Ferran Celma Celma

DISSENY I DESENVOLUPAMENT D’UN ELECTROCARDIÒGRAF PORTÀTIL DE BAIX COST SOTA EL SISTEMA OPERATIU ANDROID

TREBALL DE FI DE GRAU

Alfonso Romero Nevado i José Luis Ramírez Falo

Grau d’Enginyeria Electrònica, Industrial i Automàtica
MEMÒRIA DESCRIPTIVA

1. OBJECTE DEL PROJECTE

2. INTRODUCCIÓ

3. ELECTROCARDIÒGRAF
 3.1 DEFINICIÓ, APLICACIÓ I SOLUCIÓ
 3.1.1 El cor
 3.1.2 Què és un electrocardiograma?
 3.1.3 Com es fa un electrocardiograma?
 3.1.4 Derivacions cardíiques de l’electrocardiograma
 3.1.5 Interpretar un electrocardiograma
 3.1.6 Com sabem si són correctes els resultats?
 3.1.7 L’electrocardiògraf
 3.1.8 Solució adoptada
 3.2 DISSENY
 3.2.1 Diagrama Hardware
 3.2.2 Monitor de ritme cardíac
 3.2.3 El Micro-controlador
 3.2.4 Mòdul Bluetooth
 3.2.5 Android
 3.2.6 Filtrat del senyal
 3.2.7 Disseny PCB
 3.2.8 Alimentació del circuit
 3.3 SISTEMA COMPLET
 3.4 RESULTATS
 3.4.1 ECG
 3.4.2 Aplicació Android
 4. DISCUSSIÓ
 5. PRESSUPOST
 5.1 COST TOTAL DEL HARDWARE
 5.2 COST TOTAL DEL SOFTWARE
 5.3 COST TOTAL DELS COMPONENTS
 5.4 COST TOTAL DEL PROJECTE
6. CONCLUSIÓ ... 36
7. ANNEXES .. 37
 7.1 CODI ARDUINO .. 37
 7.2 CODI APLICACIÓ ANDROID ... 45
 7.3 CODI MATLAB ... 47
 7.4 FILTRAT DEL SENYAL ... 48
 7.5 UN ELECTROCARDIÒGRAF REAL ... 52
REFERÈNCIES ... 55
1. MEMÒRIA DESCRIPTIVA

1.1 OBJECTE DEL PROJECTE

La primera part d’aquest projecte té com objectiu proposar una solució per l’adquisició, el tractament i el processament del senyal elèctric cardíac en un dispositiu portàtil de dimensions reduïdes i de baix cost, que permeti l’ús a usuaris en un entorn domèstic.

La segona part del projecte es centra en la representació de l’activitat cardíaca. Amb aquest propòsit, s’utilitzarà un dispositiu mòbil governat pel sistema operatiu Android, que utilitzarà el Bluetooth per la comunicació amb el dispositiu encarregat de l’adquisició, transmissió i representació del senyal.

En definitiva, en aquest projecte es busca integrar sistemes elèctronics, automàtics, de telecomunicació i plataformes software per a dispositius mòbils amb l’única intenció d’aprendre i no de millorar sistemes ja existents.

1.2 ABAST

En primer lloc, es dissenya un electrocardiógraf d’una sola derivació que sigui capaç d’adquirir i processar el senyal provinent de l’activitat cardíaca, utilitzant diferents etapes: Amplificació, filtrat, transmissió de dades, etc. Tant per processar el senyal com per filtrar-lo, s’utilitzarà un microcontrolador que al mateix temps, enviarà el senyal elèctric al dispositiu mòbil mitjançant un mòdul Bluetooth.

En segon lloc, es desenvolupa una aplicació que funcioni sota el sistema operatiu Android. Aquesta aplicació es crearà mitjançant l’entorn de programació App Inventor 2 i tindrà com objectiu establir una comunicació amb el dispositiu d’adquisició i processament de l’activitat cardíaca i enregistrar el senyal provinent del mòdul Bluetooth, així com altres paràmetres relacionats amb aquest senyal.
2. INTRODUCCIÓ
Totes les substàncies estan formades per molècules o agrupacions d’àtoms. Un àtom està format per protons, electrons i neutrons, que són càrregues positives, negatives i neutres respectivament. Segons quin sigui el nombre de protons, electrons i neutrons que té un àtom, pot carregar-se positivament o negativament. Si té més protons que electrons està carregat positivament sent un ió positiu o catió, i si té més electrons que protons està carregat negativament sent un ió negatiu o anió.[1]

L’acumulació de càrregues positives i negatives, fa que aparegui un camp elèctric i també una energia potencial. L’energia potencial es diferent segons la càrrega que hi ha en un lloc determinat, de manera que entre dos punts diferents pot aparèixer una diferència de potencial. Si connectem aquests dos punts amb un conductor elèctric, podem aprofitar aquesta diferència de potencial i els electrons flueixen pel conductor d’un lloc a l’altre generant un corrent elèctric.

Aquest fenomen és el causant de la bioelectricitat: Els éssers vius també estem formats per àtoms, de manera que no tenim el mateix potencial a totes les parts del cos i es generen corrents elèctrics en el nostre interior. A més a més, els músculs i nervis, a causa del seu potencial d’acció, pel mateix fenomen, també generen corrents elèctrics. Aquests corrents elèctrics que flueixen pel nostre cos, poden ser aprofitats, per generar corrents a l’exterior.

Per obtenir aquests corrents elèctrics a l’exterior utilitzem els elèctrodes. Els elèctrodes són plaques utilitzades com un conductor encarregat de realitzar contacte amb algun sector d’un circuit que no és de tipus metàl·lic. Per tant, té com a finalitat el transport del corrent elèctric. D’elèctrodes n’hi ha de diferents tipus, bio-electrònics, per a afins mèdics, per a fisioteràpia, per la galvanoplàstia, per a soldadura, etc. Nosaltres ens quedarem amb els elèctrodes bio-electrònics.[1]

Els elèctrodes bio-electrònics tenen la funció de traspassar els corrents iònics del nostre cos en forma de corrent elèctric. Mitjançant aquests elèctrodes podem generar un corrent elèctric extern a causa de l’acció d’un múscul, com pot ser el cor.

Amb els components i circuits corresponents, podem aprofitar el corrent elèctric que circula per l’elèctrode per generar senyals analògics o digitals, que al mateix temps poden ser enviats a un microcontrolador, fent-lo servir per realitzar funcions molt diverses.
3. ELECTROCARDIÒGRAF

3.1 DEFICIÈNCI, APLICACIÓ I SOLUCIÓ

3.1.1 El cor

Abans de començar a parlar sobre que és un electrocardiograma, com es fa, com s’interpreta, etc. Hem de parlar del cor, de les seves parts i quina funció fa cada part.

El cor és un dels músculs més complexos anatònicament i serveix per impulsar la sang arreu del sistema circulatori. Els seus moviments són la sístole ventricular, quan es contrau, i la diàstole, quan es relaxa. En cada batec o cada cicle, la sang s’envia a través de les artèries i torna per mitjà de les venes.[2]

A la imatge de sota es poden apreciar les parts més importants del cor: [3]
Vàlvula Pulmonar: Vàlvula cardíaca que es troba entre el ventricle dret i l’artèria pulmonar.

Aurícula Dreta: És una de les quatre cambres del cor, rep la sang desoxigenada de les venes i la bombeja cap al ventricle dret per mitjà de la vàlvula tricúspide.

Vàlvula Tricúspide: Vàlvula que comunica l’aurícula dreta amb el ventricle dret.

Ventricle Dret: És una de les quatre cambres del cor. Rep la sang de l’aurícula dreta i la bombeja cap als pulmons.

Envà del cor: És una mena de paret que separa el ventricle dret de l’esquerre i l’aurícula dreta de la de l’esquerra.

Ventricle esquerre: Rep la sang des de l’aurícula esquerra a través de la vàlvula mitral. Bombeja la sang a la vena aorta a través de la vàlvula aòrtica.

Vàlvula mitral: Vàlvula que connecta el ventricle esquerre amb l’aurícula esquerra.

Aurícula Esquerra: Rep sang desoxigenada de les venes i la bombeja al ventricle esquerre.

Vàlvula Aòrtica: Vàlvula cardíaca que comunica el ventricle esquerre i l’aorta.

Endocardi: Membrana que recobreix internament les cavitats del cor.

Miocardi: És el teixit muscular del cor. S’encarrega de bombejar la sang pel sistema circulatori.

Epicardi: És la capa externa del teixit del cor.

Pericardi: Membrana fibroserosa de dos capes que protegeix el cor de les estructures veïnes.
3.1.2 Què és un electrocardiograma?

Un electrocardiograma (ECG) és un examen que registra la activitat elèctrica del cor i en fa una representació gràfica. Aquesta representació gràfica segueix una forma característica, amb uns màxims i mínims d’amplitud de voltatge i uns intervals de temps que han de tenir un marge de valor adequat. Així podem analitzar, observar i comprovar que l’activitat del cor és correcta i que no hi ha alteracions del ritme cardíac.

Abans de parlar de la forma que segueix un electrocardiograma, hem de saber com es desenvolupa un cicle cardíac, i com el cor realitza aquesta activitat elèctrica:

El cor està compost per dos aurícoles i dos ventricles, esquerres i drets. El cicle cardíac comença a l’aurícula dreta. Aquesta rep la sang venosa del cos i l’envia al ventricle dret, on es bombeja als pulmons i s’oxigena. Des dels pulmons, la sang, va a parar a l’aurícula esquerra, des d’on es deriva al ventricle esquerre, que s’encarrega de bombejar-la per tot el cos per mitjà de les artèries. El cicle s’acaba quan la sang bombejada torna a l’aurícula dreta per mitjà de les venes.

