEIS CENT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC06</td>
<td>m3</td>
<td>vuelco, m. tierra escom. resid. excav., mov. tierras</td>
<td>1,20 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vuelco, en monodepósito de tierras y escombros autorizado, de residuos de excavación y movimiento de tierras.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UN EURO Y VEINTE CENT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC07</td>
<td>m3</td>
<td>const. arq.dim 0,8x0,60x0,60,lad.15cm,</td>
<td>30,05 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Construcción de arqueta con ladrillo de 15 cm y dimensiones 0,80x0,60x0,60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TREINTA EUROS Y CINCO CENT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC08</td>
<td>m3</td>
<td>excav. cim. H<= 1m ter. Compact., m.mec.</td>
<td>6,00 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Excavación de cimiento para estructura torre hasta un metro de profundidad, en terreno compacto, con medios mecánicos y con las tierras dejadas al lado.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEIS EUROS.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC09</td>
<td>m3</td>
<td>const. cim.dim 4.00x4.00x1,00,</td>
<td>14,30 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Construcción de cimiento para estructura torre mediante varillas atadas con alambre y posterior hormigonado.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CATORCE EUROS Y TREINTA CENT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Uds</td>
<td>Descripción</td>
<td>Precio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>--</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC10</td>
<td>m2</td>
<td>constr. hue.par cas vent trafo,</td>
<td>18,00 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Construcción de huecos en pared de la caseta de obra civil para ventilación del trafo.

DIECIOCHO EUROS.
<table>
<thead>
<tr>
<th>Código</th>
<th>Uds</th>
<th>Descripción</th>
<th>Cantidad</th>
<th>Precio</th>
<th>importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISFV1</td>
<td>u</td>
<td>Pan. sol, ISO.F.I-159, mono. CR.</td>
<td>56,00</td>
<td>1.228,17 €</td>
<td>68.777,52 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Panel solar ISOFOTÓN I-159 monocristalino de gran potencia, tipo conexión a red</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV2</td>
<td>u</td>
<td>Conv. CC/CA monof. CR 2500 W.</td>
<td>2,00</td>
<td>2.962,00 €</td>
<td>5.924,00 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Convertidor CC/AC monofásica, SUNNY BOY 2500, conexión a red, potencia: 2500 W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV3</td>
<td>ml</td>
<td>Perf. lamin L</td>
<td>264,00</td>
<td>0,35 €</td>
<td>92,40 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perfil laminado L 50.40.5,8 para montaje de la estructura soporte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV4</td>
<td>u</td>
<td>Base mod port-fus sec.</td>
<td>2,00</td>
<td>4,09 €</td>
<td>8,18 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Base modular portafusible-seccionador para la colocación del fusible de protección, motaje sobre perfil DIN.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV5</td>
<td>u</td>
<td>Fus 10 A.</td>
<td>2,00</td>
<td>5,91 €</td>
<td>11,82 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fusible de 10 A colocado en su base correspondiente</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAPÍTULO 1: INSTALACIÓN SOLAR FOTOVOLTAICA.
<table>
<thead>
<tr>
<th>Código</th>
<th>Uds</th>
<th>Descripción</th>
<th>Cantidad</th>
<th>Precio</th>
<th>importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISFV6</td>
<td>u</td>
<td>Arm. est. dobl.,ais IP55 pmec.9, 600x400x230mm</td>
<td>2,00</td>
<td>50,00 €</td>
<td>100,00 €</td>
</tr>
<tr>
<td>ISFV7</td>
<td>ml</td>
<td>Tubo met, rig.,ais int. dim 20mm</td>
<td>7,00</td>
<td>2,45 €</td>
<td>17,15 €</td>
</tr>
<tr>
<td>ISFV8</td>
<td>ml</td>
<td>Tubo met, rig.,ais int. dim 25mm</td>
<td>35,00</td>
<td>1,70 €</td>
<td>59,50 €</td>
</tr>
<tr>
<td>ISFV9</td>
<td>ml</td>
<td>Tubo flex P.V.C., dim 25mm</td>
<td>63,00</td>
<td>1,70 €</td>
<td>107,10 €</td>
</tr>
<tr>
<td>ISFV10</td>
<td>ml</td>
<td>Tubo met, rig.,ais int. dim 90mm</td>
<td>2,50</td>
<td>6,30 €</td>
<td>15,75 €</td>
</tr>
<tr>
<td>Código</td>
<td>Uds</td>
<td>Descripción</td>
<td>Cantidad</td>
<td>Precio</td>
<td>importe</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>--</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>ISFV11</td>
<td>ml</td>
<td>Tubo.flex.coarru.PVC dn 90mm resist.choq 7, col.ent.</td>
<td>96,00</td>
<td>1,45 €</td>
<td>139,20 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubo flexible coarrugado de PVC de 90 mm de diámetro nominal y 3.5 mm de grueso con grado de resistencia al choque de 7 y montado en canalización enterrada.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV12</td>
<td>ml</td>
<td>Cond Cu 1x16mm² v500F</td>
<td>7,00</td>
<td>2,00 €</td>
<td>14,00 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conductor de cobre 1x16 mm², UNE 21031V500F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV13</td>
<td>ml</td>
<td>Cab.Cu VV UNE 21029 1 x 10 mm²</td>
<td>304,50</td>
<td>1,37 €</td>
<td>417,17 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable de cobre designación V V UNE 21029 de sección 10 mm² y colocado en tubo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV14</td>
<td>ml</td>
<td>Cond Cu 1x25mm² v500F</td>
<td>192,00</td>
<td>2,93 €</td>
<td>562,56 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conductor de cobre 1x25 mm², UNE 21031V500F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV15</td>
<td>ml</td>
<td>Tub.rig. de PVC dn= 90mm resist.choq 5, rosc.+ mont sup</td>
<td>6,00</td>
<td>7,60 €</td>
<td>45,60 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubo rígido de PVC de 90 mm de diámetro nominal, resistencia al choque de grado 5, roscado, curvable en caliente y montado en superficie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Uds</td>
<td>Descripción</td>
<td>Cantidad</td>
<td>Precio</td>
<td>Importe</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>--</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>ISFV16</td>
<td></td>
<td>Arm poliest., 270x360x160mm, tap fij, y obert maniobra mont sup.</td>
<td>1,00</td>
<td>42,70 €</td>
<td>42,70 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Armario de poliéster de 270x360x160mm con capa fija y obertura protegida para posible maniobra y montado superficialmente</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV17</td>
<td></td>
<td>Int.dif.bip,40A,sensib.30mA,fij pres.</td>
<td>1,00</td>
<td>62,00 €</td>
<td>62,00 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interruptor diferencial 40A de Intensidad nominal, bipolar con sensibilidad 30mA y fijación a presión sobre perfil DIN-35.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV18</td>
<td></td>
<td>Int. magnet. Bip. 40 A fij.pres</td>
<td>1,00</td>
<td>18,60 €</td>
<td>18,60 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interruptor magnetotérmico bipolar de 40 A, fijado a presión sobre perfil DIN 35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV19</td>
<td></td>
<td>Rel. max-min frec. fij.pres</td>
<td>1,00</td>
<td>171,36 €</td>
<td>171,36 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relé de máxima y mínima frecuencia fijado a presión sobre perfil DIN 35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV20</td>
<td></td>
<td>Rel. max-min ten. fij.pres</td>
<td>1,00</td>
<td>157,80 €</td>
<td>157,80 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relé de máxima y mínima tensión fijado a presión sobre perfil DIN 35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Uds</td>
<td>Descripción</td>
<td>Cantidad</td>
<td>Precio</td>
<td>Importe</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>--</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>ISFV21</td>
<td>ml</td>
<td>Cond.Cu des 1x35 mm², mont, sup.</td>
<td>4,00</td>
<td>7,30 €</td>
<td>29,20 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conductor de cobre desnudo de sección 1x35 mm²,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>montado bajo tierra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV22</td>
<td>u</td>
<td>Pica.ace. Recu. Cu lon 2 m</td>
<td>2,00</td>
<td>11,00 €</td>
<td>22,00 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pica de acero, recubrimiento de cobre, montada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>verticalmente, longitud 2 m, diámetro 14 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISFV23</td>
<td>u</td>
<td>Arq.pto.P.T.</td>
<td>1,00</td>
<td>30,00 €</td>
<td>30,00 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arqueta punto puesta a tierra y medición periódica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>200x200 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISF24</td>
<td>u</td>
<td>Caj.emp.grad.prot. 55 cuad. 50x150x100</td>
<td>1,00</td>
<td>10,63 €</td>
<td>10,63 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caja de empalmes de grado de protección 55, tapa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>atornillada cuadrada 50x150x100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISF25</td>
<td>u</td>
<td>Cont.monof.E.act.</td>
<td>1,00</td>
<td>120,20 €</td>
<td>120,20 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contador monofásico de energía activa, tensión 220 V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CAPITULO INSTALACION SOLAR.......................... | 76,956,44 €
CAPÍTULO 2: INSTALACIÓN EÓLICA.

