Imma Membrives Galea

INSTALACIÓN ELÉCTRICA DE UNA VIVIENDA UNIFAMILIAR MEDIANTE UN SISTEMA HÍBRIDO DE CORRIENTE CONTINUA Y ALTERNA

TRABAJO FINAL DE GRADO

dirigido por el Prof. Àngel Cid Pastor

Grado de Ingeniería Eléctrica

UNIVERSITAT ROVIRA I VIRGILI

Tarragona

2015
Instalación eléctrica de una vivienda unifamiliar mediante un sistema híbrido de corriente continua y alterna

ÍNDICE GENERAL

Autora: Imma Membrives Galea
Director: Ángel Cid Pastor

Fecha: Junio - 2015
Tabla de contenido

1 Memoria Descriptiva ... 7
 1.1 Objeto del Proyecto .. 7
 1.2 Titular de la Instalación .. 7
 1.3 Identificación de la Obra .. 8
 1.3.1 Nombre y tipo de la Obra ... 8
 1.3.2 Situación de la Vivienda Objeto de este Proyecto .. 8
 1.3.3 Datos Económicos de la Obra ... 8
 1.3.4 Fecha Prevista de Inicio de la Obra ... 8
 1.3.5 Duración Prevista de los Trabajos de la Obra ... 8
 1.4 Normas y Referencias .. 8
 1.4.1 Disposiciones Legales y Normas Aplicadas .. 8
 1.4.2 Bibliografía ... 9
 1.4.3 Páginas Web ... 10
 1.4.4 Programas de Cálculo ... 11
 1.4.5 Plan de gestión de la calidad aplicado durante la redacción del trabajo 12
 1.4.6 Otras referencias .. 12
 1.5 Definiciones y abreviaturas .. 12
 1.6 Tabla resumen de datos generales de la instalación .. 12
 1.7 Alcance y especificaciones .. 14
 1.8 Antecedentes .. 14
 1.9 La necesidad de la energía y sus consecuencias .. 15
 1.9.1 Las energías renovables .. 18
 1.9.2 El futuro de la Corriente Continua ... 22
 1.10 Diseño .. 24
 1.10.1 Requisitos del diseño .. 24
 1.11 Estudios a realizar ... 24
 1.12 Producción energética estimada .. 25
 1.13 Descripción de la instalación .. 25
 1.14 Componentes del sistema híbrido eólico-solar .. 29
 1.14.1 Placas fotovoltaicas ... 29
<table>
<thead>
<tr>
<th>Sección</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.14.2</td>
<td>Aerogenerador</td>
<td>34</td>
</tr>
<tr>
<td>1.14.3</td>
<td>Regulador en carga</td>
<td>36</td>
</tr>
<tr>
<td>1.14.4</td>
<td>Diversion Dummy Load o Carga Artificial</td>
<td>40</td>
</tr>
<tr>
<td>1.14.5</td>
<td>Baterías o Acumuladores</td>
<td>42</td>
</tr>
<tr>
<td>1.14.6</td>
<td>Inversor de corriente</td>
<td>45</td>
</tr>
<tr>
<td>1.14.7</td>
<td>Protecciones eléctricas</td>
<td>48</td>
</tr>
<tr>
<td>1.15</td>
<td>Esquema del sistema híbrido eólico-solar</td>
<td>58</td>
</tr>
<tr>
<td>1.15.1</td>
<td>Diagrama de bloques del sistema híbrido</td>
<td>59</td>
</tr>
<tr>
<td>1.16</td>
<td>Garantías</td>
<td>64</td>
</tr>
<tr>
<td>1.17</td>
<td>Mantenimiento de equipos e instalaciones</td>
<td>64</td>
</tr>
<tr>
<td>1.17.1</td>
<td>Mantenimiento de las placas solares</td>
<td>65</td>
</tr>
<tr>
<td>1.17.2</td>
<td>Mantenimiento del aerogenerador</td>
<td>65</td>
</tr>
<tr>
<td>1.17.3</td>
<td>Mantenimiento de los reguladores-cargadores</td>
<td>65</td>
</tr>
<tr>
<td>1.17.4</td>
<td>Mantenimiento de las baterías</td>
<td>65</td>
</tr>
<tr>
<td>1.17.5</td>
<td>Mantenimiento de las Dummy Load</td>
<td>66</td>
</tr>
<tr>
<td>1.17.6</td>
<td>Mantenimiento del inversor</td>
<td>66</td>
</tr>
<tr>
<td>1.17.7</td>
<td>Repuestos de la instalación</td>
<td>67</td>
</tr>
<tr>
<td>1.18</td>
<td>Resumen del presupuesto de la instalación</td>
<td>68</td>
</tr>
<tr>
<td>1.19</td>
<td>Características técnicas de la actividad objeto de este Proyecto</td>
<td>68</td>
</tr>
<tr>
<td>1.19.1</td>
<td>Instalaciones sanitarias y de evacuación de aguas</td>
<td>68</td>
</tr>
<tr>
<td>1.19.2</td>
<td>Ventilación e iluminación</td>
<td>68</td>
</tr>
<tr>
<td>1.19.3</td>
<td>Agua potable</td>
<td>69</td>
</tr>
<tr>
<td>1.19.4</td>
<td>Repercusión sobre el medio ambiente</td>
<td>69</td>
</tr>
<tr>
<td>1.19.5</td>
<td>Seguridad de las instalaciones y de sus usuarios</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>Memoria de cálculo</td>
<td>73</td>
</tr>
<tr>
<td>2.1</td>
<td>Estudio del consumo energético de la vivienda</td>
<td>73</td>
</tr>
<tr>
<td>2.2</td>
<td>Estudio eólico</td>
<td>80</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Determinación de la posición</td>
<td>80</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Datos climatológicos</td>
<td>80</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Resultados y decisiones</td>
<td>81</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Determinación de la potencia real</td>
<td>82</td>
</tr>
</tbody>
</table>
Índice General

2.3 Estudio solar fotovoltaico .. 84
 2.3.1 Determinación de las pérdidas por sombras 84
 2.3.2 Pérdidas por inclinación .. 103
 2.3.3 Determinación de los módulos fotovoltaicos 106

2.4 Equipos electrónicos de regulación y conversión 116
 2.4.1 Regulador Solar Xantrex XWMPPT 60 150 Schneider Electric 116
 2.4.2 Regulador Eólico 0102-1000-024 (e300-002-024) 1000W 40A, Kestrel 118
 2.4.3 Baterías .. 119
 2.4.4 Dummy Load .. 121