Ficant els elèctrodes necessaris al lloc adequat, podem obtenir els senyals elèctrics cardíacs generats a causa d’aquesta activitat i en podem fer la seva representació gràfica, és a dir, podem obtenir un electrocardiograma (ECG).

3.1.3 Com es fa un electrocardiograma?

Per fer correctament un electrocardiograma es necessari col·locar els elèctrodes al seu lloc corresponent per a poder captar, des de diferents perspectives, els senyals elèctrics que genera el cor. Amb tots els senyals podem obtenir l’electrocardiograma (ECG).

Per realitzar un electrocardiograma de 12 derivacions necessitem col·locar 10 elèctrodes per diferents parts del cos. És imprescindible saber amb molta precisió on ha d’estar ubicat cada un, ja que un canvi de lloc d’algun pot provocar des de petites variacions fins a greus errors diagnòstics a l’hora d’interpretar-lo.

Els elèctrodes necessaris estan dividits en dos grups, els elèctrodes perifèrics i els elèctrodes precordials:

- Els elèctrodes perifèrics són quatre i cada un va a una extremitat del cos. Podem diferenciar el RA (Right Arm), que va col·locat a la cara inferior del canell del braç dret; el LA (Left Arm), que va col·locat a la cara inferior del canell del braç esquerre; el RL (Right Leg), col·locat a la cama dreta; i el LL (Left Leg), col·locat a la cama esquerra.
Elèctrodes precordials són sis i van col·locats a la regió precordial. En diferenciam l’V1, col·locat al quart espai intercostal, al costat dret del estèrnum; l’V2, també situat al quart espai intercostal però al costat esquerre del estèrnum; l’V3, situat a mitja distància del V2 y V4; l’V4, situat al cinquè espai intercostal a l’altura de la línia imaginaria vertical que baixa des de la meitat de la clavícula (línia medio-clavicular); l’V5, col·locat a la mateixa línia horitzontal que l’V4, però a la línia vertical imaginaria que baixa des del punt mig entre la meitat de la clavícula i el seu extrem lateral (línia axil·lar anterior); i l’V6, situat a la mateixa línia horitzontal que els elèctrodes V4 i V5, però a la línia vertical imaginaria que baixa des del centre de la axil·la (línia medioaxilar). [5]
3.1.4 *Derivacions cardíques de l’electrocardiograma*

Les derivacions cardíques d’un electrocardiograma són el registre de la diferència de potencials elèctrics entre dos punts, ja sigui entre dos elèctrodes, o entre un punt virtual y un elèctrode. Cada derivació és una representació de l’impuls elèctric cardíac, vist des de punts de vista diferents.

Les derivacions d’un electrocardiograma estan classificades en tres grups: les derivacions bipolars estàndards de l’electrocardiograma (D1, D2 i D3 o I, II i III), les derivacions monopolars augmentades (aVR, aVL, aVF) i les derivacions precordials, o derivacions del pla horitzontal (V1, V2, V3, V4, V5 i V6). [6]

Derivacions bipolars estàndard

Aquestes són les derivacions clàssiques de l’electrocardiograma, i enregistren la diferència de potencial entre dos elèctrodes ubicats en extremitats diferents: [6]

- **D1 o I**: És la diferència de potencial entre l’elèctrode del braç dret (RA) i el del braç esquerre (LA).
- **D2 o II**: És la diferència de potencial entre l’elèctrode del braç dret (RA) i el de la cama esquerra (LL)
- **D3 o III**: És la diferència de potencial entre l’elèctrode del braç esquerre (LA) i el de la cama esquerra (LL).

Les tres derivacions bipolars formen el que es denomina el Triangle d’Einthoven (Inventor de l’electrocardiograma). Del Triangle d’Einthoven obtenim la llei d’Einthoven, que ens diu que $D2 = D1 + D3$. A Partir dels tres vèrtex del Triangle podem trobar el baricentre, que és un punt imaginari V, anomenat Terminal Central de Wilson i que està localitzat al centre del pit, per dalt del cor. [6]

![Figura 4: Triangle de Einthoven](image)
Derivacions monopolars augmentades

Les derivacions monopolars augmentades enregistren la diferència de potencial entre el punt teòric V (Terminal central de Wilson), amb valor teòric de 0, i cadascuna de les extremitats. D’aquesta manera podem obtenir el potencial absolut de cadascun dels elèctrodes de cada extremitat. Són derivacions monopolars perquè, encara que tenen dos pols, el negatiu és en el punt V, i com ja hem dit, està compost per les senyals procedents de diferents elèctrodes: [6]

- aVR (augmented vector right): És el potencial absolut del braç dret.
- aVL (augmented vector left): És el potencial absolut del braç esquerre.
- aVF (augmented vector foot): És el potencial absolut de la cama esquerra.

Derivacions precordials

Les derivacions precordials són derivacions monopolars que enregistren el potencial absolut del punt on està col·locat l’elèctrode. Aquestes derivacions són molt importants a l’hora de precisar alteracions del ventricle esquerre, sobre tot de les paret anterior i posterior.

Hi ha sis derivacions precordials, i s’anomenen amb una V majúscula seguida d’un número de l’1 al 6: [6]

- V1: Aquesta derivació enregistra potencials de les aurícules, de part de l’envà del cor i de la paret interior del ventricle dret.
- V2: La derivació V2 enregistra potencials de la paret ventricular dreta.
- V3: Aquesta derivació és la derivació de transició entre potencials esquerres i drets del electrocardiograma, ja que l’elèctrode està sobre l’envà interventricular.
- V4: Aquesta derivació està sobre l’àpex del ventricle esquerre. La doblària és més gran.
- V5 i V6: Tant la derivació V5 com la V6 estan situades sobre el miocardi del ventricle esquerre. La doblària és menor al de V4.

En resum, hi ha 12 derivacions. Degut a que cada una enregistra informació d’una part concreta del cor, les podem classificar de la següent forma: [6]

- Derivacions inferiors: Són la derivació III i la aVF. Enregistren l’activitat elèctrica des del punt superior de la paret del cor.
- Derivacions laterals: Les derivacions laterals són les derivacions I, II, aVL, V5 i V6. Enregistren l’activitat elèctrica des del punt superior de la paret lateral del cor, que ve a ser el mateix que la paret lateral del ventricle esquerre.
• Derivacions anteriors: Són les derivacions de V1 a v6. Enregistren l’activitat elèctrica de la paret anterior del cor o la paret frontal del ventricle esquerre.
• Com podem observar, no hem nombrat aVR en cap dels tipus de derivacions, això és perquè la majoria de vegades no s’utilitza per donar informació de diagnosi. No obstant, si que indica si els elèctrodes s’han col·locat correctament al pacient.

3.1.5 Interpretar un electrocardiograma
Ja hem vist les diferents parts del cor, què és un electrocardiograma, com es realitza, com es col·loquen els elèctrodes al pacient i quines derivacions apareixen. Ara, hem de saber quines són les diferents parts del senyal d’un electrocardiograma, i com s’interpreten.

El traçat típic d’un electrocardiograma és el següent:

![Figura 5: Traçat d'un electrocardiograma](image)

En un cicle cardíac, podem diferenciar aquestes parts: L’ona P, el segment PR, el complex QRS, el segment ST, l’ona T i l’ona U. Cada part ens aporta una informació i ha de tenir un marge de valor d’amplitud i de temps més o menys constants. L’ona U normalment és invisible.

Aquestes diferents parts corresponen a canvis elèctrics, no els hem de confondre amb els esdeveniments mecànics, es a dir, amb la contracció i relaxació de les càmeres del cor. La contracció ventricular (sístole) comença poc després de que hagi començat el complex QRS, i acaba abans de que acabi l’ona T. La relaxació ventricular (diàstole) comença abans de que s’acabi la ona T i acaba després d’iniciar-se l’ona P. [7]

Podem observar que apareixen ones, segments i intervals. Les ones són deflexions, és a dir moviments o canvis d’amplitud de tensió cap amunt o cap avall. Els segments són
líynes isoelèctriques, és a dir, no hi ha activitat elèctrica, o almenys no la detectem. Els intervals són el conjunt de ones i segments.

Ona P

L’ona P és el senyal elèctic que correspon a la despolarització auricular. Representa la superposició de la despolarització de la aurícula dreta, a la part inicial de l’ona P, i de l’esquerra, al final de l’ona P. [7]

Complex QRS

El complex QRS correspon al corrent elèctic causat per la contracció dels ventricles dret i esquerre (Despolarització ventricular). El senyal és molt més potent que la resta, ja que en aquesta fase intervé més massa muscular, d’aquesta manera la deflexió és molt més gran. Està format per les ones Q, R i S: [7]

L’ona Q és una ona negativa, està abans de l’ona R i en realitat no ens proporciona cap informació necessària.

L’ona R representa la única deflexió positiva del complex QRS, i la més gran de l’electrocardiograma.

L’ona S, per si sola, tampoc ens proporciona molta informació, però és l’ona negativa que segueix l’ona R.

Les ones R i S indiquen la contracció del miocardí.