<table>
<thead>
<tr>
<th>Código</th>
<th>Uds</th>
<th>Descripción</th>
<th>Cantidad</th>
<th>Precio</th>
<th>importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE01</td>
<td>u</td>
<td>Aerog. BORN.BK-12</td>
<td>1,00</td>
<td>25.700,00 €</td>
<td>25.700,00 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aerogenerador BORNAY BK-12/220R neo 220V 3 palas, conexión a red. Incluye cuadro de interconexión a red 16 kVA, trifásico, 50 Hz. 220/380 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE02</td>
<td>u</td>
<td>Tor. Cuat. Aut. P1250 12 m.</td>
<td>1,00</td>
<td>1.575,00 €</td>
<td>1.575,00 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Torre cuatripata autosoportada para presión lateral de viento-1250 kg, doce metros de altura con dos tramos de seis metros.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE03</td>
<td>ml</td>
<td>Tubo met, rig.,ais int. dim 110mm</td>
<td>14,00</td>
<td>4,30 €</td>
<td>60,20 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubo metálico rígido normal con aislamiento interior, diámetro 110 mm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE04</td>
<td>ml</td>
<td>Tubo flex P.V.C., dim 110mm</td>
<td>4,00</td>
<td>4,00 €</td>
<td>16,00 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubo flexible de P.V.C. Conexión entre cuadros, diámetro 110 mm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE05</td>
<td>ml</td>
<td>Tubo.flex.coarru.PVC dn 110mm resist.choq 7,col.ent.</td>
<td>64,00</td>
<td>3,80 €</td>
<td>243,20 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubo flexible coarrugado de PVC de 110 mm de diámetro nominal y 3.5 mm de grueso con grado de resistencia al choque de 7 y montado en canalización enterrada.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Uds</td>
<td>Descripción</td>
<td>Cantidad</td>
<td>Precio</td>
<td>importe</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>IE06</td>
<td>ml</td>
<td>Cond Cu 1x16mm² v500F</td>
<td>4,00</td>
<td>2,00 €</td>
<td>8,00 €</td>
</tr>
<tr>
<td>IE07</td>
<td>ml</td>
<td>Cab.Cu VV UNE 21029 1 x 50 mm²</td>
<td>164,00</td>
<td>6,05 €</td>
<td>992,20 €</td>
</tr>
<tr>
<td>IE08</td>
<td>ml</td>
<td>Cond Cu 1x10mm² v500F</td>
<td>21,00</td>
<td>1,37 €</td>
<td>28,77 €</td>
</tr>
<tr>
<td>IE09</td>
<td>u</td>
<td>Arm poliest., 270x360x160mm, tap fij, y obert maniobra mont sup.</td>
<td>2,00</td>
<td>42,70 €</td>
<td>85,40 €</td>
</tr>
<tr>
<td>IE10</td>
<td>ml</td>
<td>Cond.Cu des 1x35 mm²,mont,sup.</td>
<td>6,00</td>
<td>7,30 €</td>
<td>43,80 €</td>
</tr>
<tr>
<td>Código</td>
<td>Uds</td>
<td>Descripción</td>
<td>Cantidad</td>
<td>Precio</td>
<td>Importe</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-------------------------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>IE11</td>
<td>u</td>
<td>Pica.ace. Recu. Cu lon 2 m</td>
<td>2,00</td>
<td>11,00 €</td>
<td>22,00 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pica de acero, recubrimiento de cobre, montada verticalmente, longitud 2 m, diámetro 14 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE12</td>
<td>u</td>
<td>Arq.pto. P.T.</td>
<td>2,00</td>
<td>0,19 €</td>
<td>0,38 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arqueta punto puesta a tierra y medición periódica 200x200 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE13</td>
<td>u</td>
<td>Cont. trif. E. act.</td>
<td>1,00</td>
<td>180,20 €</td>
<td>180,20 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contador trifásico de energía activa, tensión 380 V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CAPITULO INSTALACION EÓLICA.......................... 28.955,15 €
<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Cantidad</th>
<th>Precio</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC01</td>
<td>m3 excav. Zanja instal. H<= 1m ter. Compact., m.mec.</td>
<td>52,56</td>
<td>5,59 €</td>
<td>293,81 €</td>
</tr>
<tr>
<td></td>
<td>Excavación de zanja para paso de instalaciones hasta un metro de profundidad, en terreno compacto, con medios mecánicos y con las tierras dejadas al lado.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC02</td>
<td>m3 suminist. Tierra selec. Aport.</td>
<td>29,01</td>
<td>8,11 €</td>
<td>235,27 €</td>
</tr>
<tr>
<td></td>
<td>Suministro de tierra seleccionada de aportación.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC03</td>
<td>m3 recubri. + apison. Zanja a <=0.6m, mat. select.g<=30 cm, apison. vibrant, 95.</td>
<td>29,01</td>
<td>13,31 €</td>
<td>386,12 €</td>
</tr>
<tr>
<td></td>
<td>Recubrimiento y apisonamiento de zanja de ancho hasta 0.6 metros con material seleccionado en capas de grueso hasta 30 cm, utilizando apisonadora vibrante con compactación del 95 % PM.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC04</td>
<td>m3 recubri. + apison. Zanja a <=0.6m, mat. toler.g<=30 cm, apison. vibrant, 95.</td>
<td>43,14</td>
<td>15,32 €</td>
<td>660,90 €</td>
</tr>
<tr>
<td></td>
<td>Recubrimiento y apisonamiento de zanja de ancho hasta 0.6 metros con material tolerable en capas de grueso hasta 30 cm, utilizando apisonadora vibrante con compactación del 95 % PM.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Descripción</td>
<td>Cantidad</td>
<td>Precio</td>
<td>Importe</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>OC05</td>
<td>m3 carga mec. + trans. tierras vert., camión 7 T, rec 5-10 Km</td>
<td>29,01</td>
<td>4,36 €</td>
<td>126,48 €</td>
</tr>
<tr>
<td></td>
<td>Carga con medios mecánicos y transporte de tierras al vertedero,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>con camión de 7 T, con recorrido de más de 5 y hasta 10 Km.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC06</td>
<td>m3 vuelco, m. tierra escom. resid. excav., mov. tierras</td>
<td>29,01</td>
<td>1,20 €</td>
<td>34,81 €</td>
</tr>
<tr>
<td></td>
<td>Vuelco, en monodepósito de tierras y escombros autorizado,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>de residuos de excavación y movimiento de tierras.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC07</td>
<td>m3 const.arq.dim 0.80x0.60x0.60 lad.15cm.</td>
<td>0,58</td>
<td>30,05 €</td>
<td>17,43 €</td>
</tr>
<tr>
<td></td>
<td>Construcción de arqueta con ladrillo de 15 cm y dimensiones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.80x0.60x0.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC08</td>
<td>m3 excav. cim. H<= 1m ter. Compact., m.mec.</td>
<td>16,00</td>
<td>6,00 €</td>
<td>96,00 €</td>
</tr>
<tr>
<td></td>
<td>Excavación de cimiento para estructura torre hasta un</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>metro de profundidad, en terreno compacto, con medios</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mecánicos y con las tierras dejadas al lado.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC09</td>
<td>m3 const. cim.dim 4.00x4.00x1.00,</td>
<td>16,00</td>
<td>14,30 €</td>
<td>228,80 €</td>
</tr>
<tr>
<td></td>
<td>Construcción de cimiento para estructura torre mediante</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>varillas atadas con alambre y posterior hormigonado.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Descripción</td>
<td>Cantidad</td>
<td>Precio</td>
<td>Importe</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>OC10</td>
<td>m2 const. hue.par cas vent trafo,</td>
<td>0,12</td>
<td>18,00 €</td>
<td>2,16 €</td>
</tr>
</tbody>
</table>

Construcción de huecos en pared de la caseta de obra civil para ventilación del trafo.

TOTAL CAPÍTULO OBRA CIVIL: 2081,79 €
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Resumen</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>Instalación Solar Fotovoltaica</td>
<td>76.956,44</td>
</tr>
<tr>
<td>C02</td>
<td>Instalación Eólica</td>
<td>28.955,15</td>
</tr>
<tr>
<td>C03</td>
<td>Obra Civil</td>
<td>2.081,79</td>
</tr>
</tbody>
</table>

TOTAL PRESUPUESTO EJECUCIÓN MATERIAL
107.993,38

13,00% Gastos Generales, (G.G.)
6,00% Beneficio Industrial, (B.I.)

Suma de G.G. Y B.I. 20.518,74

TOTAL PRESUPUESTO CONTRATA
128.512,12

16,00% I.V.A.

TOTAL PRESUPUESTO DE LICITACIÓN
149.074,06
5 Pliego de condiciones
5.1 Condiciones Administrativas.

5.1.1 Condiciones generales.

- El presente Pliego de Condiciones tiene por objeto definir al Contratista el alcance del trabajo y la ejecución cualitativa del mismo.

- El trabajo eléctrico consistirá en la instalación eléctrica completa para fuerza, alumbrado y tierra.

- El alcance del trabajo del Contratista incluye el diseño y preparación de todos los planos, diagramas, especificaciones, lista de material y requisitos para la adquisición e instalación del trabajo.

5.1.2 Reglamentos y Normas.

- Todas las unidades de obra se ejecutarán cumpliendo las prescripciones indicadas en los Reglamentos de Seguridad y Normas Técnicas de obligado cumplimiento para este tipo de instalaciones, tanto de ámbito nacional, autonómico como municipal, así como, todas las otras que se establezcan en la Memoria Descriptiva del mismo.

- Se adaptarán además, a las presentes condiciones particulares que complementarán las indicadas por los Reglamentos y Normas citadas.

5.1.3 Materiales.

- Todos los materiales empleados serán de primera calidad. Cumplirán las especificaciones y tendrán las características indicadas en el proyecto y en las normas técnicas generales, y además en las de la Compañía Distribuidora de Energía, para este tipo de materiales.

- Toda especificación o característica de materiales que figuren en uno solo de los documentos del Proyecto, aún sin figurar en los otros es igualmente obligatoria.

- En caso de existir contradicción u omisión en los documentos del proyecto, el Contratista obtendrá la obligación de ponerlo de manifiesto al Técnico Director de la obra,
quien decidirá sobre el particular. En ningún caso podrá suplir la falta directamente, sin la autorización expresa.

- Una vez adjudicada la obra definitivamente y antes de iniciarse esta, el Contratista presentara al Técnico Director los catálogos, cartas muestra, certificados de garantía o de homologación de los materiales que vayan a emplearse. No podrá utilizarse materiales que no hayan sido aceptados por el Técnico Director.

5.1.4 Ejecución de las obras.

5.1.4.1 Comienzo.

El contratista dará comienzo la obra en el plazo que figure en el contrato establecido con la Propiedad, o en su defecto a los quince días de la adjudicación definitiva o de la firma del contrato.

El Contratista está obligado a notificar por escrito o personalmente en forma directa al Técnico Director la fecha de comienzo de los trabajos.

5.1.4.2 Plazo de ejecución.

La obra se ejecutará en el plazo que se estipule en el contrato suscrito con la Propiedad o en su defecto en el que figure en las condiciones de este pliego.