2.5 Instalación eléctrica de Baja Tensión: Cálculos 123
 2.5.1 Cálculo del sistema híbrido eólico-solar 123
 2.5.2 Cálculo del bus de corriente continua 130
 2.5.3 Cálculo del bus de corriente alterna 133
 2.5.4 Protección frente a contactos directos 146
 2.5.5 Protección frente a contactos indirectos 147
 2.5.6 Protección ante armónicos ... 150
 2.5.7 Protecciones del sistema híbrido eólico-solar 151
 2.5.8 Protecciones y medidores del sistema solar 151
 2.5.9 Protecciones y medidores del sistema eólico 152
 2.5.10 Protecciones y medidores del bus de corriente continua 153
 2.5.11 Protección del inversor en CC 154
 2.5.12 Protecciones y medidores del bus de corriente alterna 154
 2.5.13 Protecciones contra descargas atmosféricas 154

2.6 El futuro de la instalación ... 155
 2.6.1 Cálculos justificativos de la viabilidad de los convertidores 155

3 Planos .. 159
 3.1 Plano nº1: Situación de la vivienda 159
 3.2 Plano nº2: Emplazamiento de la vivienda 160
 3.3 Plano nº3: Planta de la vivienda 161
 3.4 Plano nº4: Perfiles de la vivienda 162
 3.5 Plano nº5: Distribución interna de la vivienda 163
Índice General

3.6 Plano nº6: Ubicación en planta de los paneles y el aerogenerador 164
3.7 Plano nº7: Detalle pararrayos y aerogenerador 165
3.8 Plano nº8: Unifilar fotovoltaico + aerogenerador 166
3.9 Plano nº9: Unifilar instalación alterna 167
3.10 Plano nº10: Unifilar instalación continua 168
3.11 Plano nº11: Detalle de las puestas a tierra y pararrayos 169
3.12 Plano nº12: Detalles conexiones en la vivienda 170

4 Mediciones 172
4.1 Mediciones de los sistemas 172

5 Presupuesto 188
5.1 Cuadro de precios 188
5.2 Presupuesto 203
5.3 Resumen del presupuesto 218

6 Pliego de Condiciones 220
6.1 Objeto 220
6.2 Generalidades 220
6.3 Normativa de aplicación 220
6.4 Diseño 221
6.4.1 Diseño del generador fotovoltaico 221
6.4.2 Diseño del sistema de monitorización 221
6.5 Componentes y materiales 222
6.5.1 Sistemas generadores fotovoltaicos 222
6.5.2 Estructura soporte 224
6.5.3 Inversores 224
6.5.4 Cableado y canalizaciones 226
6.5.5 Cajas de conexión 227
6.5.6 Conexión a red interior 228
6.5.7 Medidas 228
6.5.8 Protecciones 228
6.5.9 Puesta a tierra de las instalaciones fotovoltaicas 228
6.5.10 Armónicos y compatibilidad electromagnética 229
Índice General

6.5.11 Aparatos de mando y maniobra ..229
6.6 Ejecución de las instalaciones ...229
6.7 Pliego de condiciones facultativas ..231
6.8 Certificados y documentaciones ..232
6.9 Conclusión ..232
Instalación eléctrica de una vivienda unifamiliar mediante un sistema híbrido de corriente continua y alterna

MEMORIA DESCRIPTIVA

Autora: Imma Membrives Galea
Director: Ángel Cid Pastor

Fecha: Junio – 2015
1 Memoria Descriptiva

1.1 Objeto del Proyecto

El objeto del presente Proyecto de Fin de Grado es estudiar, calcular, diseñar, y definir las características técnicas de una vivienda cuya energía proceda de un sistema híbrido eólico y solar fotovoltaico, que esté aislado de la red y que cumpla con todas las condiciones que exigen los reglamentos vigentes.

También se realizará la electrificación de la vivienda por medio de un bus de corriente alterna y uno de corriente continua.

El uso de tecnologías eGaN FET facilitará en un futuro cercano el uso de los buses de CC en los proyectos de energías renovables gracias a la reducción de las pérdidas de conversión, ya que se reducen entre un 4 y un 10% en función de la carga, haciendo posible un mayor aprovechamiento versus la conversión a CA que presenta pérdidas entre el 10 y 15%.

En el presente proyecto se incluyen las consideraciones de diseño y protección de todos los elementos requeridos por la instalación híbrida conectada en la red interior, siendo éstos:

- Campo fotovoltaico captador (módulos FV y estructura de soporte)
- Aerogenerador y estructura de soporte
- Sistemas de regulación de carga (regulador solar y regulador eólico)
- Sistema de adaptación de potencia (inversores)
- Sistema de protecciones eléctricas y puesta a tierra
- Cableado

A su vez es objeto del presente proyecto garantizar la seguridad de la instalación, tanto en su fase de montaje como en su futuro mantenimiento y uso.

1.2 Titular de la Instalación

El titular de la instalación es:

- Imma Membrives Galea.
- NIF: 48008840-C
- Dirección: Estanislao Figueres, 15 5º-1ª Tarragona (43002)
1.3 Identificación de la Obra

1.3.1 Nombre y tipo de la Obra

“Instalación eléctrica de una vivienda unifamiliar con buses de corriente continua y corriente alterna, alimentados mediante un sistema híbrido eólico y solar fotovoltaico aislado de la red“

1.3.2 Situación de la Vivienda Objeto de este Proyecto

- Dirección: Ctra. a Picamoixons, Km 2 – Partida Burga, polígono 31, parcela 89
- Población: Valls
- Provincia: Tarragona

1.3.3 Datos Económicos de la Obra

El presupuesto de ejecución material de la presente instalación se detalla a continuación:

PRESUPUESTO DE EJECUCIÓN MATERIAL: 51252,04 €

1.3.4 Fecha Prevista de Inicio de la Obra

La fecha prevista del inicio de la obra será 10 días después de su adjudicación.

1.3.5 Duración Prevista de los Trabajos de la Obra

Esta obra está prevista realizarla en un plazo máximo de 2 meses.

1.4 Normas y Referencias

1.4.1 Disposiciones Legales y Normas Aplicadas

Las instalaciones objeto del presente proyecto estarán sometidas a la siguiente reglamentación:

- Ley 24/2013, de 26 de diciembre, del Sector Eléctrico.
- Real Decreto 413/2014, de 6 de junio, por el que se regula la actividad de producción de energía eléctrica a partir de fuentes de energía renovables, cogeneración y residuos.
Memoria Descriptiva

- Real Decreto-ley 2/2013, de 1 de febrero, de medidas urgentes en el sistema eléctrico y en el sector financiero.
- Real Decreto 1699/2011, de 18 de noviembre, por el que se regula la conexión a red de instalaciones de producción de energía eléctrica de pequeña potencia.
- Real Decreto 1614/2010, de 7 de diciembre, por el que se regulan y modifican determinados aspectos relativos a la actividad de producción de energía eléctrica a partir de tecnologías solar termoeléctrica y eólica.
- Real Decreto 1578/2008, de 26 de septiembre, de retribución de la actividad de producción de energía eléctrica mediante tecnología solar fotovoltaica para instalaciones posteriores a la fecha límite de mantenimiento de la retribución del Real Decreto 61/2007, de 25 de mayo, para dicha tecnología.
- Real Decreto 661/2007, de 25 de mayo, por el que se regula la actividad de producción de energía eléctrica de régimen especial.
- Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento unificado de puntos de medida del sistema eléctrico.
- Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación.
- Real Decreto 842/2002, de 2 de agosto, por el que se aprueba el Reglamento Electrotécnico de Baja Tensión (REBT) y las instrucciones técnicas complementarias.
- Real Decreto 1955/2000 de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica.
- Pliego de Condiciones Técnicas de IDAE para Instalaciones Fotovoltaicas Conectadas a Red.
- Código Técnico de la Edificación.
- Otras Normas UNE que sean de aplicación.