Ona T

L’ona T és el senyal elèctic que correspon a la repolarització dels ventricles. [7]

Interval PR

Va des del principi de l’ona P fins a l’ona Q. S’anomena Interval PR, perquè molts cops l’ona Q no es pot apreciar i l’interval PR s’acaba a l’ona R. Aquest interval correspon a la diàstole. [7]

Interval QT

Va des del principi del complex QRS i s’acaba al final de l’ona T. L’interval QT correspon a la sístole. [7]

Segment PR

És la despolarització del node aurica-ventricular però que no es representa a l’electrocardiograma i és un silenci elèctic. [7]
Segment ST

És la despolarització completa del ventricle, però igual que el segment PR, no es representa a l’electrocardiograma, i és un silenci elèctric. [7]

3.1.6 Com sabem si són correctes els resultats?

Ara que ja sabem quines parts formen un electrocardiograma, és important saber quin comportament ha de tenir cada part, quina ha de ser l’amplitud de les ones, quina ha de ser la seva durada i quina forma han de seguir per a que el cor functioni correctament: [8]

Ona P

Pel que fa a l’ona P, no ha de superar els 0.25 mV d’amplitud, si els supera pot ser a causa d’un augment de l’aurícula dreta. La seva durada no ha de superar els 0.11 segons per un adult i els 0.07-0.09 segons per un nen, en cas de superar aquest temps, podria ser causat per un augment de l’aurícula dreta i de l’esquerra. L’ona P ha de tenir forma rodona, amb les rampes poc marcades, simètriques, suaus, de cúspide de roma i de forma ovalada.

Complex QRS

 Una anomalia al complex QRS pot indicar bloqueig de rama, taquicàrdia d’origen ventricular, hipertrofia ventricular i pericarditis (Si el complex és més petit del compte). La duració ha de ser de 60 a 100 ms.

Quan a un electrocardiograma apareix l’ona Q (Hi ha vegades que no es pot apreciar). Representa el petit corrent horitzontal del potencial d’acció que viatja a través de l’envà interventricular del cor. Si aquestes ones són molt amples i profundes no tenen origen a l’envà, sinó que ens indiquen un infart de miocardí.

Ona T

Pel que fa a l’ona T, hem de saber que a la majoria de derivacions és positiva, encara que en derivacions com la aVR o V1, es normal que estiguï invertida. Però si en alguna derivació la trobem invertida i no ho ha d’estar, això pot ser un símptoma d’infermetat.

La duració de l’ona T ha de ser més o menys de 0.20 segons i la seva amplitud de tensió ha d’estar entre els 0.2 i 0.3 mV.

Interval QT

Ja hem dit que l’interval QT correspon a la despolarització i repolarització ventricular, i que comença al principi del complex QRS i acaba al final de la ona T. La duració d’aquest interval varia segons la freqüència cardíaca i s’han desenvolupat diferents factors de correcció. L’interval QT i el QT corregit són molt importants a l’hora de la diagnosis del síndrome del QT llarg o síndrome del QT curt. La durada de l’interval QT ha de ser d’entre 0.30 i 0.44 en homes i 0.45 com a màxim en dones.
Interval PR

Com ja hem dit l’interval PR va des del principi de la ona P fins al principi del complex QRS. Aquest interval representa la despolarització auricular i el retràs fisiològic del estímul al seu pas pel node aurica-ventricular.

La seva duració ha de ser de 120 a 200 ms.

Segment ST

Pel que fa al segment ST, no ha de superar desplaçaments, positius o negatius, que excedeixin 1 o 2 mil·límetres mesurats a 60 o 80 ms del punt J. Si el segment supera aquests valors, pot ser un indicador de trastorns isquèmics del miocardí.

Segment PR

La duració del segment PR ha de ser d’entre 120 i 220 ms.

3.1.7 L’electrocardiògraf

L’electrocardiògraf és un instrument mèdic i electrònic que capta, filtra i amplifica els impulsos elèctrics del cor. Per fer-lo, es connecten electrodos a les extremitats superiors i inferiors i com a resultat s’obté l’electrocardiograma.

L’electrocardiògraf va ser inventat per Willem Einthoven l’any 1901. El primer prototip capaç de representar l’activitat elèctrica del cor, era bàsicament un galvanòmetre de corda i de dimensions molt grans que pesava 250 kg. [9]

Les dimensions i el pes del primer electrocardiògraf eren tant grans que es va tenir que desenvolupar un sistema per poder connectar-lo des del laboratori on estava fins l’Hospital de Leyden. Aquest sistema consistia en la connexió de l’electrocardiògraf amb l’hospital mitjançant cables subterrans, aprofitant la xarxa telefònica que ja hi havia instal·lada. [9] D’aquesta manera, els pacients eren examinats a l’hospital i el registre es podia veure al laboratori.

Gràcies a aquest instrument, Einthoven va poder obtenir els primers electrocardiogrames i va realitzar diferents experiments fins que finalment, l’any 1906, va escriure l’article “Le telecardiogramme”, on es definien totes les bases de la electrocardiografia i entre altres coses, es va introduir la nomenclatura P, QRS, S i T. [9]

Cinc anys després, a l’any 1911, la companyia Cambridge Scientific Instruments va fabricar el galvanòmetre de Einthoven per primer cop. [9]

Tot i que amb l’instrument inventat per Einthoven era possible representar l’activitat cardíaca, les dimensions i el pes feien que la seva pràctica fos molt difícil. És per això que es van seguir fent proves i experiments per millorar-lo. D’aquesta manera, l’any 1928 la companyia Frank Sanborn va crear el primer electrocardiógraf, reduint el pes a 25 kg i utilitzant una bateria de 6 V per alimentar-lo. [9]
Amb els anys, el disseny s’ha anat perfeccionant fins obtenir els petits y lleugers electrocardiógrafs que tenim avui en dia.

3.1.8 Solució adoptada

El senyal elèctric que genera el cor té una amplitud d’entre 0.5 mV i 4 mV i la seva freqüència està entre els 0.01 Hz i els 250 Hz. Per poder monitoritzar aquest senyal correctament es necessari amplificar-lo, filtrar-lo i processar-ne les dades adequadament. Per fer-ho utilitzarem variedes etapes i components, que faran possible la correcta visualització del Electrocardiograma. Aquestes són: El monitor de ritme cardíac, el microcontrolador, un filtre passabanda, el mòdul Bluetooth i el dispositiu Android.

El senyal elèctric provinent de l’activitat cardíaca serà enregistrat mitjançant elèctrodes, connectats directament al monitor de ritme cardíac AD8232.

Gràcies al monitor de ritme cardíac serà possible amplificar el senyal elèctric provinent dels elèctrodes, ja que té incorporat un amplificador d’instrumentació amb un alt CMRR. A més a més, serveirà per eliminar el soroll en mode comú. D’aquesta manera, a la sortida de l’AD8232 obtindrem el senyal elèctric cardíac amplificat per cent.

Un cop amplificat el senyal, mitjançant el microcontrolador s’implementarà un filtre digital passabanda, per eliminar el rang de freqüències no desitjades que es troben fora del rang 0.01 Hz i 250 Hz.

Un cop el senyal hagi estat tractat i processat correctament pel microcontrolador, s’enviarà al dispositiu Android mitjançant el mòdul Bluetooth HC-05.

Per a dur a terme la comunicació amb el dispositiu, així com per representar l’electrocardiograma i els diferents resultats, desenvoluparem una aplicació sota el sistema operatiu Android.

3.2 DISSENY

3.2.1 Diagrama Hardware

El diagrama de la figura mostra com opera el dispositiu. Les dades arriben des del pacient fins el monitor de ritme cardíac mitjançant els elèctrodes. El microcontrolador és el component de control principal ja que governa totes les operacions, tant de processament com de comunicació. Mitjançant el mòdul Bluetooth, les dades s’envien al dispositiu Android, on es genera l’electrocardiograma.
3.2.2 **Monitor de ritme cardíac**

El monitor de ritme cardíac utilitzat és l’AD8232, dins la placa desenvolupada per Sparkfun. L’objectiu d’aquest component és extreure, amplificar i filtrar el senyal elèctric provinent dels elèctrodes. Disposa d’un connector jack on es connecten els elèctrodes.

A la taula es mostren les entrades i sortides d’aquest dispositive: [10]

<table>
<thead>
<tr>
<th>PINs</th>
<th>Funció</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>Connexió a terra</td>
</tr>
<tr>
<td>3.3V</td>
<td>Alimentació a 3.3 V</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>Sortida</td>
</tr>
<tr>
<td>LO-</td>
<td>No utilitzat</td>
</tr>
<tr>
<td>LO+</td>
<td>No utilitzat</td>
</tr>
<tr>
<td>SDN</td>
<td>No utilitzat</td>
</tr>
<tr>
<td>RA</td>
<td>Braç dret</td>
</tr>
<tr>
<td>LA</td>
<td>Braç esquerre</td>
</tr>
<tr>
<td>RL</td>
<td>Cama dreta</td>
</tr>
</tbody>
</table>

Taula 1: I/O del dispositive AD8232

A la figura següent es pot observar l’esquemàtic d’aquest component: [11]
3.2.3 El Micro-controlador

El microcontrolador utilitzat és l’ATmega32u4 integrat a la placa Arduino Micro, desenvolupada per Arduino. S’utilitza aquest component perquè és el que més s’adqua a les necessitats del projecte, ja que es pot alimentar fàcilment amb una pila de 9 V mitjançant el pin Vin, pot proporcionar 3.3 V i 5 V per alimentar els altres components del prototip i perquè és de dimensions bastant reduïdes, cosa que fa que el nostre prototip sigui més portable. Les seves característiques bàsiques són les següents: És un microcontrolador de 8 bits de dimensió 48x18 mm, amb 32 kB de memòria programable flash, 2.5 kB de SRAM, convertidor A/D de 10 bits, franja operativa de voltatge de 2.7 V fins 5.5 V, 13 I/O digitals, de les quals 8 tenen PWM, 5 I/O analògiques i opera a una velocitat de de 16 MHz. [12]

A la figura següent és pot observar el Pin out d’aquest component: [13]

![Figura 8: Pin out del component Arduino Micro](image)

Les funcions del microcontrolador en aquest projecte són les següents:

- Rep el senyal elèctric que genera el cor i que arriba a través dels elèctrodes.
- Filtra i amplifica aquest senyal per obtenir-lo de forma nítida i sense interferències.
- Calcula diversos paràmetres que donen informació sobre l’activitat cardiovascular. N’és un exemple la freqüència cardíaca.
- Mitjançant el mòdul Bluetooth HC-05, explicat a continuació, envia les dades al dispositiu Android.