Cuando el Contratista, de acuerdo, con alguno de los extremos contenidos en el presente Pliego de Condiciones, o bien en el contrato establecido con la Propiedad, solicite una inspección para poder realizar algún trabajo ulterior que esté condicionado por la misma, vendrá obligado a tener preparada para dicha inspección, una cantidad de obra que corresponda a un ritmo normal de trabajo.

Cuando el ritmo de trabajo establecido por el Contratista, no sea el normal, o bien a petición de una de las partes, se podrá convenir una programación de inspecciones obligatorias de acuerdo con el plan de obra.

5.1.4.3 Libro de Órdenes.
El Contratista dispondrá en la obra de un Libro de Ordenes en el que se escribirán las que el Técnico Director estime darle a través del encargado o persona responsable, sin perjuicio de las que le dé por oficio cuando lo crea necesario y que tendrá la obligación de firmar el enterado.

5.1.5 Interpretación y desarrollo del Proyecto.

La interpretación técnica de los documentos del Proyecto, corresponde al Técnico Director. El Contratista está obligado a someter a éste cualquier duda, aclaración o contradicción que surja durante la ejecución de la obra por causa del Proyecto, o circunstancias ajenas, siempre con la suficiente antelación en función de la importancia del asunto.

El contratista se hace responsable de cualquier error de la ejecución motivado por la omisión de ésta obligación y consecuentemente deberá rehacer a su costa los trabajos que correspondan a la correcta interpretación del Proyecto.

El Contratista está obligado a realizar todo cuanto sea necesario para la buena ejecución de la obra, aún cuando no se halle explícitamente expresado en el pliego de condiciones o en los documentos del proyecto.

El contratista notificará por escrito o personalmente en forma directa al Técnico Director y con suficiente antelación las fechas en que quedaran preparadas para inspección, cada una de las partes de obra para las que se ha indicado la necesidad o conveniencia de la misma o para aquellas que, total o parcialmente deban posteriormente quedar ocultas. De las unidades de obra que deben quedar ocultas, se tomaran antes de ello, los datos precisos para su medición, a los efectos de liquidación y que sean suscritos por el Técnico Director de hallarlos correctos. De no cumplirse este requisito, la liquidación se realizará en base a los datos o criterios de medición aportados por éste.

5.1.6 Obras complementarias.

El contratista tiene la obligación de realizar todas las obras complementarias que sean indispensables para ejecutar cualquiera de las unidades de obra especificadas en cualquiera de los documentos del Proyecto, aunque en el, no figuren explícitamente mencionadas dichas obras complementarias. Todo ello sin variación del importe contratado.

5.1.7 Modificaciones.
El contratista está obligado a realizar las obras que se le encarguen resultantes de modificaciones del proyecto, tanto en aumento como disminución o simplemente variación, siempre y cuando el importe de las mismas no altere en más o menos de un 25% del valor contratado.

La valoración de las mismas se hará de acuerdo, con los valores establecidos en el presupuesto entregado por el Contratista y que ha sido tomado como base del contrato. El Técnico Director de obra está facultado para introducir las modificaciones de acuerdo con su criterio, en cualquier unidad de obra, durante la construcción, siempre que cumplan las condiciones técnicas referidas en el proyecto y de modo que ello no varíe el importe total de la obra.

5.1.8 Obra defectuosa.

Cuando el Contratista halle cualquier unidad de obra que no se ajuste a lo especificado en el proyecto o en este Pliego de Condiciones, el Técnico Director podrá aceptarlo o rechazarlo; en el primer caso, éste fijará el precio que crea justo con arreglo a las diferencias que hubiera, estando obligado el Contratista a aceptar dicha valoración, en el otro caso, se reconstruirá a expensas del Contratista la parte mal ejecutada sin que ello sea motivo de reclamación económica o de ampliación del plazo de ejecución.

5.1.9 Medios auxiliares.

Serán de cuenta del Contratista todos los medios y máquinas auxiliares que sean precisas para la ejecución de la obra. En el uso de los mismos estará obligado a hacer cumplir todos los Reglamentos de Seguridad en el trabajo vigentes y a utilizar los medios de protección a sus operarios.

5.1.10 Conservación de las obras.

Es obligación del Contratista la conservación en perfecto estado de las unidades de obra realizadas hasta la fecha de la recepción definitiva por la Propiedad, y corren a su cargo los gastos derivados de ello.

5.1.11 Recepción de las obras.
5.1.11.1 Recepción provisional.

Una vez terminadas las obras, tendrá lugar la recepción provisional y para ello se practicará en ellas un detenido reconocimiento por el Técnico Director y la Propiedad en presencia del Contratista, levantando acta y empezando a correr desde ese día el plazo de garantía si se hallan en estado de ser admitida.

De no ser admitida se hará constar en el acta y se darán instrucciones al Contratista para subsanar los defectos observados, fijándose un plazo para ello, expirando el cual se procederá a un nuevo reconocimiento a fin de proceder a la recepción provisional.

5.1.11.2 Plazo de garantía.

El plazo de garantía será como mínimo de un año, contado desde la fecha de la recepción provisional, o bien el que se establezca en el contrato también contado desde la misma fecha. Durante este período queda a cargo del Contratista la conservación de las obras y arreglo de los desperfectos causados por asiento de las mismas o por mala construcción.

5.1.11.3 Recepción definitiva.

Se realizará después de transcurrido el plazo de garantía de igual forma que la provisional. A partir de esta fecha cesará la obligación del Contratista de conservar y reparar a su cargo las obras si bien subsistirán las responsabilidades que pudiera tener por defectos ocultos y deficiencias de causa dudosa.

5.12 Contratación de la empresa.

5.12.1 Modo de contratación.

El conjunto de las instalaciones las realizará la empresa escogida por concurso-subasta.

5.12.2 Presentación.
Las empresas seleccionadas para dicho concurso deberán presentar sus proyectos en sobre lacrado, antes del 15 de septiembre de 1.993 en el domicilio del propietario.

5.1.12.3 Selección.

La empresa escogida será anunciada la semana siguiente a la conclusión del plazo de entrega. Dicha empresa será escogida de mutuo acuerdo entre el propietario y el director de la obra, sin posible reclamación por parte de las otras empresas concursantes.

5.1.13 Fianza.

En el contrato se establecerá la fianza que el contratista deberá depositar en garantía del cumplimiento del mismo, o, se convendrá una retención sobre los pagos realizados a cuenta de obra ejecutada.

De no estipularse la fianza en el contrato se entiende que se adopta como garantía una retención del 5% sobre los pagos a cuenta citados.

En el caso de que el Contratista se negase a hacer por su cuenta los trabajos para ultimar la obra en las condiciones contratadas, o a atender la garantía, la Propiedad podrá ordenar ejecutarlas a un tercero, abonando su importe con cargo a la retención o fianza, sin perjuicio de las acciones legales a que tenga derecho la Propiedad si el importe de la fianza no bastase.

La fianza retenida se abonará al Contratista en un plazo no superior a treinta días una vez firmada el acta de recepción definitiva de la obra.

5.2 Condiciones Económicas.

5.2.1 Abono de la obra.

En el contrato se deberá fijar detalladamente la forma y plazos que se abonarán las obras. Las liquidaciones parciales que puedan establecerse tendrán carácter de documentos provisionales a buena cuenta, sujetos a las certificaciones que resulten de la liquidación final. No suponiendo, dichas liquidaciones, aprobación ni recepción de las obras que comprenden.
Terminadas las obras se procederá a la liquidación final que se efectuará de acuerdo con los criterios establecidos en el contrato.

5.2.2 Precios.

El contratista presentará, al formalizarse el contrato, relación de los precios de las unidades de obra que integran el proyecto, los cuales de ser aceptados tendrán valor contractual y se aplicarán a las posibles variaciones que puedan haber.

Estos precios unitarios, se entiende que comprenden la ejecución total de la unidad de obra, incluyendo todos los trabajos aún los complementarios y los materiales así como la parte proporcional de imposición fiscal, las cargas laborales y otros gastos repercutibles.

En caso de tener que realizarse unidades de obra no previstas en el proyecto, se fijará su precio entre el Técnico Director y el Contratista antes de iniciar la obra y se presentará a la propiedad para su aceptación o no.

5.2.3 Revisión de precios.

En el contrato se establecerá si el contratista tiene derecho a revisión de precios y la fórmula a aplicar para calcularla. En defecto de esta última, se aplicará a juicio del Técnico Director alguno de los criterios oficiales aceptados.

5.2.4 Penalizaciones.

Por retraso en los plazos de entrega de las obras, se podrán establecer tablas de penalización cuyas cuantías y demoras se fijarán en el contrato.

5.2.5 Contrato.

El contrato se formalizará mediante documento privado, que podrá elevarse a escritura pública a petición de cualquiera de las partes. Comprenderá la adquisición de todos los materiales, transporte, mano de obra, medios auxiliares para la ejecución de la obra proyectada en el plazo estipulado, así como la reconstrucción de las unidades defectuosas, la realización de las obras complementarias y las derivadas de las modificaciones que se introduzcan durante la ejecución, éstas últimas en los términos previstos.
La totalidad de los documentos que componen el Proyecto Técnico de la obra serán incorporados al contrato y tanto el contratista como la Propiedad deberán firmarlos en testimonio de que los conocen y aceptan.

5.2.6 Responsabilidades.

El Contratista es el responsable de la ejecución de las obras en las condiciones establecidas en el proyecto y en el contrato. Como consecuencia de ello vendrá obligado a la demolición de lo mal ejecutado y a su reconstrucción correctamente sin que sirva de excusa el que el Técnico Director haya examinado y reconocido las obras.

El contratista es el único responsable de todas las contravenciones que él o su personal cometan durante la ejecución de las obras u operaciones relacionadas con las mismas. También es responsable de los accidentes o daños que por errores, inexperiencia o empleo de métodos inadecuados se produzcan a la propiedad a los vecinos o terceros en general.

El Contratista es el único responsable del incumplimiento de las disposiciones vigentes en la materia laboral respecto de su personal y por tanto los accidentes que puedan sobrevenir y de los derechos que puedan derivarse de ellos.