1.4.2 Bibliografía

10

[10] B. Yan, G. Yue, J. Yang, S. Guha, “High efficiency amorphous and nanocrystalline silicon thin film solar cells on flexible Substrates”.

1.4.3 Páginas Web

[14] www.solener.com
[16] www.solarweb.net
[17] www.sofos.es
[18] www.energiasolarfotovoltaica.blogspot.com
[19] www.windfinder.com
[21] www.icc.cat
[22] www.idae.es
[23] www.autosolar.es
1.4.4 Programas de Cálculo

[33] PVGIS. [online] Disponible: Joint Research Centre (JRE), Institute for Energy and Transport (IET)
[34] Autocad v.2015. Descargable: www.autodesk.es
1.4.5 Plan de gestión de la calidad aplicado durante la redacción del trabajo

Durante la redacción del proyecto se intentará que el diseño de la instalación sea óptima, sin menospreciar el cumplimiento de la normativa vigente. La calidad de los materiales es de suma importancia y siempre elegiremos entre las primeras marcas que se encuentren en el mercado.

1.4.6 Otras referencias

Otras referencias e información de utilidad han sido la siguiente:

- Ordenanzas municipales del Ayuntamiento.
- Condicionantes que puedan ser emitidos por los Organismos afectados por las instalaciones.

1.5 Definiciones y abreviaturas

Todas las abreviaturas utilizadas en este trabajo hacen referencia a unidades y equipos. En todo caso son abreviaturas normalizadas y conocidas.

En ningún caso se utiliza ninguna abreviatura inventada.

1.6 Tabla resumen de datos generales de la instalación

<table>
<thead>
<tr>
<th>DATOS DE LA INSTALACIÓN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proyecto</td>
<td>Instalación eléctrica de una vivienda unifamiliar con buses de corriente continua y corriente alterna, alimentados mediante un sistema híbrido eólico y solar fotovoltaico aislado de la red</td>
</tr>
<tr>
<td>Ubicación</td>
<td>Valls</td>
</tr>
<tr>
<td>Dirección</td>
<td>Ctra. a Picamoixons, Km 2 – Partida Burga, polígono 31, parcela 89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATOS DEL TITULAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Titular Instalación</td>
<td>Imma Membrives Galea</td>
</tr>
<tr>
<td>NIF</td>
<td>48008840-C</td>
</tr>
<tr>
<td>Dirección</td>
<td>Estanislao Figueres, 15 5º-1º - Tarragona</td>
</tr>
<tr>
<td>C.P.</td>
<td>43002</td>
</tr>
<tr>
<td>Población</td>
<td>Tarragona</td>
</tr>
</tbody>
</table>
CARACTERÍSTICAS DE LA INSTALACIÓN

<table>
<thead>
<tr>
<th>Localización paneles</th>
<th>Tejados 1 y 2</th>
<th>Estructura</th>
<th>Fija sobre tejado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de paneles</td>
<td>12</td>
<td>Potencia pico total</td>
<td>3840 W</td>
</tr>
<tr>
<td>Número Aerogeneradores</td>
<td>1</td>
<td>Potencia nominal</td>
<td>800 W</td>
</tr>
<tr>
<td>Número de inversores</td>
<td>1</td>
<td>Potencia nominal</td>
<td>5000 W</td>
</tr>
<tr>
<td>Tipo de inversor</td>
<td>Monofásico</td>
<td>Tipo de instalación</td>
<td>Monofásica</td>
</tr>
<tr>
<td>Tipo de conexión</td>
<td>Baja Tensión</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus de corriente alterna tipo</td>
<td>Monofásico</td>
<td>Tensión</td>
<td>230 V</td>
</tr>
<tr>
<td>Bus corriente continua tipo</td>
<td>Bipolar</td>
<td>Tensión</td>
<td>24V</td>
</tr>
<tr>
<td>Energía anual máxima</td>
<td>8.237 kWh</td>
<td>Presupuesto</td>
<td>51252,04 €</td>
</tr>
<tr>
<td>Conexión a red de distribución</td>
<td>No</td>
<td>Posibilidad de conexión</td>
<td>Sí</td>
</tr>
<tr>
<td>Fecha prevista de inicio</td>
<td>10 días después de adjudicación</td>
<td>Duración prevista</td>
<td>1 mes</td>
</tr>
</tbody>
</table>

DATOS DE LA ACTIVIDAD

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Generación de energía eléctrica a partir de energía solar fotovoltaica y aerogenerador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de energía y procedencia</td>
<td>Es una planta generadora de energía, NO CONSUME ENERGÍA. La energía procedente del sol se transforma en energía eléctrica a través de un proceso fotovoltaico, la energía proveniente del aire se transforma, posteriormente se acumula y se autoconsume en dos buses, uno de corriente continua y otro de corriente alterna</td>
</tr>
<tr>
<td>Justificación uso de buses</td>
<td>El uso de bus de continua se justifica por la eliminación prácticamente de pérdidas en elementos convertidores</td>
</tr>
<tr>
<td>Almacenaje combustible</td>
<td>No se almacena ningún tipo de combustible.</td>
</tr>
</tbody>
</table>

MEDIOS POTENCIALMENTE AFECTADOS

<table>
<thead>
<tr>
<th>Emisiones</th>
<th>Los equipos no tienen ningún tipo de emisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medio Físico</td>
<td>Afección al medio físico temporal por planta desmontable</td>
</tr>
<tr>
<td>Calidad del aire</td>
<td>No produce ninguna clase de emisión a la atmósfera</td>
</tr>
<tr>
<td>Calidad de las aguas</td>
<td>No utiliza ningún líquido para la generación, por lo que no contiene aguas residuales. Las baterías son selladas.</td>
</tr>
</tbody>
</table>

Tabla 1 - Tabla resumen de datos generales de la instalación.
1.7 **Alcance y especificaciones**

El Proyecto alcanza toda la instalación eléctrica de la vivienda y el cálculo del sistema híbrido eólico y solar fotovoltaico. Para ello deberemos realizar un estudio con sus cálculos pertinentes:

- **Estudio / cálculos previos:**
 - Estudio del consumo energético de la vivienda por el tipo de consumidores y en corriente continua, cc y corriente alterna, ca.