A la taula següent es pot observar els pins necessaris per al correcte funcionament del nostre prototip: [12]

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESCRIPCIÓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>És el PIN d’alimentació del microcontrolador</td>
</tr>
<tr>
<td>GND</td>
<td>És el PIN que s’ha de connectar a Terra</td>
</tr>
</tbody>
</table>
És el PIN digital des d’on s’envien les dades mitjançant comunicació serial. (Connexió amb el mòdul Bluetooth).

És el PIN digital on es reben les dades mitjançant comunicació serial. (Connexió amb el mòdul Bluetooth).

PIN que serveix d’alimentació per al mòdul Bluetooth.

Entrada analògica d’on arriben les dades provinents del monitor de ritme cardíac (AD8232).

PIN que serveix d’alimentació per al monitor de ritme cardíac (AD8232).

Taula 2: Pins utilitzats del microcontrolador

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESCRIPCIÓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>És el PIN d’alimentació del mòdul. S’ha de connectar a 5 V.</td>
</tr>
</tbody>
</table>

3.2.4 Mòdul Bluetooth

El mòdul Bluetooth utilitzat és l’HC-05 ja que ofereix una millor relació de preu y característiques. La diferència més pronunciada respecte altre mòduls com poden ser l’HC-06, és que pot funcionar com mestre i com esclau, de manera que, entre d’altres coses, es capaç de generar connexions cap a altres dispositius Bluetooth.

Les seves característiques principals són les següents: [14] S’alimenta a 5 V, té interfase UART amb velocitat de modulació programable, que pot suportar taxes de velocitat de 9600, 19200, 38400, 57600, 115200, 230400, 460800 BAUDS. Envia 8 bits de dades en cada transmissió, amb un bit de parada i sense paritat, és totalment programable mitjançant comandaments AT, funciona a molt baix consum, disposa d’antena PCB integrada i pot tornar a connectar-se automàticament després de 30 minuts, si es desconecta a causa de perdua de connexió.

A la figura següent podem diferenciar els pins dels que disposa el mòdul Bluetooth: [15]

Figura 9: Mòdul Bluetooth HC-05

L’explicació de la funció de cada PIN del component apareix a la Taula següent:

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESCRIPCIÓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>És el PIN d’alimentació del mòdul. S’ha de connectar a 5 V.</td>
</tr>
<tr>
<td>GND</td>
<td>És el PIN que s’ha de connectar a Terra</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>TXD</td>
<td>És el PIN des d’on s’envien les dades mitjançant comunicació serial. (UART_TXD).</td>
</tr>
<tr>
<td>RXD</td>
<td>És el PIN on es reben les dades mitjançant comunicació serial. (UART_RXD).</td>
</tr>
<tr>
<td>STATE</td>
<td>PIN que indica quin és l’estat del mòdul (Desconnectat, emparellat, connectat, AT mode, etc.).</td>
</tr>
<tr>
<td>KEY</td>
<td>És el PIN utilitzat per configurar el mòdul mitjançant comandaments AT.</td>
</tr>
</tbody>
</table>

| **Taula 3: Pin Out del mòdul bluetooth HC-05** |

En aquest projecte, el mòdul Bluetooth és utilitzat per transferir dades des del microcontrolador fins al dispositiu Android. Les dades que envia son les procedents de l’activitat elèctrica del cor. D’aquesta manera es possible representar l’ECG, així com indicar paràmetres importants com la freqüència cardíaca.

Connexió amb el microcontrolador

Per enviar dades correctament mitjançant el microcontrolador i l’HC-05, es necessari alimentar el mòdul amb 5 V, connectant el PIN GND a terra i el PIN 5 V a l’alimentació. Posteriorment s’ha de connectar el PIN de transmissió TXD i el de recepció RXD als PIN oposats del microcontrolador. (El TXD del mòdul amb el RXD del microcontrolador i el RXD del mòdul amb el TDX del microcontrolador).

Configuració de l’HC-05

El mòdul Bluetooth pot treballar en base a diferents configuracions, per exemple a diferents velocitats de transmissió, amb diferents modes de treball (Mestre – Esclau), el seu nom o ID pot ser canviat, la clau d’autentificació pot ser modificada, etc.

L’HC-05, ve configurat de fabrica amb una velocitat de transmissió de 9600 BAUDS, 8 bits de informació, un de parada, sense paritat, amb l’ID HC-05, contrasenya 1234. Posant el PIN key a nivell alt i sense emparellar el mòdul amb cap dispositiu, podem enviar comandaments AT des del microcontrolador per configurar-lo. A continuació apareixen alguns exemples de configuració: [16]

- **Test del dispositiu**: Si s’envia “AT” rebem “OK”.

- **Canvi de la velocitat de transmissió**: Si s’envia “AT+BAUD6” rebem “OK38400”.

1---------1200 bps
Canvi del nom ID: Si enviam “AT+NAMEnname” rebatej “OKname”.

Canvi de mode operatiu: Si s’envia “AT+ROLE0” configura el mòdul com esclau. Si s’envia “AT+ROLE1” configura el mòdul com mestre.

Reset del dispositiu: Si s’envia “AT+RESET” es reinicia el dispositiu.

3.2.5 Android
Android és un conjunt de programari per a telèfons mòbils que inclou un sistema operatiu, programari, intermediari i aplicacions. En aquest projecte es el sistema operatiu des d’on es governarà el dispositiu i farà possible la representació de l’electrocardiograma.

Es necessari desenvolupar una aplicació que sigui capaç d’establir una comunicació amb el microcontrolador i el mòdul Bluetooth, per fer-ho utilitzarem App Inventor 2, l’entorn de desenvolupament integrat per al sistema operatiu Android.

Mitjançant aquest IDE es possible desenvolupar una aplicació que rebi les dades corresponents a l’activitat elèctrica del cor enviades pel mòdul Bluetooth HC-05 i generi un fitxer csv per representar l’electrocardiograma.

3.2.6 Filtrat del senyal
Tots els senyals elèctrics tenen interferències i variacions no desitjades que poden modificar la seva amplitud o la seva fase. Aquestes interferències fan que el senyal no es pugui representar tal i com es, per això necessitem un filtre que discrimini una determinada freqüència o gama de freqüències.

Un filtre, per tant és l’element encarregat de rebutjar aquestes freqüències no desitjades, ara bé, existeixen diferents tipus de filtres segons la seva resposta de freqüència:

Filtre passa baixos: Aquest tipus de filtre es caracteritza per deixar passar les freqüències més baixes i eliminar o atenuar les freqüències més altes.

Filtre passa alts: Aquest tipus de filtre, al contrari que el filtre esmenat anteriorment, es caracteritza per deixar passar les freqüències més altes i atenuar les freqüències més baixes.

Filtre passa banda: Combinant els dos filtres anteriors, obtenim el filtre passa banda. Aquest filtre té la capacitat de deixar passar un rang determinat de freqüències d’un senyal i atenua el pas de la resta. D’aquesta manera, per implementar-lo, s’ha de tenir clar quines
són les freqüències de tall del filtre (La freqüència mínima i la freqüència màxima que determinen el rang de freqüències que el filtre deixa passar).

Filtre de banda eliminada: Aquest tipus de filtres tenen la capacitat d’atenuar un rang determinat de freqüències d’un senyal. De la mateixa forma que amb els filtres passa banda, s’ha de determinar quines són les freqüències de tall. (En aquest cas, la freqüència mínima i màxima que determinen el rang de freqüències que el filtre no deixa passar).

Filtre multibanda: És un filtre que presenta diferents rangs de freqüència pels quals té un comportament diferent.

Filtre variable: Aquest tipus de filtre es capaç d’atenuar diferents rangs de freqüència depenent de la funció que es vulgui realitzar.

El senyal del cor té una freqüència d’entre 0.01 i 250 Hz. Per tal de poder apreciar-lo bé es necessari implementar un filtre que sigui capaç d’atenuar totes les freqüències no desitjades que no entren dins d’aquest marge. És per això que es necessita un filtre passabanda que només deïxi passar un marge de freqüències de 0.01 Hz fins 250 Hz. D’aquesta manera podem eliminar totes les interferències produïdes per freqüències més altes i més baixes que la freqüència del senyal del cor.

El filtre implementat és un filtre digital. L’elecció es deu a què no té cap cost i utilitzant-lo, podem filtrar un senyal elèctric amb resultats molt òptims. Ara bé, es important saber que hi ha dos tipus de filtres digitals, FIR i IIR:

FIR (Finite Impulse Response)

Aquest filtre consisteix en retardar lleugerament una copia del senyal d’entrada i combinar el senyal d’entrada atraçat amb el nou senyal d’entrada. D’aquesta manera és possible atenuar el senyal de sortida. La figura següent mostra el diagrama de blocs d’un filtre digital FIR: [17]

![Diagrama de blocs d'un filtre digital FIR](image)

Si descrivim aquest filtre mitjançant equacions lineals en diferències obtenim el següent:

- **FIR passa baixos:** \(y[n] = a_0 \cdot x[n] + a_1 \cdot x[n-1] + a_2 \cdot x[n-2] + \ldots + a_N \cdot x[n-N] \)
Aquesta equació expressa que la mostra actual de la sortida \(y[n] \) és igual a la suma de les mostres de la entrada actual \(x[n] \) multiplicada pel factor \(a_0 \) y de la mostra anterior \(x[n-1] \) multiplicada pel factor \(a_1 \), i de totes les mostres anteriors fins l’instant \([n-M] \).