5.2.7 Rescisión del contrato.

5.2.7.1 Causas de rescisión.

Se consideraran causas suficientes para la rescisión del contrato las siguientes:

- Primero: Muerte o incapacitación del Contratista.

- Segunda: La quiebra del contratista.

- Tercera: Modificación del proyecto cuando produzca alteración en más o menos 25% del valor contratado.

- Cuarta : Modificación de las unidades de obra en número superior al 40% del original.
- Quinta: La no iniciación de las obras en el plazo estipulado cuando sea por causas ajenas a la Propiedad.

- Sexta: La suspensión de las obras ya iniciadas siempre que el plazo de suspensión sea mayor de seis meses.

- Séptima: Incumplimiento de las condiciones del Contrato cuando implique mala fe.

- Octava: Terminación del plazo de ejecución de la obra sin haberse llegado a completar ésta.

- Décima: Actuación de mala fe en la ejecución de los trabajos.

- Decimoprimera: Destajar o subcontratar la totalidad o parte de la obra a terceros sin la autorización del Técnico Director y la Propiedad.

5.2.8 Liquidación en caso de rescisión del contrato.

Siempre que se rescinda el Contrato por causas anteriores o bien por acuerdo de ambas partes, se abonará al Contratista las unidades de obra ejecutadas y los materiales acopiados a pie de obra y que reúnan las condiciones y sean necesarios para la misma.

Cuando se rescinda el contrato llevará implícito la retención de la fianza para obtener los posibles gastos de conservación de el período de garantía y los derivados del mantenimiento hasta la fecha de nueva adjudicación.

5.3 Condiciones Facultativas.

5.3.1 Normas a seguir.

El diseño de la instalación eléctrica estará de acuerdo con las exigencias o recomendaciones expuestas en la última edición de los siguientes códigos:

1.- Reglamento Electrotécnico de Baja Tensión e Instrucciones Complementarias.
2.- Normas UNE.

3.- Publicaciones del Comité Electrotécnico Internacional (CEI).

4.- Plan nacional y Ordenanza General de Seguridad e Higiene en el trabajo.

5.- Normas de la Compañía Suministradora.

6.- Lo indicado en este pliego de condiciones con preferencia a todos los códigos y normas.

5.3.2 Personal.

El Contratista tendrá al frente de la obra un encargado con autoridad sobre los demás operarios y conocimientos acreditados y suficientes para la ejecución de la obra.

El encargado recibirá, cumplirá y transmitirá las instrucciones y ordenes del Técnico Director de la obra.

El Contratista tendrá en la obra, el número y clase de operarios que haga falta para el volumen y naturaleza de los trabajos que se realicen, los cuales serán de reconocida aptitud y experimentados en el oficio. El Contratista estará obligado a separar de la obra, a aquel personal que a juicio del Técnico Director no cumpla con sus obligaciones, realice el trabajo defectuosamente, bien por falta de conocimientos o por obrar de mala fe.

5.3.3 Reconocimiento y Ensayos previos.

Cuando lo estime oportuno el Técnico Director, podrá encargar y ordenar el análisis, ensayo o comprobación de los materiales, elementos o instalaciones, bien sea en fábrica de origen, laboratorios oficiales o en la misma obra, según crea más conveniente, aunque estos no estén indicados en este pliego.

En el caso de discrepancia, los ensayos o pruebas se efectuarán en el laboratorio oficial que el Técnico Director de obra designe.

Los gastos ocasionados por estas pruebas y comprobaciones, serán por cuenta del Contratista.
5.3.4 **Ensayos.**

- Antes de la puesta en servicio del sistema eléctrico, el Contratista habrá de hacer los ensayos adecuados para probar, a la entera satisfacción del Técnico Director de obra, que todo equipo, aparatos y cableado han sido instalados correctamente de acuerdo con las normas establecidas y están en condiciones satisfactorias del trabajo.

- Todos los ensayos serán presenciados por el Ingeniero que representa el Técnico Director de obra.

- Los resultados de los ensayos serán pasados en certificados indicando fecha y nombre de la persona a cargo del ensayo, así como categoría profesional.

- Los cables, antes de ponerse en funcionamiento, se someterán a un ensayo de resistencia de aislamiento entre las fases y entre fase y tierra, que se hará de la forma siguiente:

 - Con los generadores desacoplados de las líneas eléctricas medir la resistencia de aislamiento desde el lado de salida de los generadores.

 - Funcionamiento de generadores. Con los cables conectados a los equipos auxiliares y conversores, junto con los dispositivos de protección y mando medir la resistencia de aislamiento entre fases o polos y tierra solamente.

 - Fuerza. Medir la resistencia de aislamiento de todos los aparatos (armaduras, tomas de corriente, etc...), que han sido conectados.

 - En los cables enterrados, estos ensayos de resistencia de aislamiento se harán antes y después de efectuar el rellenado y compactado.

5.3.5 **Aparamenta.**

- Antes de poner la aparamenta bajo tensión, se medirá la resistencia de aislamiento de cada embarrado entre fases y entre fases y tierra. Las medidas deben repetirse con los interruptores en posición de funcionamiento y contactos abiertos.

- Todo relé de protección que sea ajustable será calibrado y ensayado, usando contador de ciclos, caja de carga, amperímetro y voltímetro, según se necesite.
- Se dispondrá, en lo posible, de un sistema de protección selectiva. De acuerdo con esto, los relés de protección se elegirán y coordinarán para conseguir un sistema que permita actuar primero el dispositivo de interrupción más próximo a la falta.

- El contratista preparará curvas de coordinación de relés y calibrado de éstos para todos los sistemas de protección previstos.

- Se comprobarán los circuitos secundarios de los transformadores de intensidad y tensión aplicando corrientes o tensión a los arrollamientos secundarios de los transformadores y comprobando que los instrumentos conectados a estos secundarios funcionan.

- Todos los interruptores automáticos se colocarán en posición de prueba y cada interruptor será cerrado y disparado desde su interruptor de control. Los interruptores deben ser disparados por accionamiento manual y aplicando corriente a los relés de protección. Se comprobarán todos los enclavamientos.

5.3.6 Generadores.

- Se medirá la resistencia del aislamiento de los módulos fotovoltaicos y de los arrollamientos de los aerogeneradores antes y después de conectar los cables de fuerza.

- Se comprobará el sentido de giro de todas las máquinas.

- Todos los generadores deberán ponerse en marcha sin estar acoplados a la red y se medirá la tensión producida y su frecuencia.

- Después de acoplarse los equipos generadores a la red, se volverá a medir la tensión, la frecuencia, y además, la intensidad inyectada.

5.3.7 Varios.

- Se comprobará la puesta a tierra para determinar la continuidad de los cables de tierra y sus conexiones y se medirá la resistencia de los electrodos de tierra.

- Se comprobarán todas las alarmas del equipo eléctrico para comprobar el funcionamiento adecuado, haciéndolas activar simulando condiciones anormales.
5.4 Condiciones Técnicas para instalaciones fotovoltaicas conectadas a la red.

5.4.1 Objeto.

Fijar las condiciones técnicas mínimas que deben cumplir las instalaciones solares fotovoltaicas conectadas a red, que por sus características estén comprendidas en el apartado segundo de este pliego. Pretende servir de guía para instaladores y fabricantes de equipos, definiendo las especificaciones mínimas que debe cumplir una instalación para asegurar su calidad, en beneficio del usuario y del propio desarrollo de esta tecnología.

Se valorará la calidad final de la instalación en cuanto a su rendimiento, producción e integración.

El ámbito de aplicación de este pliego de condiciones técnicas (en lo que sigue, PCT) se extiende a todos los sistemas mecánicos, eléctricos y electrónicos que forman parte de las instalaciones.

En determinados supuestos para los proyectos se podrán adoptar, por la propia naturaleza del mismo o del desarrollo tecnológico, soluciones diferentes a las exigidas en este PCT, siempre que quede suficientemente justificada su necesidad y que no impliquen una disminución de las exigencias mínimas de calidad especificadas en el mismo.

Este Pliego de Condiciones Técnicas se encuentra asociado a las líneas de ayudas para la Promoción de instalaciones de energía solar fotovoltaica en el ámbito de Plan de Fomento de Energías Renovables. Determinados apartados hacen referencia a su inclusión en la memoria a presentar con la solicitud de la ayuda o en la memoria de diseño o proyecto a presentar previamente a la verificación técnica.

5.4.2 Generalidades.

Este pliego es de aplicación en su integridad a todas las instalaciones solares fotovoltaicas destinadas a la producción de electricidad para ser vendida en su totalidad a la red de distribución. Quedan excluidas expresamente las instalaciones aisladas de la red.

Podrán optar a esta convocatoria otras aplicaciones especiales, siempre y cuando se aseguren unos requisitos de calidad, seguridad y durabilidad equivalentes. Tanto en la memoria de solicitud como en la memoria de diseño o proyecto se incluirán las características de estas aplicaciones, reservándose el IDAE su aceptación.
En todo caso es de aplicación toda la normativa que afecte a instalaciones solares fotovoltaicas:

- Ley 54/1997 de 27 de noviembre del Sector Eléctrico.
- Real Decreto 2818/1998 de 23 de diciembre sobre producción de energía eléctrica por recursos o fuentes de energías renovables, residuos y cogeneración.
- Decreto 2413/1973 de 20 de septiembre por el que se aprueba el Reglamento Electrotécnico de Baja Tensión.
- Real Decreto 1663/2000 de 29 de septiembre, sobre conexión de instalaciones fotovoltaicas a la red de baja tensión.
- Real Decreto 1955/2000 de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica.
- Real Decreto 3490/2000, de 29 de diciembre por el que se establece la tarifa eléctrica para el 2001.
- Para el caso de integración en edificios se tendrá en cuenta la Norma Básica de la Edificación (NBE).

5.4.3 Definición.

5.4.3.1 Instalación.

- Instalaciones fotovoltaicas: aquellas que disponen de módulos fotovoltaicos para la conversión directa de la radiación solar en energía eléctrica, sin ningún paso intermedio.