- **Estudio / cálculos de un sistema eólico:**
 - Estudio de la velocidad media del viento.
 - Determinación de las condiciones mínimas para el funcionamiento.

- **Estudio / cálculos de un sistema solar fotovoltaico:**
 - Estudio de las pérdidas por sombras.
 - Estudio de las pérdidas por inclinación.
 - Cálculo del número de módulos solares y su potencia.

- **Estudio / cálculo del sistema híbrido eólico y solar:**
 - Estudio de los componentes del sistema.
 - Elección de los componentes que se encuentran en el mercado.
 - Conexionado del sistema híbrido.
 - Protecciones del sistema híbrido eólico y solar y de la vivienda.

- **Realización de la electrificación con dos buses: uno de corriente continua y otro de alterna.**

- **Estudio del ahorro económico a largo plazo e inversión.**

- **Realización de un estudio de mejoras para la instalación en un futuro.**

1.8 **Antecedentes**

Viendo la evolución del sector energético, existe la necesidad de un abastecimiento de la vivienda mediante energías renovables. A demás, contando con el apoyo de las leyes españolas, este tipo de consumo eléctrico es aconsejable y rentable.
Este caso en concreto se basa en una vivienda unifamiliar que opta por un suministro eléctrico basado en un aprovechamiento inteligente de la energía del sol y la del viento, respetando así el medioambiente y consiguiendo un ahorro energético mayor.

1.9 La necesidad de la energía y sus consecuencias

La figura mostrada a continuación es una gráfica del consumo mundial de energía en el 2012, figura tomada de *La energía en España 2013* [2] y tomada por *BP Stadistical review*.

En ella podemos ver la cantidad de energía procedente de fuentes no renovables (como el petróleo, el gas natural, el carbón y la energía nuclear) y fuentes renovables que se ha consumido de manera global en el pasado año 2012.

![Imagen 1- Consumo mundial de energía, 2012. [2]](image)

Como nos confirma, hay una fuerte dependencia de las energías fósiles; el petróleo, el gas natural y el carbón constituyen la mayor parte del consumo (un 86,7% o un 91,2% del total de las energías no renovables) mientras que las renovables apenas llegan a una tercera parte de la energía total consumida, siendo solo el 8,9% del total.

Pero la enorme dependencia de este tipo de energías fósil también se da en España (imagen 2). Solo en el 2012, el consumo de estas energías fue del 85,7% de la energía total consumida, dejando a las energías renovables el 14,3% restante. Aunque siendo superior que en la media total mundial, sigue siendo un porcentaje bastante bajo para las facilidades que se les está dando a estas energías en España, además de las buenas condiciones atmosféricas que tenemos.
Esta tendencia a las energías no renovables y la creciente y continuada demanda de energía nos debe hacer pensar que, detrás de ello, hay varias consecuencias y varios problemas que se acentúan con el paso de los años. Las razones más importantes por las cuales hacen de la eficiencia energética una necesidad son, básicamente, tres.

Uno de los factores más importantes es el aumento de la demanda energética ya que, como hemos podido ir observando con el paso de los años, cada vez es mayor la cantidad de energía necesaria para abastecer un país y para su buen desarrollo, haciendo que las energías no renovables sean la opción más utilizada y, así, haciendo mayor su uso y su dependencia.

Con ello, las fuentes de energía de origen fósil, también llamadas energías no renovables, se vuelven las más utilizadas y eso acentúa el hecho de que son un recurso limitado ya que, al ser obtenidas a partir de reservas finitas, en un futuro más o menos cercano pueden agotarse. Ello conlleva un hecho adicional, y es que se vuelven más costosas de conseguir y se incrementa su precio haciéndolas menos asequibles.

Pero estos hechos no han pasado desapercibidos; des de la fuerte crisis del 2010, la demanda energética se ha visto reducida ligeramente. Se redujo el consumo de todas las fuentes energéticas primarias excepto el carbón y las energías renovables, lo que nos hace presuponer que ya hay una mentalidad hacia las energías limpias y todas las ventajas que conllevan.
Otro de los puntos a tener en cuenta es el impacto medioambiental, causante del cambio climático. Las energías más utilizadas son también los combustibles más contaminantes, afectando de una manera más elevada al medioambiente por las cantidades de CO₂ que desprenden a la atmósfera. Unas de las consecuencias más graves y, que por desgracia ya estamos sufriendo, es el calentamiento global, el aumento de la temperatura natural de la Tierra, el aumento del nivel del mar y la desertificación y deshielo de ciertas zonas del planeta.

Esto no hace más que crecer y este tipo de energías agudiza estas consecuencias, llevándonos a pensar que hay un tipo de energías limpias que pueden hacer el mismo trabajo y, además, cuidar el medioambiente de manera que podamos paliar estas graves circunstancias.

Como podemos observar en la tabla 3, las emisiones de CO₂ se han visto reducidas en la misma medida que se ha reducido la demanda energética y el uso de las fuentes de energías no renovables, des del 2010, lo que nos está llevando a una nueva etapa donde las energías renovables van a tener mayor importancia y mayor uso.

Por estos motivos, la eficiencia energética que queremos conseguir tiene por objetivo reducir el consumo de energía de origen fósil para potenciar las energías renovables y así reducir costes en la vivienda, como es en nuestro estudio.

Pero las energías renovables tienen una limitación: el tipo de energía eléctrica que generan es corriente continua. Los paneles solares producen energía continua y las turbinas
eólicas siempre convierten la corriente alterna, con una frecuencia variable, en continua para convertirla, de nuevo, a alterna a una frecuencia constante.

 Esto es considerado una oportunidad de mejora puesto que la electricidad que usamos en las viviendas es corriente alterna, lo que supone tener que transformar la corriente continua que generan las energías renovables en corriente alterna, haciendo de esto un proceso ineficiente, sin embargo, se inicia el campo para el desarrollo de nuevas tecnologías de convertidores CC/CC de alta eficiencia con dispositivos eGaN FET de la marca EPC [27], que tienen un alto rendimiento en su conjunto, dicha tecnología está en desarrollo.

 Asimismo, si se dispone de aparatos y electrodomésticos que empleen corriente continua, evitan tener que transformar la corriente que se genera y tener pérdidas en el circuito. De esta manera, es muy interesante la opción de disponer de un bus de corriente continua en la vivienda para conectar todos los aparatos y electrodomésticos que permitan utilizar la corriente continua.