- **FIR passa alts:** \(y[n] = 0.5 \cdot x[n] - 0.5 \cdot x[n-1] \)

Aquesta equació expressa que la mostra actual de la sortida \(y[n] \) és igual a la resta de dos mostres successives.

IIR (Infinite Impulse Response)

Aquest tipus de filtres digitals es distingeixen dels filtres FIR en que la sortida del filtrre es re-alimenta a l’entrada d’aquest, formant un circuit recursiu o amb feedback. A la figura següent es pot observar el diagrama de blocs d’un filtre digital del tipus IIR: [17]

![Diagrama de blocs del filtrre IIR](image)

Figura 11: Diagrama de blocs del filtrre IIR

Si descrivim aquest filtrre mitjançant equacions lineals en diferències obtenim el següent:

- **IIR passa baixos:** \(y[n] = a_0 \cdot x[n] + a_1 \cdot y[n-1] + a_2 \cdot y[n-2] + \ldots + a_N \cdot y[n-N] \)

Aquesta equació expressa que la mostra actual de la sortida \(y[n] \) és igual a la suma de les mostres de la entrada actual \(x[n] \) multiplicada pel factor \(a_0 \) y de la mostra anterior \(y[n-1] \) multiplicada pel factor \(a_1 \), i de totes les sortides anteriors fins l’instant \([n-N] \).

- **IIR passa alts:** \(y[n] = 0.5 \cdot x[n] - 0.5 \cdot y[n-1] \)

Aquesta equació expressa que la mostra actual de la sortida \(y[n] \) és igual a la resta de la mostra actual i la sortida anterior.

Per tal d’eliminar totes les freqüències no desitjades i poder representar correctament l’electrocardiograma s’utilitza el filtre digital FIR passa baixos i el filtre digital IIR passa alts. D’aquesta manera es pot atenuar els senyals no desitjats de freqüències més baixes i més altes que la de l’electrocardiograma.
3.2.7 Disseny PCB

Es necessari dissenyar una placa de circuit imprès (PCB) per tal d’integrar tots els components que formen el prototip en una única placa integrada. Per dur a terme aquest disseny s’utilitza el software Autodesk EAGLE, destinat al disseny de plaques de circuit imprès.

Els components que hi ha integrats a la PCB són els que ja s’ha explicat en els apartats anteriors: La placa Arduino Micro amb el microcontrolador, el monitor de ritme cardíac AD8232, el mòdul de Bluetooth HC-05 i a més a més, un connector on va connectada la pila de 9 V que alimenta el circuit.

A la figura següent es pot observar l’esquemàtic de la placa dissenyada, amb tots el components que formen el Hardware del prototip:

![Esquemàtic de la placa PCB](image)

A partir d’aquest esquemàtic, s’ha dissenyat la placa integrada. Les seves característiques són les següents: Té unes dimensions de 81 x 92 mm, dos capes, la “TOP” i la “BOTTOM”. Les pistes que uneixen els diferents pins dels components tenen una amplada de 0.8 mm i les vies que separen la capa “TOP” de la “BOTTOM” tenen un diàmetre de 1 mm. Tant la capa “TOP” com la “BOTTOM” tenen un pla de masses.

A continuació es pot observar el disseny final de la PCB:
Cara TOP:

Figura 13: Cara TOP de la PCB

Cara BOTTOM:

Figura 14: Cara BOTTOM de la PCB
3.2.8 **Alimentació del circuit**

Per tal d’alimentar el circuit es proporciona una tensió d’entrada al microcontrolador i és aquest dispositiu qui alimenta l’AD8232 amb 3.3 V i l’HC-05 amb 5 V.

Hi ha dos opcions per proporcionar al microcontrolador l’alimentació necessària per al correcte funcionament del circuit: [18]

- La primera opció consisteix en aplicar directament un voltatge regulat a la tensió nominal de la placa, que en aquest cas són 5 V. És a dir, podem alimentar la placa Arduino aplicant 5 V directament al pin 5 V del dispositiu.

- La segona opció consisteix en utilitzar el regulador de voltatge que la placa ja té integrat.

En cas d’aplicar un voltatge regulat a la tensió nominal de la placa, la font d’alimentació que utilitzem ha d’estar regulada amb un alt grau de precisió, ja que qualsevol tipus de pic o de variació de la tensió d’entrada pot danyar el dispositiu. És per això que en aquest projecte alimentarem l’Arduino utilitzant el regulador de tensió que ja porta incorporat.

Per tal d’alimentar correctament l’Arduino utilitzant el regulador de tensió, és necessari proporcionar una tensió d’entre 6 i 12 V entre els pins VIN i GND. Com que 6 V pot resultar un voltatge insuficient i 12, en alguns moments, excessiu, el voltatge que li proporcionarem al dispositiu serà de 9 V. Per fer-ho, utilitzarem un pila de 9 V introduïda dins d’un porta piles.

Els avantatges d’utilitzar la pila de 9 V és que podem alimentar l’Arduino de forma molt segura, fàcilment i amb un cost molt baix. No obstant, també té uns desavantatges, ja que les piles de 9 V tenen una baixa densitat energètica i el corrent que proporcionen té una intensitat molt baixa, però la tipologia del projecte no ens exigeix una intensitat de corrent elevada.
3.3 SISTEMA COMPLET
A la figura que apareix a continuació es pot observar el sistema complet definitiu del prototip, d’acord amb el disseny proposat anteriorment:

3.4 RESULTATS
En aquest capítol es mostren i s’analitzen els resultats obtinguts de proves realitzades a diferents voluntaris. L’objectiu és comprovar, verificar i demostrar el funcionament del prototip desenvolupat.

Per a dur a terme aquesta demostració, s’ha separat el capítol de resultats en dos subcapítols: ECG, on es demostra la representació i interpretació de l’electrocardiograma i Aplicació Android, on es demostra el funcionament de l’aplicació android, desenvolupada per representar l’ECG.

Per la correcta interpretació dels resultats, s’ha de tenir en compte que hi ha alguns factors que poden afectar a la mesura del ECG, com per exemple el canvi en la impedància de la pell, que pot variar en funció de la temperatura externa, la humitat o sequera del clima, etc. Un altre factor que pot afectar és la càrrega estàtica acumulada al cos a causa de la fricció.

Figura 15: Prototip definitiu
Les pautes establertes per a la correcta mesura del ECG són les següents:

- Pacient segut en repòs.
- Els dos braços suportats en una superfície plana.
- Col·locació dels elèctrodes als canells i al peu dret.
- Evitar el contacte entre mans.

3.4.1 ECG

Per dur a terme aquest apartat i representar correctament l’electrocardiograma s’ha utilitzat l’eina MATLAB R2018a. Amb aquesta eina, l’únic que s’ha fet, ha sigut mostrar l’ECG enregistrat pel prototip.

A la figura següent apareix l’electrocardiograma que s’ha realitzat a un dels voluntaris:

![Electrocardiograma](image)

Figura 16: Electrocardiograma

Utilitzant la figura anterior, podem diferenciar les ones que formen un cicle de l’ECG que ja hem explicat en l’apartat de definició, aplicació i solució:

![ECG Cicle](image)

Figura 17: Ones que formen un cicle d’un ECG
Així mateix, també podem diferenciar els diferents intervals del ECG, tal com es mostra en la figura:

![Diagrama de diferents intervals de l'ECG](image)

\[T_c = \frac{(x_2 - x_1) + (x_3 - x_2) + (x_4 - x_3) + (x_5 - x_4) + (x_6 - x_5) + (x_n - x(n-1))}{n - 1} \]

Figura 18: Intervals d’un ECG

Figura 19: ECG amb temps de cada cicle

D’aquesta manera, l’expressió que defineix el període cardíac \(T_c \) és la següent:
On:

\(Tc = \) Període cardíac

\(x = \) Temps en un punt de l’ECG

\(n = \) nombre de cicles

Si apliquem l’expressió per al nostre cas:

\[
Tc = \frac{ (1.488 - 0.4227) + (2.476 - 1.488) + (3.481 - 2.476) + (4.536 - 3.481) + (5.581 - 4.536) }{5}
\]

Obtenim que el període cardíac és la següent:

\[
Tc = 1.03166 \text{ s}
\]

Com que la freqüència cardíaca és la inversa del període, obtenim el següent:

\[
Fc = \frac{1}{Tc}
\]

On:

\(Fc: \) Freqüència cardíaca

\(Tc: \) Cicle cardíac

Introduint els nostres valors:

\[
Fc = \frac{1}{1.03166} = 0.9693 \text{ cicles/s}
\]

Si ho passem de cicles/s a cicles/min:
\[F_c = 0.9693 \text{ cycles \ per \ second} \times 60 \text{ \ per \ minute} = 58.15 \text{ \ cycles \ per \ minute} \approx 58 \text{ \ cycles \ per \ minute} \]

Obtenim que la freqüència cardíaca és de 58 pulsacions cada minut.

3.4.2 Aplicació Android

L’aplicació Android s’ha desenvolupat mitjançant l’entorn de programació Mit App Inventor 2. S’encarrega de mostrar la freqüència cardíaca enregistrada i salvar les dades de l’ECG en un fitxer csv. Aquest fitxer es pot compartir mitjançant diferents vies, per la posterior representació del ECG. A més a més, l’aplicació s’encarrega de la comunicació amb el microcontrolador, per a que aquest, mitjançant el mòdul Bluetooth envii o bé la freqüència cardíaca o bé les dades de l’ECG.