- Instalaciones fotovoltaicas interconectadas: aquellas que normalmente trabajan en paralelo con la empresa distribuidora.

- Línea y punto de conexión y medida: la línea de conexión es la línea eléctrica mediante la cual se conectan las instalaciones fotovoltaicas con un punto de red de la empresa distribuidora o con la acometida del usuario, denominado punto de conexión y medida.

- Interruptor automático de la interconexión: dispositivo de corte automático sobre el cual actúan las protecciones de interconexión.

- Interruptor general: dispositivo de seguridad y maniobra que permite separar la instalación fotovoltaica de la red de la empresa distribuidora.
- Generador fotovoltaico: asociación en paralelo de ramas fotovoltaicas.

- Rama fotovoltaica: subconjunto de módulos interconectados en serie o en asociaciones serie-paralelo, con voltaje igual a la tensión nominal del generador.

- Inversor: Convertidor de tensión y corriente continua en tensión y corriente alterna.

- Potencia nominal del generador: es la suma de las potencias máximas de los módulos fotovoltaicos.

- Potencia de la instalación fotovoltaica o potencia nominal: es la suma de la potencia nominal de los inversores (la especificada por el fabricante) que intervienen en las tres fases de la instalación en condiciones nominales de funcionamiento.

5.4.3.2 Módulos.

- Célula solar o fotovoltaica: dispositivo que transforma la radiación solar en energía eléctrica.

- Célula de tecnología equivalente (CTE) es una célula solar encapsulada de forma independiente, cuya tecnología de fabricación y encapsulado es idéntica a la de los módulos fotovoltaicos que forma la instalación.

- Módulo o panel fotovoltaico es un conjunto de células solares directamente interconectadas y encapsuladas como único bloque, entre materiales que las protegen de los efectos de la intemperie.

- Condiciones Estándar de Medida (CEM) son unas determinadas condiciones de irradiación y temperatura de célula solar, utilizadas universalmente para caracterizar células, módulos y generadores solares y definidas del modo siguiente;
 - Irradiancia solar \(1000 \text{ W/m}^2 \)
 - Distribución espectral AM 1,5 G
 - Temperatura de célula 25 °C
- Potencia pico: potencia máxima del panel fotovoltaico en CEM.

- TONC: temperatura de operación nominal de la célula, definida como la temperatura que alcanzan las células solares cuando se somete al módulo a una irradiancia de 800 W/m² con distribución espectral AM 1,5G, la temperatura ambiente es de 20 º y la velocidad del viento de 1 m/s.

5.4.4 Componentes y materiales.

5.4.4.1 Generalidades.

- Como principio general se ha de asegurar, como mínimo, un grado de aislamiento eléctrico de tipo básico clase I en lo que afecta tanto a equipos (módulos e inversores) como a materiales (conductores, cajas y armarios de conexión, exceptuando el cableado de continua que será de doble aislamiento.

- La instalación incorporará todos los elementos y características necesarias para garantizar en todo momento la calidad del suministro eléctrico.

- El funcionamiento de las instalaciones fotovoltaicas no deberá provocar en la red averías, disminuciones de las condiciones de seguridad ni alteraciones superiores a las admitidas por la normativa que resulte aplicable.

- Asimismo, el funcionamiento de estas instalaciones no podrá dar origen a condiciones peligrosas de trabajo para el personal de mantenimiento y explotación de la red de distribución.

- Los materiales situados en intemperie se protegerán contra los agentes ambientales, en particular contra el efecto de la radiación solar y la humedad.

- Se incluirán todos los elementos necesarios de seguridad y protecciones propias de las personas y de la instalación fotovoltaica, asegurando la protección frente a contactos directos e indirectos, cortocircuitos, sobrecargas, así como otros elementos y protecciones que resulten de la aplicación de la legislación vigente.

- En la memoria de diseño o proyecto se resaltarán los cambios que hubieran podido producirse y el motivo de los mismos respecto a la memoria de solicitud. Además, se incluirán las fotocopias de las especificaciones técnicas proporcionadas por el fabricante de todos los componentes.

- Por motivos de seguridad y operación de los equipos, los indicadores, etiquetas, etc. de los mismos estarán en alguna de las lenguas españolas oficiales.

5.4.4.2 Sistemas Generadores Fotovoltaicos.
- Todos los módulos deberán satisfacer las especificaciones UNE-EN 61215 para módulos de silicio cristalino o UNE-EN 61646 para módulos fotovoltaicos capa delgada, así como estar cualificados por algún laboratorio reconocido (por ejemplo, Laboratorio de Energía Solar Fotovoltaica del Departamento de Energías Renovables del CIEMAT, Joint Research Centre Ispra, etc.), lo que se acreditará mediante la presentación del certificado oficial correspondiente. Este requisito no se aplica a los casos excepcionales del apartado 4.1.1.3.

- El módulo fotovoltaico llevará de forma claramente visible e indeleble el modelo y nombre ó logotipo del fabricante, así como una identificación individual o número de serie trazable a la fecha de fabricación.

- Se utilizarán módulos que se ajusten a las características técnicas descritas a continuación. En caso de variaciones respecto de estas características, con carácter excepcional, deberá presentarse en la memoria de solicitud justificación de su utilización y deberá ser aprobado por el IDAE.

- Los módulos deberán llevar los diodos de derivación para evitar las posibles averías de las células y sus circuitos por sombreados parciales y tendrán un grado de protección IP65.

- Los marcos laterales, si existen, serán de aluminio o acero inoxidable.

- Para que un módulo resulte aceptable su potencia máxima y corriente de cortocircuito reales referidas a condiciones estándar deberán estar comprendidas en el margen del ± 5% de los correspondientes valores nominales de catálogo.

- Será rechazado cualquier módulo que presente defectos de fabricación como roturas o manchas en cualquiera de sus elementos así como falta de alineación en las células o burbujas en el encapsulante.

- Se valorará positivamente una alta eficiencia de las células.

- La estructura del generador se conectará a tierra.

- Por motivos de seguridad y para facilitar el mantenimiento y reparación del generador, se instalarán los elementos necesarios (fusibles, interruptores, etc.) para la desconexión, de forma independiente y en ambos terminales, de cada una de las ramas del resto del generador.
5.4.4.3 Estructura soporte.

- Las estructuras soporte deberán cumplir las especificaciones de este apartado. En caso contrario se deberá incluir en la memoria de solicitud y de diseño o proyecto un apartado justificativo de los puntos objeto de incumplimiento y su aceptación deberá contar con la aprobación expresa del IDAE. En todos los casos se dará cumplimiento a lo obligado por la NBE y demás normas aplicables.

- La estructura soporte de módulos ha de resistir, con los módulos instalados, las sobrecargas del viento y nieve, de acuerdo con lo indicado en la normativa básica de la edificación NBE-AE-88.

- El diseño y la construcción de la estructura y el sistema de fijación de módulos, permitirá las necesarias dilataciones térmicas, sin transmitir cargas que puedan afectar a la integridad de los módulos, siguiendo las indicaciones del fabricante.

- Los puntos de sujeción para el módulo fotovoltaico serán suficientes en número, teniendo en cuenta el área de apoyo y posición relativa, de forma que no se produzcan flexiones en los módulos superiores a las permitidas por el fabricante y los métodos homologados para el modelo de módulo.

- El diseño de la estructura se realizará para la orientación y el ángulo de inclinación especificado para generador el fotovoltaico y teniendo en cuenta la facilidad de montaje y desmontaje, y la posible necesidad de sustituciones de elementos.

- La estructura se protegerá superficialmente contra la acción de los agentes ambientales. La realización de taladros en la estructura se llevará a cabo antes de proceder, en su caso, al galvanizado o protección de la estructura.

- La tornillería realizada en acero inoxidable cumpliendo la Norma MV-106. En el caso de ser la estructura galvanizada se admitirán tornillos galvanizados, exceptuando la sujeción de los módulos a la misma que serán de acero inoxidable.

- Los topes de sujeción de módulos y la propia estructura no arrojará sombra sobre los módulos.

- En el caso de instalaciones integradas en cubierta que hagan las veces de la cubierta del edificio, el diseño de la estructura y la estanqueidad entre módulos se ajustará a las exigencias de las Normas Básicas de la Edificación y a las técnicas usuales en la construcción de cubiertas.
- Se dispondrán las estructuras soporte necesarias para montar los módulos tanto sobre superficie plana (terraza) como integrados sobre tejado cumpliendo lo especificado en el punto 4.1.2. sobre sombras. Se incluirán todos los accesorios y bancadas y/o anclajes.

- La estructura soporte será calculada según Norma MV-103 para soportar cargas extremas debidas a factores climatológicos adversos tales como viento, nieve, etc.

- Si está construida con perfiles de acero laminado conformado en frío cumplirá la Norma MV-102 para garantizar todas sus características mecánicas y de composición química.

- Si es del tipo galvanizada en caliente cumplirá las Normas UNE 37-501 y UNE 37-508, con un espesor mínimo de 80 micras para eliminar las necesidades de mantenimiento y prolongar su vida útil.

5.4.4.4 Inversores.

- Será del tipo conexión a la red eléctrica con una potencia de entrada variable para que sea capaz de extraer en todo momento la máxima potencia que el generador fotovoltaico puede proporcionar a lo largo de cada día.

- Las características básicas de los inversores serán las siguientes:
 - Principio de funcionamiento: Fuente de corriente
 - Autoconmutado
 - Seguimiento automático del punto de máxima potencia del generador.
 - No funcionará en isla o modo aislado.

- Los inversores cumplirán con las directivas comunitarias de Seguridad Eléctrica y compatibilidad electromagnética (Ambas serán certificadas por el fabricante) incorporando protecciones frente a:
 - Cortocircuitos en alterna.
 - Tensión de red fuera de rango.
 - Frecuencia de red fuera de rango.
 - Sobretensiones mediante varistores o similares.
• Perturbaciones presentes en la red como microcortes, pulsos, defectos de ciclos, ausencia y retorno de la red, etc.