 1.9.1 Las energías renovables

 Como hemos visto, las fuentes de energía son muy diversas. Las fuentes no renovables son limitadas y se agotan con su continuada utilización. Las fuentes renovables son aquellas que se pueden regenerar después de su uso y, la mayoría de ellas, se mantienen de manera constante en la naturaleza.

 Las fuentes de energía renovables van ganando más y más importancia. Como hemos podido concluir en los apartados anteriores, la utilización de energías de este tipo sigue siendo muy limitado, pero con constante aumento. En julio de 2011 se registró un porcentaje del 28,1%, mientras que en julio de 2012, este porcentaje aumentó al 29,4%.

 Entre estas energías renovables se pueden encontrar la energía solar, que recoge la radiación solar para transformarla en diversos tipos de energía; la energía eólica, que es la obtenida de la fuerza del viento (energía cinética generada por las corrientes de aire); la energía hidráulica, que transforma en energía eléctrica la energía potencial acumulada en los saltos de agua o la energía geotérmica, que puede ser obtenida por el calor del interior de la Tierra, entre otras.

 En España éstas son el tipo de energías renovables más impulsadas. Des del Plan de fomento de las energías renovables en España [5], se pretendía conseguir que este tipo de energías limpias generaran el 30% de la electricidad de España, consiguiendo así, en el 2010, generar el 35% de la electricidad, se ha conseguido un aumento anual y continuo de las energías renovables en nuestro país, gracias también a las subvenciones y primas a la producción.
1.9.1.1 La energía solar

Como ya se ha comentado, la energía solar es la que nos llega a la Tierra en forma de radiación electromagnética (luz, rayos ultravioleta y calor, mayoritariamente) que proceden del Sol. Este grupo de recursos de energías renovables se divide en tres tecnologías de utilización: fotovoltaica, termoeléctrica y solar térmica.

España cuenta con grandes centros de I+D+i como CIEMAT, UPM-IES, ISOF y otros, donde se investigan nuevos desarrollos para la integración arquitectónica y urbanística. Sólo a finales del 2013 se alcanzó una capacidad instalada de 4.711 MW, como muestra la Gráfica 1. La potencia instalada en 2013 fue cerca de 108 MW y, de esta manera, nuestro país se coloca en el puesto número tres de la UE en términos de potencia instalada.

Gráfica 1- Evolución de la capacidad fotovoltaica instalada en España. [2].
1.9.1.2 Paneles fotovoltaicos

La tecnología fotovoltaica realiza una conversión fotovoltaica consistente en la transformación directa de la energía luminosa en energía eléctrica. Para ello se utilizan unas placas solares que están formadas por células fotovoltaicas. Éstas tienen un rendimiento que varía según el tipo de material que se haya usado para su fabricación, encontrándose entre un 15% para células de silicio policristalino, y más de un 15% para las células fabricadas con silicio monocristalino, pero que conllevan un coste elevado debido a su proceso de fabricación.

Para dar el mayor uso a estas células, se han fabricado unos módulos fotovoltaicos, como los de la imagen 3, que son formados por un conjunto de células solares que se encuentran conectadas entre sí, ya sea en serie para obtener mayor tensión, o en paralelo para obtener mayor intensidad, y que permiten generar electricidad cuando incide luz sobre ellos.

Imagen 3- Ejemplo de módulos fotovoltaicos. [16].

1.9.1.3 La energía Eólica

La radiación solar, absorbida irregularmente por la atmósfera, da lugar a masas de aire con diferentes temperaturas y, por tanto, diferentes densidades y presiones. El aire, al desplazarse desde las altas hacia las bajas presiones, da lugar al viento.

En términos de capacidad instalada, España el segundo país de la UE, después de Alemania, y la cuarta potencia mundial, por detrás de China, Estados Unidos y Alemania, con una potencia en operación de 22.949 MW a finales del 2013. Las producciones eléctricas con energía eólica y con energía nuclear han sido del mismo orden de magnitud en 2013, llegando la tecnología eólica a cubrir en noviembre del año 2013 el 30,8 % de la demanda en barras de central, valor que en términos anuales ha supuesto el 20,9 %.

A demás, la capacidad de innovación del sector es muy significativa, participando en diversos proyectos de I+D+i+d punteros.
1.9.1.4 Aerogeneradores

Para captar la energía eólica se pueden emplear dos métodos. Se pueden emplear palas rotando alrededor de un eje horizontal, o se pueden utilizar palas que sean verticales situadas a lo largo de un cilindro y que estén girando alrededor de un eje vertical.

La tecnología más empleada es la del aerogenerador, una máquina que convierte la fuerza del viento en electricidad y que está formada por tres palas girando sobre un eje horizontal. En este tipo de molinos, la energía transferida es proporcional al cubo de la velocidad del viento y su máxima transferencia de energía a las palas es del orden del 53% de la energía incidente.

Este aerogenerador con eje horizontal consta de tres partes principales:

- El rotor, que incluye el buje y las palas, generalmente tres.
- La góndola, dónde se sitúan el generador eléctrico, la caja de cambio y sistemas hidráulicos de control, orientación y freno.
- La torre, que sitúa el generador a una mayor altura, donde los vientos son de mayor intensidad.

Gráfica 2- Evolución de la capacidad eólica instalada en España. [2]
1.9.2 El futuro de la Corriente Continua

En una nueva etapa en donde las energías renovables van a tener mayor relevancia, supone hablar más de la corriente continua.

Tal y como se ha dicho anteriormente, parte de las energías renovables producen corriente continua y eso supone una nueva oportunidad para el desarrollo de tecnologías para que todas esas viviendas que solamente admiten que sus aparatos y herramientas de trabajo funcionen con corriente alterna, se sustituyan por aparatos de corriente continua eliminando parte de las ineficiencias de conversión.

Cuando un generador de energía renovable produce corriente continua de salida, como es el caso de las placas fotovoltaicas, la tarea principal de la electrónica de potencia es hacer la conversión de cc a ca. Una tarea adicional de los convertidores electrónicos de potencia es la de maximizar el rendimiento energético, realizada por el seguimiento del punto de máxima potencia (MPPT) en sistemas fotovoltaicos.

Por lo anterior, si nuestra vivienda va a estar equipada con placas fotovoltaicas y aerogeneradores, la necesidad de enchufes que distribuyan corriente continua por toda la casa es una decisión que conviene considerar.

Muchos aparatos como los ordenadores funcionan con corriente continua, y algunos electrodomésticos admiten su alimentación también a través de corriente continua. Esto supondría que, en una casa cuya fuente de generación de electricidad sean las fuentes renovables, sería más sencillo llevar esta corriente continua que se genera directamente a los enchufes para poder disfrutar de, por ejemplo, la carga del ordenador portátil sin la necesidad de llevar siempre un transformador que reduce el rendimiento y es poco eficiente.
El gran beneficio que presenta la corriente continua es la mejora del rendimiento que nos puede proporcionar ya que se reducen las pérdidas al no necesitar un inversor de corriente, lo que lo hace una opción más que interesante.