A continuació apareixen una sèrie d’imatges, corresponents a les diferents pantalles que formen l’aplicació:

![Figura 20: Menú principal de l’aplicació Android](image)

Aquest és el menú principal de l’aplicació. Consta de cinc botons que tenen les següents funcions:

- **BLUETOOTH**: Botó que porta al menú Bluetooth, on es possible connectar el dispositiu amb el mòdul HC-05.
- **HEART FREQUENCY**: Botó que porta al menú on es veu representada la freqüència cardíaca.
- **REGISTER DATA**: Botó que porta al menú on s’enregistren les dades de l’ECG.
- **SHARE FILE**: Botó que permet compartir el ficher amb les dades de l’ECG.
- **CLOSE APP**: Botó que serveix per tancar l’aplicació.
Aquest és el menú Bluetooth. És al primer menú que s’ha d’accedir si es vol obtenir les dades de l’ECG, ja que vincula i connecta el dispositiu Android amb el mòdul HC-05.

Consta de tres botons:

- SELECT DEVICE: Aquest botó mostra una llista (mostrada a continuació) on apareixen tots els dispositius Bluetooth disponibles.
- CONNECT: Botó que connecta el dispositiu escollit amb el dispositiu Android.
- RETURN TO MAIN MENU: Botó que torna al menú principal.

Figura 21: Menú connexió Bluetooth

Figura 22: Llista de dispositius Bluetooth disponibles
Aquest menú és on es mostra quina és la freqüència cardíaca enregistrada.

Amb l’electrocardiògraf connectat, quan s’entra en aquest menú, el dispositiu Android envia una ordre al mòdul HC-05 cada segon per a que passi la freqüència cardíaca enregistrada en aquell moment. Aquesta freqüència enregistrada es mostra a la pantalla cada segon.

El botó RETURN TO MAIN MENU s’encarrega de tornar l’aplicació al menú principal.

En aquest menú es on s’enregistren les dades de l’ECG.

Quan s’obre aquesta pantalla, si es polsa el botó “START REGISTER” el dispositiu Android envia l’ordre de rebre les dades de l’ECG. Quan el mòdul HC-05 rep l’ordre, el microcontrolador comença a enviar les dades enregistrades.

Aquestes dades es van guardant a un arxiu csv anomenat “ECG” i al mateix temps es van mostrant al requadre que apareix a la pantalla de l’aplicació.

La transmissió finalitza quan es polsa el botó “STOP REGISTER”

Mitjançant el fitxer amb totes les dades, posteriorment es representa l’electrocardiograma.
La imatge de l’esquerra mostra el Pop-Up que apareix quan cliquem el botó SHARE FILE.

Aquest Pop-Up mostra totes les vies possibles per enviar el fitxer on serà representat.

A més a més, aquest fitxer es queda guardat al dispositiu Android amb el nom ECG.

Figura 25: Menu on es comparteix el fitxer

Un cop enregistrades les dades i ja les tenim al fitxer ECG, aquestes poden ser representades mitjançant qualsevol software o entorn que permeti la representació de gràfiques. Podria representar-se, per exemple, mitjançant l’Excel, no obstant, en aquest projecte s’ha escollit dur a terme la representació mitjançant el Matlab, tant per comoditat, com per obtenir una representació temporal més òptima i clara.

A la imatge següent podem observar l’electrocardiograma enregistrat d’un voluntari:

Figura 26: ECG obtingut a partir de l’aplicació Android
4. DISCUSSió

Els resultats d’aquest projecte són satisfactoris, ja que s’han pogut assolir els objectius desitjats. Per una banda, ha estat possible el desenvolupament d’un disseny per l’adquisició i processat del senyal elèctric cardíac. Per l’altra banda, s’ha pogut desenvolupar l’aplicació Android, indispensable per a la representació de l’electrocardiograma i sota la qual opera el disseny, fent que sigui completament portàtil i de cost molt baix.

Per tal de poder valorar els resultats del projecte, s’ha comparat l’ECG generat pel prototip amb un de real realitzat per la plataforma Physionet [19].

El sistema desenvolupat serveix per representar la diferència de potencial entre el braç dret i l’esquerre. Tal i com s’ha explicat en els capítols anteriors, aquesta representació es coneix com la derivació I d’un electrocardiograma. Dins de la gran quantitat de fitxers corresponents a senyals bioelèctrics que formen part de la base de dades de Physionet [19], s’ha utilitzat la derivació I d’un electrocardiograma, a continuació n’apareix la seva representació:

![Figura 27: Derivació I d’un ECG sense filtre](image1)

![Figura 28: Derivació I d’un ECG amb filtre](image2)
A continuació podem observar la derivació I generada pel prototip desenvolupat:

![Derivació I d'un ECG generada pel prototip](image)

Si comparem l’ECG real i el que genera el prototip, es pot observar que segueixen una forma bastant semblant, no obstant, és interessant diferenciar-los.

Les diferències que es poden observar són les següents:

- En l’ECG real es pot apreciar molt millor l’ona T. Aquest fet no vol dir que no siguin vàlids els resultats que genera el prototip, ja que depenen de la persona a la que es faci l’ECG l’ona T es pot veure més o menys.
- L’amplitud màxima de l’ECG real és de gairebé 0.5 V, mentre que l’amplitud de l’ECG generat pel prototip no arriba a 0.1 V. Aquest fet es deu a que el prototip amplifica el senyal per 100, mentre que l’electrocardiógraf real ho fa per 500.
- L’ona Q és molt abrupta a l’ECG real, mentre que al generat pel prototip aquesta ona és molt més plana.
- L’ona S és molt més pronunciada i té una amplitud molt més gran a l’ECG obtingut pel dispositiu.
- L’arrissat és molt més pronunciat en l’ECG real, cosa que beneficia l’ECG generat pel prototip, on no es veu tant.

Tot i el correcte funcionament del dispositiu, hi ha una sèrie de millores necessàries per tal d’obtenir un funcionament més òptim i uns resultats més precisos:

- Intentar eliminar encara més l’arrissat no desitjat, fent la mitja de més de 40 dades consecutives.
- El microcontrolador té una freqüència de mostreig de 2 kHz, de manera que envia una dada pel Bluetooth cada 0,5 ms. La freqüència de mostreig màxima que permet assolir l’entorn Mit App Inventor 2 és de 1 kHz, és a dir que el dispositiu Android illegeix una dada cada 1 ms. Això significa que de cada dues dades que s’envien per Bluetooth, el dispositiu Android només en illegeix una, de manera que estem perdent informació. Es podria utilitzar un altre entorn de desenvolupament d’aplicacions Android que permetés una lectura de dades més ràpida per tal de no perdre aquesta informació.
5. PRESSUPOST
En aquest capítol apareix representat el càlcul del pressupost total necessari per a dur a terme el projecte.

Per fer-ho, és necessari tenir en compte, els costos totals del hardware, els costos totals del software i el cost dels components.

5.1 COST TOTAL DEL HARDWARE
El Hardware necessari per al desenvolupament del prototip és el següent:

- PC amb les següents característiques:
 - Processador Intel(R) Core(TM) i5-2430 a 2.40 GHZ
 - Memòria RAM de 3 GB
 - Disc dur de 250 GB
- Dispositiu Android (Xiaomi Redmi Note 4)
- Oscil·loscopi Hantek 6022-BE

A més a més, és necessària una estació de soldadura, que inclourem en el conjunt Hardware.

Per tal de calcular el cost total de cada dispositiu es té amb compte el preu/temps de cada un. També, que la vida útil és de 6 anys (72 mesos) i que el temps total per realitzar el projecte és de 6 mesos.

A la taula següent apareix el cost total del Hardware:

<table>
<thead>
<tr>
<th>CONCEPTE</th>
<th>PREU</th>
<th>€/MES</th>
<th>MESOS</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>400 €</td>
<td>5.56</td>
<td>6</td>
<td>33.36 €</td>
</tr>
<tr>
<td>Android</td>
<td>240 €</td>
<td>3.34</td>
<td>6</td>
<td>20 €</td>
</tr>
<tr>
<td>Oscil·loscopi</td>
<td>44.29 €</td>
<td>0.61</td>
<td>6</td>
<td>3.7 €</td>
</tr>
<tr>
<td>Estació de soldadura</td>
<td>20 €</td>
<td>0.28</td>
<td>6</td>
<td>1.7 €</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>58.76 €</td>
</tr>
</tbody>
</table>

Taula 4: Resum cost total hardware

5.2 COST TOTAL DEL SOFTWARE
El Hardware necessari per al desenvolupament del prototip és el següent:

- Software per al desenvolupament de l’aplicació App Inventor 2
- Software per a la programació de la placa Arduino
- Software per al desenvolupament de la PCB (Eagle 13.1)

En aquest cas, de la mateixa forma que amb el conjunt hardware, per tal de calcular el cost total es té amb compte el preu/temps de cada element, que el temps d’amortització és de 6 anys (72 mesos) i que el temps total per realitzar el projecte és de 6 mesos.
A la taula següent apareix el cost total del Software:

<table>
<thead>
<tr>
<th>CONCEPTE</th>
<th>PREU</th>
<th>€/MES</th>
<th>MESOS</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>App Inventor 2</td>
<td>0 €</td>
<td>0</td>
<td>6</td>
<td>0 €</td>
</tr>
<tr>
<td>Android Software</td>
<td>0 €</td>
<td>0</td>
<td>6</td>
<td>0 €</td>
</tr>
<tr>
<td>Eagle 13.1</td>
<td>0 €</td>
<td>0</td>
<td>6</td>
<td>0 €</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>0.00 €</td>
</tr>
</tbody>
</table>