- Cada inversor dispondrá de las señalizaciones necesarias para su correcta operación e incorporará los controles automáticos imprescindibles que aseguren su adecuada supervisión y manejo.

Controles.

- Encendido y apagado general del inversor,
- Conexión y desconexión del inversor a la interfaz AC.

Características eléctricas.

- El inversor seguirá entregando potencia a la red de forma continuada en condiciones de irradiancia solar de un 10 % superiores a las CEM. Además soportará picos de un 30 % superior a las CEM durante períodos de hasta 10 segundos.

- Los valores de eficiencia al 25 y 100% de la potencia de salida nominal deberán ser superiores al 85 y 88%, respectivamente (valores medidos incluyendo el transformador de salida, si lo hubiere) para inversores de potencia inferior a 5 kW y del 90 al 92% para inversores mayores de 5 kW.

- El autoconsumo de los equipos (pérdidas en vacío) en “stand-by” o “modo nocturno” deberá ser inferior a un 2% de su potencia de salida nominal.

- El factor de potencia de la potencia generada deberá ser superior a 0,95, entre el 25 y el 100% de la potencia nominal.

- El inversor deberá inyectar en red, para potencias mayores del 10 % de su potencia nominal.

- Los inversores tendrán un grado de protección mínima IP 22 para inversores en el interior de edificios y lugares inaccesibles, IP 32 para inversores en el interior de edificios y lugares accesibles y de IP 65 para inversores instalados a la intemperie. En cualquier caso se cumplirá la legislación vigente.

- Los inversores estarán garantizados para operación en las siguientes condiciones ambientales: entre 0º C y 40 ºC de temperatura y 0% a 85% de humedad relativa.
5.4.4.5 Cableado.

- Los positivos y negativos de cada grupo de módulos se conducirán separados y protegidos de acuerdo a la normativa vigente.

- Los conductores serán de cobre y tendrán la sección adecuada para evitar caídas de tensión y calentamientos. Concretamente, para cualquier condición de trabajo, los conductores de la parte DC deberán tener la sección suficiente para que la caída de tensión sea inferior de 1,5% y los de la parte AC para que la caída de tensión sea inferior del 0,5% teniendo en cuenta en ambos casos como referencia las correspondientes a cajas de conexiones.

- Se incluirá toda la longitud de cable DC y AC. Deberá tener la longitud necesaria para no generar esfuerzos en los diversos elementos ni posibilidad de enganche por el tránsito normal de personas.

- Todo el cableado de continua será de doble aislamiento y adecuados para su uso en intemperie, al aire o enterrado de acuerdo con la norma UNE 21123.

5.4.4.6 Conexión a red.

Todas las instalaciones cumplirán con lo dispuesto en el Real Decreto 1663/2000 (artículos 8 y 9) sobre conexión de instalaciones fotovoltaicas conectadas a la red de baja tensión.

5.4.4.7 Medidas.

Todas las instalaciones cumplirán con lo dispuesto en el Real Decreto 1663/2000 (artículo 10) sobre medidas y facturación de instalaciones fotovoltaicas conectadas a la red de baja tensión.

5.4.4.8 Protecciones.

Todas las instalaciones cumplirán con lo dispuesto en el Real Decreto 1663/2000 (artículo 11) sobre protecciones en instalaciones fotovoltaicas conectadas a la red de baja tensión.
5.4.4.9 Puesta a tierra de las instalaciones fotovoltaicas.

- Todas las instalaciones cumplirán con lo dispuesto en el Real Decreto 1663/2000 (artículo 12) sobre las condiciones de puesta a tierra en instalaciones fotovoltaicas conectadas a la red de baja tensión.

- Cuando el aislamiento galvánico entre la red de distribución de baja tensión y el generador fotovoltaico no se realice mediante un transformador de aislamiento, se explicarán en la memoria de solicitud y de diseño o proyecto los elementos utilizados para garantizar esta condición.

- Todas las masas de la instalación fotovoltaica, tanto de la sección continua como de la alterna, estarán conectados a una única tierra. Esta tierra será independiente de la del neutro de la empresa distribuidora de acuerdo con el Reglamento de Baja Tensión.

5.4.4.10 Armónicos y Compatibilidad Electromagnética.

Todas las instalaciones cumplirán con lo dispuesto en el Real Decreto 1663/2000 (artículo 13) sobre armónicos y compatibilidad electromagnética en instalaciones fotovoltaicas conectadas a la red de baja tensión.

5.4.4.11 Recepción y Pruebas.

- El instalador entregará al usuario un documento – albarán en el que conste el suministro de componentes, materiales y manuales de uso y mantenimiento de la instalación. Este documento será firmado por duplicado por ambas partes, conservando cada una un ejemplar. Los manuales entregados al usuario estarán en alguna de las lenguas oficiales españolas para facilitar su correcta interpretación.

- Antes de la puesta en servicio de todos los elementos principales (módulos, inversores, contadores) éstos deberán haber superado las pruebas de funcionamiento en fábrica, de las que se levantará oportuna acta que se adjuntará con los certificados de calidad, simulando diversos modos de funcionamiento.

- Las pruebas a realizar por el instalador, con independencia de lo indicado con anterioridad en este PCT, serán como mínimo las siguientes:
• Funcionamiento y puesta en marcha de todos los sistemas.

• Pruebas de arranque y paradas en distintos instantes de funcionamiento.

• Pruebas de los elementos y medidas de protección, seguridad y alarma, así como su actuación, con excepción de las pruebas referidas al interruptor automático de la desconexión.

- Determinación de la potencia instalada de acuerdo con el procedimiento descrito en el anexo 1.

- Concluidas las pruebas y la puesta en marcha se pasará a la fase de la Recepción Provisional de la Instalación, no obstante el Acta de Recepción Provisional no se firmará hasta haber comprobado que todos los sistemas y elementos que forman parte del suministro han funcionado correctamente durante un mínimo de 240 horas seguidas, sin interrupciones o paradas causadas por fallos o errores del sistema suministrado, y además se hayan cumplido los siguientes requisitos:

 - Entrega de toda la documentación, requerida en este PCT.

 - Retirada de obra de todo el material sobrante.

 - Limpieza de las zonas ocupadas con transporte de todos los desechos a vertedero.

 - Durante este periodo el suministrador será el único responsable de la operación de los sistemas suministrados, si bien deberá adiestrar al personal de operación.

 - Todos los elementos suministrados, así como la instalación en su conjunto, estarán protegidos frente a defectos de fabricación, instalación o diseño por una garantía de tres años, salvo para los módulos fotovoltaicos que la garantía será de 8 años, contado a partir de la fecha de la firma del acta de recepción provisional.

 - No obstante, el instalador quedará obligado a la reparación de los fallos de funcionamiento que se puedan producir si se apreciase que su origen procede de defectos ocultos de diseño, construcción, materiales o montaje, comprometiéndose a subsanarlos sin cargo alguno. En cualquier caso, deberá atenerse a lo establecido en la legislación vigente en cuanto a vicios ocultos.
5.5 Condiciones técnicas para el movimiento de tierras.

5.5.1 Excavaciones en zanjas.

Descripción.

Excavación estrecha y larga que se hace en un terreno para realizar la cimentación o instalar una conducción subterránea.

Componentes.

Madera para entibaciones, apeos y apuntalamientos.

Condiciones previas.

- Antes de comenzar la excavación de la zanja, será necesario que la Dirección Facultativa haya comprobado el replanteo.

- Se deberá disponer de plantas y secciones acotadas.

- Habrán sido investigadas las servidumbres que pueden ser afectadas por el movimiento de tierras, como redes de agua potable, saneamiento, fosas sépticas, electricidad, telefonía, fibra óptica, calefacción, iluminación, etc., elementos enterrados, líneas aéreas y situación y uso de las vías de comunicación.

- Se estudiarán el corte estratigráfico y las características del terreno a excavar, como tipo de terreno, humedad y consistencia.

- Información de la Dirección General de Patrimonio Artístico y Cultural del Ministerio de Educación y Ciencia en zonas de obligado cumplimiento o en zonas de presumible existencia de restos arqueológicos.

- Reconocimiento de los edificios y construcciones colindantes para valorar posibles riesgos y adoptar, en caso necesario, las precauciones oportunas de entibación, apeo y protección.

- Notificación del movimiento de tierras a la propiedad de las fincas o edificaciones colindantes que puedan ser afectadas por el mismo.
- Tipo, situación, profundidad y dimensiones de cimentaciones próximas que estén a una distancia de la pared del corte igual o menor de 2 veces la profundidad de la zanja o pozo.

- Evaluación de la tensión a compresión que transmitan al terreno las cimentaciones próximas.

- Las zonas a acotar en el trabajo de zanjas no serán menores de 1,00 m. para el tránsito de peatones y de 2,00 m. para vehículos, medidos desde el borde del corte.

- Se protegerán todos los elementos de Servicio Público que puedan ser afectados por el vaciado, como son las bocas de riego, tapas, sumideros de alcantarillado, farolas, árboles, etc..

Ejecución.

- El replanteo se realizará de tal forma que existirán puntos fijos de referencia, tanto de cotas como de nivel, siempre fuera del área de excavación.

- Se llevará en obra un control detallado de las mediciones de la excavación de las zanjas.

- El comienzo de la excavación de zanjas se realizará cuando existan todos los elementos necesarios para su excavación, incluido la madera para una posible entibación.

- La Dirección Facultativa indicará siempre la profundidad de los fondos de la excavación de la zanja, aunque sea distinta a la de Proyecto, siendo su acabado limpio, a nivel o escalonado.

- La Contrata deberá asegurar la estabilidad de los taludes y paredes verticales de todas las excavaciones que realice, aplicando los medios de entibación, apuntalamiento, apeo y protección superficial del terreno, que considere necesario, a fin de impedir desprendimientos, derrumbamientos y deslizamientos que pudieran causar daño a personas o a las obras, aunque tales medios no estuvieran definidos en el Proyecto, o no hubiesen sido ordenados por la Dirección Facultativa.