Por lo tanto, nuestra vivienda va a tener, a parte de los convencionales enchufes que distribuyen corriente alterna, otros que distribuyan corriente continua a una tensión que determinaremos para una mayor optimización.
1.10 Diseño

1.10.1 Requisitos del diseño

Partimos de una vivienda unifamiliar en la cual se instalará un sistema híbrido eólico y solar para abastecer al máximo la vivienda.

El requisito del diseño es calcular la potencia de los módulos solares fotovoltaicos y del aerogenerador necesitado y realizar el conexionado de los dos aparatos a la vivienda para que ésta pueda recibir dos buses de corriente: un bus de corriente alterna y un bus directo de corriente continua a 24 V, ya que con una tensión de 48 V no hay electrodomésticos disponibles en el mercado y un convertidor de continua-continua de 48V a 24 V del mercado supone una gran pérdida por eficiencia (un 20%).

Asimismo, otro requisito es el ahorro del consumo a red en comparación del coste de la instalación, el cual será demostrado dicho ahorro a largo plazo (hay que tener en cuenta que una instalación de estas características se amortiza en 20 – 25 años).

1.11 Estudios a realizar

Para el diseño de una instalación híbrida eólica y solar, es necesario obtener la mayor información sobre todos los factores que intervienen para poder aprovechar, de manera más eficiente, todos los recursos disponibles y optimizar al máximo la instalación final.

Para llevar a cabo la instalación híbrida, serán necesarios cinco estudios principales para poder realizar, correctamente, el diseño y la instalación.

- Estudio del consumo energético de la vivienda: de esta manera se estudiará la potencia consumida diaria y se podrá establecer la potencia mínima requerida para abastecer a la vivienda.
- Estudio eólico: se evaluará el impacto de la localización y se analizarán las ráfagas de viento en la zona para conseguir determinar el aerogenerador más adecuado para las condiciones que se tienen.
- Estudio solar: igual que en el estudio eólico, se evaluará el impacto de la localización de la vivienda y se analizará la luz natural incidente en la zona con el objetivo de optimizar la instalación solar fotovoltaica y conseguir así las mejoras desde el punto de vista energético.
- Estudio de la producción energética estimada de acuerdo a las características de los elementos de generación y los factores ambientales que intervienen (irradiación, viento).
- Estudio del ahorro económico de disponer de esta tecnología frente a los costes convencionales de conexión a red.
1.12 Producción energética estimada

La producción de energía fotovoltaica depende directamente de la irradiación solar del lugar concreto, así como de las condiciones climáticas y de la potencia instalada. Aunque se tienen datos estadísticos de la zona, la producción real puede variar anualmente respecto al cálculo realizado.

La potencia pico de una instalación FV es la suma de las potencias nominales de los módulos fotovoltaicos, dadas las Condiciones Estándar de Medida CEM (1000 W/m2, 25ºC, AM 1.5G). La potencia pico de la instalación es de 3840 Wp.

La producción de energía eólica depende directamente de la incidencia del viento del lugar concreto, y de las condiciones climáticas y de la potencia instalada. Aunque se tienen datos estadísticos de la zona, la producción real puede variar anualmente respecto al cálculo realizado. La potencia pico de la instalación es de 800 W.

A partir de los datos del viento y de la irradiancia en la zona, las pérdidas estimadas y la potencia instalada se obtienen las tablas de producción mensual y anual esperadas.

1.13 Descripción de la instalación

La vivienda unifamiliar se ubicará en una zona del término municipal de Valls (Tarragonés), en una zona libre de edificios de más de tres pisos y bastante abierto, en donde las condiciones climatológicas para la instalación de un sistema híbrido eólico y solar son más que favorables.

Esta vivienda será utilizada como vivienda diaria. La cocina se encuentra excluida de las necesidades eléctricas ya que dispone de un sistema de cocción por butano y, de esta manera, conseguimos reducir una importante carga del consumo total diario. Los aparatos estudiados serán los más habituales en el uso diario.

La vivienda, como se muestra en la imagen 5, se encuentra ubicada a una latitud de 41,2897° y una longitud de 1,2337°, cercana de Valls. No presenta edificios de más de tres pisos y está en una zona bastante amplia y despejada, con lo que el viento llega sin problema alguno.

La vivienda al estar en las afuera de Valls hace que sea una zona óptima para el uso del aerogenerador

El terreno donde está ubicada la vivienda y sus alrededores es regadío y principalmente arcilloso, con un nivel de humedad medio elevado, lo que le confiere una baja resistencia de tierra lo cual facilitará la puesta a tierra de la instalación
La imagen 6 muestra la ubicación exacta de la vivienda a estudiar. Como se ha comentado con anterioridad, es una vivienda de dos plantas y dos tejados que se encuentra alejada del pueblo debido al hecho de que no se puede colocar un aerogenerador en una zona residencial concurrida o común, por los problemas que generaríamos a los vecinos y por los problemas de llegada del viento al aerogenerador.

La zona está bastante despejada de posibles obstáculos que imposibilitarían o reducirían la llegada del viento al futuro aerogenerador. Además, aunque hubiera mucha vegetación u otros obstáculos, puesto que el aerogenerador irá colocado sobre un mástil, la altura a la cual se encontrarían las palas sería mucho mayor que los obstáculos.

El aerogenerador estará situado sobre una torre tubular y tendrá unos 10 m, puesto que el obstáculo más alto que podemos encontrar serían dos viviendas de 8 m de altura. Estará colocado a una distancia de 25 m de la vivienda, en una ubicación que minimiza el ruido por el efecto del ruido al girar las palas.

De esta manera, podemos ver que la zona presenta buenas condiciones.
Imagen 6 - Vista aérea y ubicación exacta de la vivienda a la afueras de Valls. Google Maps.

La vivienda de Valls consta de dos pisos, una planta baja total y una segunda planta que solo abarca parte del primer piso, y dos tejados planos. No hay vegetación alrededor que pudiera entorpecer la llegada de la radiación al tejado de la vivienda. Sobre el tejado se instalarán los paneles fotovoltaicos y la estructura que los sustenta.

Imagen 7 - Disposición de la vivienda. [29]
Los inversores, baterías y reguladores se instalarán en la planta baja, en una habitación dedicada a ello. Dicho local estará ventilado y dispondrá de alumbrado de emergencia directamente conectado a la red del inversor y a las propias baterías para situaciones de malfuncionamiento de los sistemas.