Taula 5: Resum cost total software

5.3 COST TOTAL DELS COMPONENTS

A la taula següent apareix el cost total de tots els components utilitzats:

<table>
<thead>
<tr>
<th>CONCEPTE</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arduino Micro</td>
<td>17.6 €</td>
</tr>
<tr>
<td>AD8232</td>
<td>7.2 €</td>
</tr>
<tr>
<td>HC-05</td>
<td>4.2 €</td>
</tr>
<tr>
<td>Elèctrodes</td>
<td>2.99 €</td>
</tr>
<tr>
<td>Cables Holter</td>
<td>3.99 €</td>
</tr>
<tr>
<td>Porta Piles 9V</td>
<td>1.89 €</td>
</tr>
<tr>
<td>Pila 9V</td>
<td>2 €</td>
</tr>
<tr>
<td>Connector</td>
<td>0.1 €</td>
</tr>
<tr>
<td>TOTAL</td>
<td>40 €</td>
</tr>
</tbody>
</table>

Taula 6: Resum cost total dels components

5.4 COST TOTAL DEL PROJECTE

El cost total del projecte apareix a la taula següent:

<table>
<thead>
<tr>
<th>CONCEPTE</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost total recursos Hardware</td>
<td>58.76 €</td>
</tr>
<tr>
<td>Cost total recursos Software</td>
<td>0.00 €</td>
</tr>
<tr>
<td>Cost total Components</td>
<td>40 €</td>
</tr>
<tr>
<td>TOTAL</td>
<td>98.76 €</td>
</tr>
</tbody>
</table>

Taula 7: Cost total del projecte

El cos total del projecte és de NORANTA-VUIT euros amb SETANTA-SIS cèntims.
6. CONCLUSIÓ
En aquest projecte, s’ha desenvolupat un dispositiu portàtil de baix cost governat per una aplicació Android, amb l’objectiu de captar, processar i representar l’activitat elèctrica del cor. Per dur-lo a terme s’ha passat per les següents etapes: Primerament, s’ha fet un estudi de les necessitats fins obtenir la millor solució, a partir de la solució adoptada, s’ha dut a terme el disseny del dispositiu i finalment, s’ha desenvolupat fins arribar al seu correcte funcionament.

La realització d’aquest projecte ha permès posar en pràctica quin és el funcionament i com operen cadascun dels components que formen el prototip. En conseqüència, podem afirmar que:

- El monitor de ritme cardíac AD8232 facilita l’adquisició del senyal elèctric cardíac i fa possible la seva amplificació.
- El microcontrolador Arduino Micro pot processar correctament la informació que rep del monitor de ritme cardíac, eliminant els senyals de freqüències no desitjades i obtenint un senyal més “net” que s’envia al dispositiu Android mitjançant el mòdul Bluetooth.
- El mòdul Bluetooth HC-05 fa possible la comunicació entre el microcontrolador i el dispositiu Android. D’aquesta manera, podem obtenir de forma portàtil i sense fil les dades procedents del microcontrolador al dispositiu mòbil.
- El dispositiu Android amb l’entorn de programació Mit App Inventor 2 fa possible la creació d’una aplicació que sigui capaç tant d’establir comunicació amb el microcontrolador com d’enregistrar les dades corresponents a l’activitat cardíaca per a la seva posterior representació.

Els resultats obtinguts han estat satisfactoris, ja que s’han pogut assolir els objectius desitjats. Per una banda, ha estat possible l’adquisició i processat del senyal elèctric cardíac i per l’altra, s’ha pogut desenvolupar l’aplicació Android, indispensable per a la representació de l’electrocardiograma. No obstant, hi ha una sèrie de millores que farien possible un funcionament més òptim del prototip:

- Intentar eliminar encara més l’arrossat no desitjat, fent la mitja de més de 40 dades consecutives.
- Utilitzar un altre entorn de desenvolupament d’aplicacions Android que permetés una lectura de dades més ràpida per tal de no perdre informació.

Amb els resultats obtinguts i les millores proposades, es podrien afegir més canals a l’electrocardiógraf. D’aquesta manera seria possible obtenir un electrocardiograma de 12 derivacions mitjançant un electrocardiógraf portàtil, de baix cost i governat per una aplicació Android, útil per a l’ús domèstic.
7. ANNEXES

7.1 CODI ARDUINO
A continuació apareix el codi Arduino utilitzat per l’adquisició i processat del senyal cardíac:

```c
#include <SoftwareSerial.h> /*Inclouem la llibreria SoftwareSerial.h per
l’utilització del mòdul Bluetooth*/

SoftwareSerial BT(10,11); /*Configurem els PIN 10 i 11 com els Pin de
transmissió Rx i Tx respectivament*/

void setup(){
   /* Declaració de variables corresponents a 40
    lectures del canal analògic d'on prové el senyal cardíac */
   int OldValue40=0;
   int OldValue39=0;
   int OldValue38=0;
   int OldValue37=0;
   int OldValue36=0;
   int OldValue35=0;
   int OldValue34=0;
   int OldValue33=0;
   int OldValue32=0;
   int OldValue31=0;
   int OldValue30=0;
   int OldValue29=0;
   int OldValue28=0;
   int OldValue27=0;
   int OldValue26=0;
   int OldValue25=0;
   int OldValue24=0;
   int OldValue23=0;
   int OldValue22=0;
   int OldValue21=0;
   int OldValue20=0;
```

int OldValue19=0;
int OldValue18=0;
int OldValue17=0;
int OldValue16=0;
int OldValue15=0;
int OldValue14=0;
int OldValue13=0;
int OldValue12=0;
int OldValue11=0;
int OldValue10=0;
int OldValue9=0;
int OldValue8=0;
int OldValue7=0;
int OldValue6=0;
int OldValue5=0;
int OldValue4=0;
int OldValue3=0;
int OldValue2=0;
int OldValue1=0;
int Value=0;

/* Declaració de variables corresponents a 40 lectures del canal analògic d'on prové el senyal cardiac amb el filtre aplicat */
int FilteredValue=0;
int OldFilteredValue=0;
int OldFilteredValue1=0;
int OldFilteredValue2=0;
int OldFilteredValue3=0;
int OldFilteredValue4=0;
int OldFilteredValue5=0;
int OldFilteredValue6=0;
int OldFilteredValue7=0;
int OldFilteredValue8=0;
int OldFilteredValue9=0;
int OldFilteredValue10=0;
int OldFilteredValue11=0;
int OldFilteredValue12=0;
int OldFilteredValue13=0;
int OldFilteredValue14=0;
int OldFilteredValue15=0;
int OldFilteredValue16=0;
int OldFilteredValue17=0;
int OldFilteredValue18=0;
int OldFilteredValue19=0;
int OldFilteredValue20=0;
int OldFilteredValue21=0;
int OldFilteredValue22=0;
int OldFilteredValue23=0;
int OldFilteredValue24=0;
int OldFilteredValue25=0;
int OldFilteredValue26=0;
int OldFilteredValue27=0;
int OldFilteredValue28=0;
int OldFilteredValue29=0;
int OldFilteredValue30=0;
int OldFilteredValue31=0;
int OldFilteredValue32=0;
int OldFilteredValue33=0;
int OldFilteredValue34=0;
int OldFilteredValue35=0;
int OldFilteredValue36=0;
int OldFilteredValue37=0;
int OldFilteredValue38=0;

/*Declaració de variables per al càlcul de la freqüència cardiaca*/
long TimeFoundOld=0;
long TimeFoundNew;
float ECGPeriod =0;
long Frequency=0;

BT.begin(38400); //Inicialització del Bluetooth a 38400 Bauds/s
}

void loop(){
 Value=analogRead(A0); /*Lectura del canal analògic A0, d’on prové el senyal cardíac*/

 FilteredValue= (Value-OldValue40); //Filtre passa-alt

 FilteredValue=(FilteredValue+OldFilteredValue+OldFilteredValue1+OldFilteredValue2+OldFilteredValue3+OldFilteredValue4+OldFilteredValue5+OldFilteredValue6+OldFilteredValue7+OldFilteredValue8+OldFilteredValue9+OldFilteredValue10+OldFilteredValue11+OldFilteredValue12+OldFilteredValue13+OldFilteredValue14+OldFilteredValue15+OldFilteredValue16+OldFilteredValue17+OldFilteredValue18+OldFilteredValue19+OldFilteredValue20+OldFilteredValue21+OldFilteredValue22+OldFilteredValue23+OldFilteredValue24+OldFilteredValue25+OldFilteredValue26+OldFilteredValue27+OldFilteredValue28+OldFilteredValue29+OldFilteredValue30+OldFilteredValue31+OldFilteredValue32+OldFilteredValue33+OldFilteredValue34+OldFilteredValue35+OldFilteredValue36+OldFilteredValue37+OldFilteredValue38+OldFilteredValue39+OldFilteredValue40)/40; //Filtre passa-baix
/*Càlcul de la freqüència cardíaca*/
if (FilteredValue>40){
 if ((micros()-TimeFoundOld)>200000){
 TimeFoundNew=micros();
 ECGPeriod=TimeFoundNew-TimeFoundOld;
 TimeFoundOld=TimeFoundNew;
 ECGPeriod=ECGPeriod/1000000;
 ECGPeriod=ECGPeriod/60;
 Frequency=1/ECGPeriod;
 }
}