- La Dirección Facultativa podrá ordenar en cualquier momento la colocación de entibaciones, apuntalamientos, apeos y protecciones superficiales del terreno.
- Se adoptarán por la Contrata todas las medidas necesarias para evitar la entrada del agua, manteniendo libre de la misma la zona de excavación, colocándose ataguías, drenajes, protecciones, cunetas, canaletas y conductos de desagüe que sean necesarios.

- Las aguas superficiales deberán ser desviadas por la Contrata y canalizadas antes de que alcancen los taludes, las paredes y el fondo de la excavación de la zanja.

- El fondo de la zanja deberá quedar libre de tierra, fragmentos de roca, roca alterada, capas de terreno inadecuado o cualquier elemento extraño que pudiera debilitar su resistencia. Se limpiarán las grietas y hendiduras, rellenándose con material compactado o hormigón.

- La separación entre el tajo de la máquina y la entibación no será mayor de vez y media la profundidad de la zanja en ese punto.

- En el caso de terrenos meteorizables o erosionables por viento o lluvia, las zanjas nunca permanecerán abiertas mas de 8 días, sin que sean protegidas o finalizados los trabajos.

- Una vez alcanzada la cota inferior de la excavación de la zanja para cimentación, se hará una revisión general de las edificaciones medianeras, para observar si se han producido desperfectos y tomar las medidas pertinentes.

- Mientras no se efectúe la consolidación definitiva de las paredes y fondos de la zanja, se conservarán las entibaciones, apuntalamientos y apeos que hayan sido necesarios, así como las vallas, cerramientos y demás medidas de protección.

- Los productos resultantes de la excavación de las zanjas, que sean aprovechables para un relleno posterior, se podrán depositar en montones situados a un solo lado de la zanja, y a una separación del borde de la misma de 0,60 m. como mínimo, dejando libres, caminos, aceras, cunetas, acequias y demás pasos y servicios existentes.

Control.

- Cada 20,00 m. o fracción, se hará un control de dimensiones del replanteo, no aceptándose errores superiores al 2,5 %. y variaciones superiores a ± 10 cm., en cuanto a distancias entre ejes

- La distancia de la rasante al nivel del fondo de la zanja, se rechazará cuando supere la cota +/- 0,00.
- El fondo y paredes de la zanja terminada, tendrán las formas y dimensiones exigidas por la Dirección Facultativa, debiendo refinarse hasta conseguir unas diferencias de ± 5 cm., respecto a las superficies teóricas.

- Se rechazará el borde exterior del vaciado cuando existan lentejones o restos de edificaciones.

- Se comprobará la capacidad portante del terreno y su naturaleza con lo especificado en el Proyecto, dejando constancia de los resultados en el Libro de Órdenes.

- Las escuadrías de la madera usada para entibaciones, apuntalamientos y apeos de zanjas, así como las separaciones entre las mismas, serán las que se especifiquen en Proyecto.

Normativa.

-NTE-ADZ/1.976 – Desmontes, zanjas y pozos
-PG-4/1.988 – Obras de carreteras y puentes
-PCT-DGA/1.960
-NORMAS UNE 56501; 56505; 56507; 56508; 56509; 56510; 56520; 56521; 56525; 56526; 56527; 56529; 56535; 56537; 56539; 7183 y 37501.

Seguridad e Higiene.

- Se acotará una zona, no menor de 1,00 m. para el tránsito de peatones, ni menor de 2,00 m. para el paso de vehículos, medidos desde el borde vertical del corte.

- Cuando sea previsible el paso de peatones o el de vehículos junto el borde del corte de la zanja, se dispondrá de vallas móviles que estarán iluminadas cada 10,00 m. con puntos de luz portátil y grado de protección no menor de IP-44.

- El acopio de materiales y tierras, en zanjas de profundidad mayor a 1,30 m., se realizará a una distancia no menor de 2,00 m. del borde del corte de la zanja.

- Existirá un operario fuera de la zanja, siempre que la profundidad de ésta sea mayor de 1,30 m. y haya alguien trabajando en su interior, para poder ayudar en el trabajo y pedir auxilio en caso de emergencia.
- En zanjas de profundidad mayor a 1,30 m., y siempre que lo especifique la Dirección Facultativa, será obligatoria la colocación de entibaciones, sobresaliendo un mínimo de 20 cm. del nivel superficial del terreno.

- Cada día, y antes de iniciar los trabajos, se revisarán las entibaciones, tensando los codos que estén flojos, extremando estas precauciones en tiempo de lluvia, heladas o cuando se interrumpe el trabajo más de un día.

- Se tratará de no dar golpes a las entibaciones durante los trabajos de entibación.

- No se utilizarán las entibaciones como escalera, ni se utilizarán los codos como elementos de carga.

- En los trabajos de entibación, se tendrán en cuenta las distancias entre los operarios, según las herramientas que se empleen.

- Llegado el momento de desentibar las tablas se quitarán de una en una, alcanzando como máximo una altura de 1,00 m., hormigonando a continuación el tramo desentibado para evitar el desplome del terreno, comenzando el desentibado siempre por la parte inferior de la zanja.

- Las zanjas que superen la profundidad de 1,30 m., será necesario usar escaleras para entrada y salida de las mismas de forma que ningún operario esté a una distancia superior a 30,00 m. de una de ellas, estando colocadas desde el fondo de la excavación hasta 1,00 m. por encima de la rasante, estando correctamente arriostrada en sentido transversal.

- Cuando el terreno excavado pueda transmitir enfermedades contagiosas se desinfectará antes de su transporte, no pudiéndose utilizar para préstamo, teniendo el personal equipaje adecuado para su protección.

- Se contará en la obra con una provisión de palancas, cuñas, barras, puntales, tablones, etc., que se reservarán para caso de emergencia, no pudiéndose utilizar para la entibación.

- Se cumplirán además, todas las disposiciones generales sobre Seguridad e Higiene en el Trabajo que existan y todas las Ordenanzas Municipales que sean de aplicación.

Medición y Valoración.
- Las excavaciones para zanjas se abonarán por m³, sobre los perfiles reales del terreno y antes de rellenar.

- No se considerarán los desmoronamientos, o los excesos producidos por desplomes o errores.

- El Contratista podrá presentar a la Dirección Facultativa para su aprobación el presupuesto concreto de las medidas a tomar para evitar los desmoronamientos cuando al comenzar las obras las condiciones del terreno no concuerden con las previstas en el Proyecto.

5.5.2 **Carga.**

Descripción.

Carga de tierras, escombros o material sobrante sobre camión.

Condiciones previas.

- Se ordenarán las circulaciones interiores y exteriores de la obra para el acceso de vehículos, de acuerdo con el Plan de obra por el interior y de acuerdo a las Ordenanzas Municipales para el exterior.

- Se protegerán o desviarán las líneas eléctricas, teniendo en cuenta siempre las distancias de seguridad a las mismas, siendo de 3,00 m. para líneas de voltaje inferior a 57.000 V. y 5,00 m. para las líneas de voltaje superior.

Ejecución.

- Las rampas para el movimiento de camiones y/o máquinas conservarán el talud lateral que exija el terreno con ángulo de inclinación no mayor de 13º, siendo el ancho mínimo de la rampa de 4,50 m., ensanchándose en las curvas, no siendo las pendientes mayores del 12% si es un tramo recto y del 8% si es un tramo curvo, teniendo siempre en cuenta la maniobrabilidad de los vehículos utilizados.

- Antes de salir el camión a la vía pública, se dispondrá de un tramo horizontal de longitud no menor a vez y media la separación entre ejes del vehículo y, como mínimo, de 6,00 m.
Seguridad e Higiene.

- La maquinaria a emplear mantendrá la distancia de seguridad a las líneas aéreas de energía eléctrica.

- Siempre que una máquina inicie un movimiento o dé marcha atrás o no tenga visibilidad, lo hará con una señal acústica y estará auxiliado el conductor por otro operario en el exterior del vehículo, extremándose estas prevenciones cuando el vehículo o máquina cambie de tajo y/o se entrecruen itinerarios, acotándose la zona de acción de cada máquina en su tajo.

- Antes de iniciarse la jornada se verificarán los frenos y mecanismos de seguridad de vehículos y maquinaria.

- Se cumplirá la prohibición de presencia del personal en la proximidad de las máquinas durante el trabajo.

- La salida a la calle de camiones será avisada por persona distinta al conductor, para prevenir a los usuarios de la vía pública.

- Se asegurará la correcta disposición de la carga de tierras en el camión, no cargándolo más de lo admitido, cubriendo la carga con redes o lonas.

- Se establecerá una señalización y ordenación del tráfico de máquinas de forma sencilla y visible.

- La separación entre máquinas que trabajen en un mismo tajo será como mínimo de 30 metros.

- Se evitará el paso de vehículos sobre cables de energía eléctrica, cuando éstos no estén especialmente acondicionados para ello. Cuando no sea posible acondicionarlos y si no se pudiera desviar el tráfico, se colocarán elevados, fuera del alcance de los vehículos, o enterrados y protegidos por canalizaciones resistentes.

- La maniobra de carga no se realizará por encima de la cabina, sino por los laterales o por la parte posterior del camión.

- Durante la operación de carga, el camión tendrá que tener desconectado el contacto, puesto el freno de mano y una marcha corta metida para que impida el deslizamiento eventual.
- Siempre que se efectúe la carga, el conductor estará fuera de la cabina, excepto cuando el camión tenga la cabina reforzada.

- El camión irá siempre provisto de un extintor de incendios y un botiquín de primeros auxilios.

Medición y Valoración.

Se medirán y valorarán m³ de tierras cargadas sobre el camión.

5.5.3 Transporte.

Descripción.

Traslado de tierras, escombros o material sobrante al vertedero.

Condiciones previas.

- Se ordenarán las circulaciones interiores y exteriores de la obra para el acceso de vehículos, de acuerdo con el Plan de obra por el interior y de acuerdo a las Ordenanzas Municipales para el exterior.

- Se protegerán o desviarán las líneas eléctricas, teniendo en cuenta siempre las distancias de seguridad a las mismas, siendo de 3,00 m. para líneas de voltaje inferior a 57.000 V. y 5,00 m. para las líneas de voltaje superior.