El sistema de generación está formado por un subsistema fotovoltaico compuesto por 12 módulos fotovoltaicos de 320 Wp agrupados en dos bancos, uno de 8 módulos y otro de 4 situados en distintos tejados con tres reguladores de carga solar de 60 A cada uno que vierten la energía a un bus de 24 VDC (cada grupo de 4 placas usa un regulador). El subsistema eólico está compuesto por un generador de 800 W y un regulador de 40 A conectado al bus de 24 VDC y a una carga “dummy load” para los excesos de generación: cuando las baterías están cargadas y el viento sigue generando electricidad. El bus de 24 VDC alimenta a las baterías con capacidad de 1830 Ah para una autonomía de 2 días de la casa y a un inversor de potencia total 5 kW nominales con salida a 230 V alterna monofásica.

El exceso de energía del aerogenerador será consumido por resistencias Dummy Load para calentamiento de Agua Caliente Sanitaria ACS.

La instalación solar de 8 módulos está situada en el tejado más amplio orientadas al sur para maximizar la energía generada y dispone de regulación mecánica manual en altura para optimizar la potencia generada en función de los meses, la instalación de 4 placas restante está en el otro tejado. El número de placas es de 12, instaladas de esta forma para evitar la acción de las sombras entre ellas y repartir el peso del conjunto en las cubiertas.

En resumen, la instalación está compuesta de:

GENERACIÓN ELÉCTRICA:
- Módulos fotovoltaicos encargados de la captación de la energía solar y su transformación a energía eléctrica.
- Estructuras soporte, encargados de sustentar, orientar, inclinar y fijar los módulos.
- Aerogenerador encargado de la captación de la energía del viento y su transformación a energía eléctrica.
- Torre de soporte y cimentación.

SISTEMA DE 24 VDC:
- Cargador de baterías desde paneles solares.
- Cargador de baterías desde generador eólico.
- Dummy load para calentar Agua Caliente Sanitaria en periodos de exceso de generación eólica.
- Baterías de alta capacidad para almacenamiento de la energía.
- Sistema de protecciones fusibles para 24 VDC.
SISTEMA DE ADAPTACIÓN DE POTENCIA

- Inversor, encargado de transformar la energía generada de corriente continua a corriente alterna para poder ser inyectada en la red interior.
- Medición y contaje de parámetros eléctricos.

SISTEMA DE PROTECCIÓN:

- Protecciones por dispositivos, encargados de proteger la instalación y las personas frente a sobrecargas, cortocircuitos, sobretensiones y contactos indirectos.
- Puesta a tierra, encargadas de proteger a las personas contra corrientes de defecto.

CABLEADO:

- Cableado, encargados de la interconexión entre los diferentes elementos de la instalación.

SISTEMA DE SUPERVISIÓN DE LA PRODUCCIÓN:

- Medidores de energía para determinar el consumo y la totalización del mismo.

1.14 Componentes del sistema híbrido eólico-solar

1.14.1 Placas fotovoltaicas

En el mercado existen placas fotovoltaicas con tensiones de pico adecuadas a instalaciones con tensiones nominales de 6, 12, 24 (la empleada) ó 48 V.

El número total de células que utiliza cada panel va a depender de la tensión de pico que sea necesaria y de la potencia máxima que debe entregar el panel.

Los paneles existentes en el mercado se pueden clasificar en varios grupos:

- Paneles solares de silicio: son los más abundantes y los más comunes. Pueden llegar a una vida útil de hasta 40 años sin requerir mucho mantenimiento. Entre ellos podemos encontrar los formados por celdas monocristalinas, en donde se cortan de un solo cristal de silicio (imagen 8) y los formados por celdas policristalinas, fabricados a partir de cristales pequeños múltiples de silicio (imagen 9). Rondan una eficacia del 15-17%. Asimismo existen los paneles de silicio amorfo, pero es un silicio en forma no cristalina con defectos en sus enlaces atómico, lo que no lo hace tan bueno como los dos anteriores, con un rendimiento próximo al 7%.
Imagen 8 (izquierda) e Imagen 9 (derecha), células de silicio monocristalino y policristalino, respectivamente. [18]

- Paneles solares de capa fina: consiste en una sustancia absorbente solar rociada sobre una capa, aplicada con gas a una capa o, también, de una tinta solar impresa sobre una capa, que la hace más fina, más barata, flexible pero menos eficiente. Se rocia sobre el silicio amorfo ya que esta técnica utiliza muy poca cantidad de silicio.

- Paneles de película delgada: paneles formados por otros tipos de productos químicos que se mezclan para formar una película delgada de eficiencia similar a las placas de silicio. Utilizan una clase más complicada de reacción química y varios de estos productos químicos son muy tóxicos. Los más comunes son los CIGS (cobre, indio, galio y selenio), telurio de cadmio y CIS (cobre, indio y selenio).

Existen otro tipo de paneles y/o células, como los paneles con capas finas semi-transparentes, con las que se puede reemplazar los vidrios polarizados de las ventanas, u otros tipos de paneles con productos químicos que aún se están desarrollando en los laboratorios y que en un futuro cercano podremos disponer para mejorar la eficiencia y rendimiento de la instalación.

De esta manera, se buscaran placas solares fotovoltaicas de silicio monocristalino al presentar una de las mayores eficiencias y ser las más adecuadas en el uso habitual y en aplicaciones solares.

1.14.1.1 Paneles fotovoltaicos A-320M GS, Atersa

Las placas escogidas para la realización de la vivienda con un sistema híbrido eólico-solar son las placas A-320M GS, de la casa Atersa.
-Características:

Las placas fotovoltaicas A-320M GS, son unas placas solares innovadoras de la marca Atersa que tienen una potencia máxima de hasta 320 Wp. Presentan también un funcionamiento eléctrico excepcional valorado por los consumidores y una alta eficiencia, de aproximadamente 16,5 %. Todas las placas de más de 50 W tienen diodos by-pass.

Disponen de una garantía de 10 años contra efectos de fabricación y una garantía de 25 años en rendimiento (83 % de la potencia de salida).

Imagen 10 - Placas fotovoltaicas A-320M GT. Atersa.

En esta tabla se muestran las especificaciones técnicas de las placas A-320M GS.