/*Si ens arriba un 1 pel canal Rx del Bluetooth, el mòdul envia una
da da de l'ECG pel canal Tx*/
if(BT.read()==49){
 digitalWrite(5, HIGH);
}
if (digitalRead(5)==HIGH){
 BT.print(FilteredValue);
 BT.println",";
}
if(BT.read()==65){
 digitalWrite(5, LOW);
} /*Si ens arriba un 2 pel canal Rx del Bluetooth, el mòdul envia
la freqüència cardíaca pel canal Tx*/
if (BT.read()==50){
 BT.println(Frequency);
}

/* Nova assignació de variables*/
OldValue40=OldValue39;
OldValue39=OldValue38;
OldValue38=OldValue37;
OldValue37=OldValue36;
OldValue36=OldValue35;
OldValue35=OldValue34;
OldValue34=OldValue33;
OldValue33=OldValue32;
OldValue32=OldValue31;
OldValue31=OldValue30;
OldValue30=OldValue29;
OldValue29=OldValue28;
OldValue28=OldValue27;
OldValue27=OldValue26;
OldValue26=OldValue25;
OldValue25=OldValue24;
OldValue24=OldValue23;
OldValue23=OldValue22;
OldValue22=OldValue21;
OldValue21=OldValue20;
OldValue20=OldValue19;
OldValue19=OldValue18;
OldValue18=OldValue17;
OldValue17=OldValue16;
OldValue16=OldValue15;
OldValue15=OldValue14;
OldValue14=OldValue13;
OldValue13=OldValue12;
OldValue12=OldValue11;
OldValue11=OldValue10;
OldValue10=OldValue9;
OldValue9=OldValue8;
OldValue8=OldValue7;
OldValue7=OldValue6;
OldValue6=OldValue5;
OldValue5=OldValue4;
OldValue4=OldValue3;
OldValue3=OldValue2;
OldValue2=OldValue1;
OldValue1=OldValue;
OldValue=Value;

OldFilteredValue38=OldFilteredValue37;
OldFilteredValue37=OldFilteredValue36;
OldFilteredValue36=OldFilteredValue35;
OldFilteredValue35=OldFilteredValue34;
OldFilteredValue34=OldFilteredValue33;
OldFilteredValue33=OldFilteredValue32;
OldFilteredValue32=OldFilteredValue31;
OldFilteredValue31=OldFilteredValue30;
OldFilteredValue30=OldFilteredValue29;
OldFilteredValue29=OldFilteredValue28;
OldFilteredValue28=OldFilteredValue27;
OldFilteredValue27=OldFilteredValue26;
OldFilteredValue26=OldFilteredValue25;
OldFilteredValue25=OldFilteredValue24;
OldFilteredValue24=OldFilteredValue23;
OldFilteredValue23=OldFilteredValue22;
OldFilteredValue22=OldFilteredValue21;
Codi 1. Codi Arduino
7.2 CODI APLICACIÓ ANDROID
A continuació apareix el Codi corresponent a l’aplicació Android:

BLUETOOTH

Figura 30: Codi per a la inicialització del Bluetooth

Figura 31: Codi per la connexió amb dispositiu

Figura 32: Codi per a connexió amb dispositiu
ECG

Figura 33: Codi per rebre les dades de l'ECG

FREQUÈNCIA CARDÍACA

Figura 34: Codi per representar la freqüència cardíaca

CANVI DE PANTALLES

Figura 35: Codi que gestiona el canvi de pantalles i de menús
GUARDAR DADES AL FITXER

Figura 36: Codi que actualitza el fitxer amb les noves dades de l'ECG

TANCAR L’APLICACIÓ

Figura 37: Codi que tanca l’aplicació

7.3 CODI MATLAB
A continuació apareix el codi Matlab utilitzat únicament per representar l’ECG:

```matlab
clc;
clear all;
close all;

ECG=load('C:\Users\usuario\Desktop\ECG txt\ECG.txt');%Carreguem les dades de l'ECG

N=length(ECG);%Calculem el nombre total de dades
f_s=2000; %2000 = freqüència de mostreig del micro
t=[0:N-1]/f_s; %Sabent el nombre total de dades i la Fs, calculem el temps total

subplot(3,1,1)%configuració de la gràfica
plot(t,ECG*0.004882)%representació de l'ECG
grid on %configuració de la gràfica
title('ELECTROCARDIOGRAMA'); %configuració de la gràfica
xlabel('Temps (s)');%configuració de la gràfica
ylabel('Magnitut (V)')%configuració de la gràfica
```

Codi 2. Codi Matlab
7.4 FILTRAT DEL SENYAL
Per filtrar el senyal elèctric cardíac s’ha dissenyat un filtre passabanda. D’aquesta manera, ha sigut possible eliminar els senyals d’altes i baixes freqüències que no es troben dins del rang de freqüència del senyal del cor.

Per implementar aquest filtre es necessari un filtre passa alt, que deixa passar les altes freqüències i un filtre passa baix, que deixa passar les baixes freqüències.

A la figura que apareix a continuació apareix el senyal sense filtrar tal i com surt del monitor de ritme cardíac AD8232:

![Figura 38: ECG sense filtrar](image)

A la imatge anterior es pot observar com el senyal no es manté a l’eix horitzontal sinó que oscil·la respecte aquest eix. Aquestes llargues oscil·lacions es deuen a les interferències de baixes freqüències. A la imatge següent es pot observar la forma d’oscil·lació del nostre senyal:

![Figura 39: Interferències de baixes freqüències](image)

Per tal d’eliminar aquesta oscil·lació no desitjada, es necessari implementar un filtre passa-alt, que deïxi passar només els senyals d’altes freqüències.
A la figura següent apareix el senyal amb el filtre passa-alt:

![Figura 40: ECG amb filtre passa-alt](image)

Com podem observar, l’offset provocat per les interferències de baixes freqüències ja no apareix i el senyal es manté en l’eix horitzontal, ara bé, tenim un rissat que fa que no es pugui apreciar bé l’electrocardiograma. Aquest rissat es provocat per les interferències de freqüències altes. Per tal d’eliminar-les hem d’implementar un filtra passa-baixos.

Per fer-ho, hem de calcular quina és la freqüència del rissat del senyal:

![Figura 41: Rissat del senyal ECG](image)

Calculem la freqüència:

\[
T_c = \frac{(x_2 - x_1)}{n - 1}
\]

On:

\(T_c = \text{Període} \)

\(x = \text{Temps en un punt de l’ECG} \)

\(n = \text{nombre de cicles} \)
Si apliquem l’expressió per al nostre cas:

\[T = \frac{(0.032 - 0.012)}{1} \]

Obtenim que el període és la següent:

\[T = 0.02 \text{ s} \]

Com que la freqüència és la inversa del període, obtenim el següent:

\[F = \frac{1}{T} \]

On:

\[F: \text{Freqüència} \]

\[T: \text{Període} \]

Introduint els nostres valors:

\[F = \frac{1}{0.02} = 50 \text{ Hz} \]

Obtenim que la freqüència de les interferències és de 50 Hz. Podem deduir que són degudes a la xarxa elèctrica.

Per eliminar-les hem de tenir en compte la freqüència de mostreig del microcontrolador, és a dir, el nombre de mostres que obtenim per cada unitat de temps. En el nostre cas la freqüència de mostreig és de 2 kHz, això vol dir que cada segon llegim 2000 mostres.
Per tal d’eliminar les interferències, hem d’obtenir la mitja d’un número de mostres. Per obtenir-lo, hem de dividir la Freqüència de mostreig entre la freqüència del senyal no desitjat:

\[N = \frac{F_s}{50 \text{ Hz}} \]

On:

Fs: Freqüència de mostreig

N: Nombre de mostres

\[N = \frac{2000 \text{ Hz}}{50 \text{ Hz}} = 40 \]

Per tant, hem de fer la mitjana de 40 mostres consecutives per poder eliminar el senyal de 50 Hz.

A la figura següent es pot observar el senyal a la sortida del filtre passa-baixos:

![Figura 42: ECG després del filtre LP i HP](image.png)
7.5 UN ELECTROCARDIÒGRAF REAL

Per tal d’acabar d’entendre com es un electrocardiograma, disposem de la base de dades de Physionet. [19]

Physionet va ser creat l’any 1999 per l’Institut Nacional de Ciència Mèdica General (NIGMS) i l’Institut Nacional de Biomedicina i Bioenginyeria (NIBIB). És un recurs que té com objectiu estimular la investigació en l’estudi de senyals biomèdics i fisiològics complexos.

Un component que forma part d’aquest recurs és PhysioBank, la base de dades de Physionet, on apareixen una gran quantitat de dades i fitxers relacionats amb senyals biomèdics realitzats a diferents usuaris.

Per tal de mostrar un ECG real, utilitzarem la base de dades de Physionet, d’on podem descarregar fitxers CSV que contenen les dades de l’electrocardiograma. D’aquesta manera i utilitzant Matlab es possible representar-lo.

A continuació podem observar les 12 derivacions d’un Electrocardiograma realitzat a un únic usuari: [19]

Figura 43: Derivació I d’un ECG

Figura 44: Derivació II d’un ECG

Figura 45: Derivació III d’un ECG
Figura 46: Derivació AVR d’un ECG

Figura 47: Derivació AVL d’un ECG

Figura 48: Derivació AVF d’un ECG

Figura 49: Derivació V1 d’un ECG

Figura 50: Derivació V2 d’un ECG

Figura 51: Derivació V3 d’un ECG
Figura 52: Derivació V4 d’un ECG

Figura 53: Derivació V5 d’un ECG

Figura 54: Derivació V6 d’un ECG
REFERÈNCIES