Ejecución.

- Las rampas para el movimiento de camiones y/o máquinas conservarán el talud lateral que exija el terreno con ángulo de inclinación no mayor de 13º, siendo el ancho mínimo de la rampa de 4,50 m., ensanchándose en las curvas, no siendo las pendientes mayores del 12% si es un tramo recto y del 8% si es un tramo curvo, teniendo siempre en cuenta la maniobrabilidad de los vehículos utilizados.

- Antes de salir el camión a la vía pública, se dispondrá de un tramo horizontal de longitud no menor a vez y media la separación entre ejes del vehículo y, como mínimo, de 6,00 m.
Seguridad e Higiene.

- La maquinaria a emplear mantendrá la distancia de seguridad a las líneas aéreas de energía eléctrica.

- Siempre que una máquina inicie un movimiento o dé marcha atrás o no tenga visibilidad, lo hará con una señal acústica y estará auxiliado el conductor por otro operario en el exterior del vehículo, extremándose estas prevenciones cuando el vehículo o máquina cambie de tajo y/o se entrecruzen itinerarios, acotándose la zona de acción de cada máquina en su tajo.

- Antes de iniciarse la jornada se verificarán los frenos y mecanismos de seguridad de vehículos y maquinaria.

- Se cumplirá la prohibición de presencia del personal en la proximidad de las máquinas durante el trabajo.

- La salida a la calle de camiones será avisada por persona distinta al conductor, para prevenir a los usuarios de la vía pública.

- Se asegurará la correcta disposición de la carga de tierras en el camión, no cargándolo más de lo admitido, cubriendo la carga con redes o lonas.

- Se establecerá una señalización y ordenación del tráfico de máquinas de forma sencilla y visible.

- La separación entre máquinas que trabajen en un mismo tajo será como mínimo de 30 metros.

- Se evitará el paso de vehículos sobre cables de energía eléctrica, cuando éstos no estén especialmente acondicionados para ello. Cuando no sea posible acondicionarlos y si no se pudiera desviar el tráfico, se colocarán elevados, fuera del alcance de los vehículos, o enterrados y protegidos por canalizaciones resistentes.

- El camión irá siempre provisto de un extintor de incendios y un botiquín de primeros auxilios.

Medición y Valoración.
Se medirán y valorarán los m³ de tierras transportadas sobre el camión, incluyendo el esponjamiento que figure en Proyecto y el canon de vertedero, considerando en el precio la ida y la vuelta.

5.5.4 **Rellenos y compactaciones. Relleno y extendido.**

Descripción.

Echar tierras propias o de préstamo para rellenar una excavación, bien por medios manuales o por medios mecánicos, extendiéndola posteriormente.

Componentes.

Tierras propias procedentes de la excavación o de préstamos autorizados por la Dirección Facultativa.

Condiciones previas.

- Se colocarán puntos fijos de referencia exteriores al perímetro de la explanación, sacando las cotas de nivel y desplazamiento, tanto horizontal como vertical.

- Se solicitará a las compañías suministradoras información sobre las instalaciones que puedan ser afectadas por la explanación, teniendo siempre en cuenta la distancia de seguridad a los tendidos aéreos de conducción de energía eléctrica.

- El solar se cerrará con una valla de altura no inferior a 2,00 m., colocándose a una distancia del borde del vaciado no menor de 1,50 m., poniendo luces rojas en las esquinas del solar y cada 10,00 m. lineales, si la valla dificulta el paso de peatones.

- Cuando entre el cerramiento del solar y el borde del vaciado exista separación suficiente, se acotará con vallas móviles o banderolas hasta una distancia no menor de dos veces la altura del vaciado en ese borde, salvo que por haber realizado previamente estructura de contención, no sea necesario.

Ejecución.

- Si el relleno tuviera que realizarse sobre terreno natural, se realizará en primer lugar el desbroce y limpieza del terreno, se seguirá con la excavación y extracción de material
inadecuado en la profundidad requerida por el Proyecto, escarificándose posteriormente el terreno para conseguir la debida trabazón entre el relleno y el terreno.

- Cuando el relleno se asiente sobre un terreno que tiene presencia de aguas superficiales o subterráneas, se desviarán las primeras y se captarán y conducirán las segundas, antes de comenzar la ejecución.

- Si los terrenos fueran inestables, apareciera turba o arcillas blandas, se asegurará la eliminación de este material o su consolidación.

- El relleno se ejecutará por tongadas sucesivas de 20 cm. de espesor, siendo éste uniforme, y paralelas a la explanada, siendo los materiales de cada tongada de características uniformes.

- Una vez extendida la tongada se procederá a su humectación si es necesario, de forma que el humedecimiento sea uniforme.

- En los casos especiales en que la humedad natural del material sea excesiva, se procederá a su desecación, bien por oreo o por mezcla de materiales secos o sustancias apropiadas.

- El relleno de los trasdós de los muros se realizará cuando éstos tengan la resistencia requerida y no antes de los 21 días si es de hormigón.

- Después de haber llovido no se extenderá una nueva tongada de relleno o terraplén hasta que la última se haya secado, o se escarificará añadiendo la siguiente tongada más seca, hasta conseguir que la humedad final sea la adecuada.

- Si por razones de sequedad hubiera que humedecer una tongada se hará de forma uniforme, sin que existan encharcamientos.

- Se pararán los trabajos de terraplenado cuando la temperatura descienda de 2º C.

- Se procurará evitar el tráfico de vehículos y máquinas sobre tongadas ya compactadas.

 Control.

- Cuando las tongadas sean de 20 cm. de espesor, se rechazarán los terrones mayores de 8 cm. y de 4 cm. cuando las capas de relleno sean de 10 cm.
- En las franjas de borde del relleno, con una anchura de 2,00 m., se fijará un punto cada 100,00 m., tomándose una Muestra para realizar ensayos de Humedad y Densidad.

- En el resto del relleno, que no sea franja de borde, se controlará un lote por cada 5.000 m² de tongada, cogiendo 5 muestras de cada lote, realizándose ensayos de Humedad y Densidad.

- Se comprobarán las cotas de replanteo del eje, colocando una mira cada 20,00 m., poniendo estacas niveladas en mm. En estos puntos se comprobará la anchura y la pendiente transversal.

- Desde los puntos de replanteo se comprobará si aparecen desigualdades de anchura, de rasante o de pendiente transversal, aplicando una regla de 3,00 m. en las zonas en las que pueda haber variaciones no acumulativas entre lecturas de ± 5 cm. y de 3 cm. en las zonas de viales.

- Cada 500 m³ de relleno se realizarán ensayos de Granulometría y de Equivalente de arena, cuando el relleno se realice mediante material filtrante, teniendo que ser los materiales filtrantes a emplear áridos naturales o procedentes de machaqueo y trituración de piedra de machaqueo o grava natural, o áridos artificiales exentos de arcilla y marga.

- El árido tendrá un tamaño máximo de 76 mm., cedazo 80 UNE, siendo el cernido acumulado en el tamiz 0.080 UNE igual o inferior al 5‰.

Normativa.

-NLT-107
-NTE-ADZ/1.976 – Desmontes, zanjas y pozos

Seguridad e Higiene.

- Las rampas para el movimiento de camiones y/o máquinas conservarán el talud lateral que exija el terreno con ángulo de inclinación no mayor de 13º, siendo el ancho mínimo de la rampa de 4,50 m., ensanchándose en las curvas, no siendo las pendientes mayores del 12% si es un tramo recto y del 8% si es un tramo curvo, teniendo siempre en cuenta la maniobrabilidad de los vehículos utilizados.

- La maquinaria a emplear mantendrá la distancia de seguridad a las líneas aéreas de energía eléctrica.
- Siempre que una máquina inicie un movimiento o dé marcha atrás o no tenga visibilidad, lo hará con una señal acústica y estará auxiliado el conductor por otro operario en el exterior del vehículo, extremándose estas prevenciones cuando el vehículo o máquina cambie de tajo y/o se entrecruzen itinerarios, acotándose la zona de acción de cada máquina en su tajo.

- Antes de iniciarse la jornada se verificarán los frenos y mecanismos de seguridad de vehículos y maquinaria.

- No se acumulará el terreno de la excavación, ni otros materiales, junto a bordes de coronación del vaciado, debiendo estar separado de éste una distancia no menor de dos veces la altura del vaciado.

- Se evitará la formación de polvo, siendo necesario regar y utilizar el personal mascarilla o material adecuado.

- Cuando sea totalmente necesario que un vehículo de carga se acerque al borde del vaciado, se colocarán topes de seguridad, comprobándose previamente la resistencia del terreno en ese punto.

- Las maniobras de la maquinaria estarán dirigidas por personas distintas al conductor.

- Se cumplirá la prohibición de presencia del personal en la proximidad de las máquinas durante el trabajo.

- La salida a la calle de camiones será avisada por persona distinta al conductor, para prevenir a los usuarios de la vía pública.

- Se asegurará la correcta disposición de la carga de tierras en el camión, no cargándolo más de lo admitido, cubriendo la carga con redes o lonas.

- Se establecerá la señalización y ordenación del tráfico de máquinas de forma sencilla y visible.

- La separación entre máquinas que trabajen en un mismo tajo será como mínimo de 30 metros.

- Se cumplirán además todas las disposiciones generales sobre Seguridad e Higiene en el Trabajo que existan y todas las Ordenanzas Municipales que sean de aplicación.
Medición y Valoración.

Se medirá y valorará por m³ real de tierras rellenadas y extendidas.

Mantenimiento.

- Se mantendrán protegidos contra la erosión los bordes ataluzados, cuidando que la vegetación plantada no se seque.

- Los bordes ataluzados en su coronación se mantendrán protegidos contra la acumulación de aguas, limpiando los desagües y canaletas cuando estén obstruidos, cortando el agua junto a un talud cuando se produzca una fuga.

- No se concentrarán cargas superiores a 200 Kg/m² junto a la parte superior de los bordes ataluzados, ni se socavará en su pie ni en su coronación.

- La Dirección Facultativa será consultada si aparecieran grietas paralelas al borde del talud.