<table>
<thead>
<tr>
<th>Especificación de series</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. de Modelo</td>
<td>A-320M GS</td>
</tr>
<tr>
<td>Garantía de producto</td>
<td>10 Años</td>
</tr>
<tr>
<td>Características Eléctricas en STC</td>
<td></td>
</tr>
<tr>
<td>Potencia máxima (Pmax)</td>
<td>320 Wp</td>
</tr>
<tr>
<td>Tensión en el punto de máxima potencia (Vmax)</td>
<td>37 V</td>
</tr>
<tr>
<td>Corriente en el punto de máxima potencia (Imax)</td>
<td>8.65 A</td>
</tr>
<tr>
<td>Tensión en circuito abierto (Voc)</td>
<td>45.8 V</td>
</tr>
<tr>
<td>Corriente de cortocircuito (Isc)</td>
<td>9.1 A</td>
</tr>
<tr>
<td>Eficiencia</td>
<td>16.49 %</td>
</tr>
<tr>
<td>Tolerancia de potencia (+)</td>
<td>0/+5 %</td>
</tr>
<tr>
<td>Características Eléctricas en NOCT</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Temperatura</td>
<td>46±2 °C</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Características térmicas</td>
<td></td>
</tr>
<tr>
<td>Rango de Temperatura</td>
<td>-40~85 °C</td>
</tr>
<tr>
<td>Coeficiente de temperatura de Pmax</td>
<td>-0.43 %/°C</td>
</tr>
<tr>
<td>Coeficiente de temperatura de Voc</td>
<td>-0.32 %/°C</td>
</tr>
<tr>
<td>Coeficiente de temperatura de Isc</td>
<td>0.02 %/°C</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Parámetros del sistema</td>
<td></td>
</tr>
<tr>
<td>Tensión máxima del sistema</td>
<td>1000 V</td>
</tr>
<tr>
<td>Límite de corriente</td>
<td>15 A</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Características mecánicas</td>
<td></td>
</tr>
<tr>
<td>Dimensiones (A/A/F)</td>
<td>1956x992x50 mm</td>
</tr>
<tr>
<td>Peso</td>
<td>22.5 kg</td>
</tr>
<tr>
<td>Tipo de células</td>
<td>Monocristalino</td>
</tr>
<tr>
<td>Tamaño de las células</td>
<td>156×156 mm</td>
</tr>
<tr>
<td>Número de células</td>
<td>72</td>
</tr>
<tr>
<td>Tipo de vidrio</td>
<td>templado</td>
</tr>
<tr>
<td>Grosor de vidrio</td>
<td>4 mm</td>
</tr>
<tr>
<td>Tipo de trama</td>
<td>aleación de aluminio anodizado</td>
</tr>
<tr>
<td>No. de diodos Bypass incorporados</td>
<td>3</td>
</tr>
</tbody>
</table>
Memoria Descriptiva

<table>
<thead>
<tr>
<th>Caja de protección de uniones</th>
<th>IP 67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de conector</td>
<td>MC4</td>
</tr>
<tr>
<td>Cables</td>
<td>4 mm²</td>
</tr>
<tr>
<td>Largo de cable</td>
<td>1100 mm</td>
</tr>
</tbody>
</table>

Tabla 5 - Especificaciones técnicas de las placas A-320M GS a 1kW/m². Atersa.

Las placas disponen de diodos by-pass (3 uds) que protegen individualmente a cada panel de posibles daños ocasionados por sombras parciales.

Asimismo cada placa dispone de un diodo de Bloqueo que evita que el panel absorba flujo de corriente de otro grupo conectado a él en paralelo o de la batería por malfuncionamiento. Estos diodos son tipo Schottky, al tener la característica de una tensión umbral muy baja respecto de los diodos comunes, que asegura una disipación de potencia muy baja. Los modelos instalados son de $V_{RRM} = 100$ V y $I_F = 20$ amperios.

De esta manera conseguimos estabilizar los grupos en caso de distorsiones en el funcionamiento entre las placas de cada grupo.

1.14.1.2 Estructura de soporte

La estructura de soporte estará fabricada mediante perfilería homologada que estará dispuesta a la distancia adecuada para anclar los paneles a cada fila.

Estas bancadas tendrán la función de aguantar a los paneles y fijar la inclinación de los mismos, siendo regulables en 3 niveles para maximizar la producción solar.

Existirán anclajes a la cubierta. Los módulos quedarán sujetos a la bancada mediante soportes con forma de omega, de acero galvanizado, con tornillos.

El peso total estará repartido en dos bancos de 8 y 4 placas, en dos tejados diferentes.

La cubierta está diseñada para soportar el peso de las placas y la propia estructura.

La construcción y su instalación cumplirán con el Código Técnico de la Edificación.

El diseño, la ingeniería, construcción e instalación será por cuenta del adjudicatario de la partida de medición correspondiente, no siendo objeto del presente Proyecto.
1.14.2 Aerogenerador

El tipo de aerogenerador que vamos a emplear será uno de poca potencia, siendo ideal para viviendas.

Estos cumplen con los requisitos para que sean fáciles de montar, de mantener y sean adecuados para su uso cerca de poblado. Estos son:

- Mínimo ruido: este tipo de mini aerogeneradores no producen casi ruido, manteniendo este nivel entorno al 5% por encima del ruido ambiente, siendo prácticamente inapreciable para nuestro oído.
- Máxima eficiencia: la velocidad de viento que necesitan para empezar a operar es muy baja y pueden continuar funcionando a velocidades superiores a los 40 m/s. A demás, el rango óptimo de velocidad del viento suele ser bajo, por lo que todos los aerogeneradores situados en zonas de viento se mantienen en estas velocidades.
- Robustos: se fabrican con materiales que les permiten soportar fuertes vientos y ofrecer una larga vida de funcionamiento.
- Anticorrosivo: tratados con procesos químicos para que sean anticorrosivos y, en muchos casos, antisalinos.
- Herméticos: Sellados herméticamente en todas las juntas, de esta manera se evitan filtraciones de humedad y micropartículas que arrastra el aire, consiguiendo que no se deterioren con tanta facilidad. Por otro lado, también se consigue un menor mantenimiento y una mayor facilidad a la hora de montar el mini aerogenerador.

Cada vez más, los aerogeneradores están pensados para un uso compartido con la energía fotovoltaica, lo que nos da un plus de energía cada día que podemos usar para cubrir la demanda energética de la vivienda.

Dicho esto, vamos a buscar el aerogenerador que cumpla los requisitos anteriores y se adapte mejor a nuestra instalación.

1.14.2.1 Aerogenerador e230i800W de Kestrel

El aerogenerador escogido para la realización de la vivienda con un sistema híbrido solar-eólico es el aerogenerador Kestrel e230i 800 W.

Imagen 11 – Turbina Kestrel e230i 800 W. Kestrel.
-Características:

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Kestrel e230i Wind Turbine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Identification</td>
<td>0502-0800-012</td>
</tr>
<tr>
<td></td>
<td>0502-0800-024</td>
</tr>
<tr>
<td></td>
<td>0502-0800-048</td>
</tr>
<tr>
<td></td>
<td>0502-0800-110</td>
</tr>
<tr>
<td></td>
<td>0502-0800-200</td>
</tr>
<tr>
<td>Maximum Power</td>
<td>800W</td>
</tr>
<tr>
<td>Rated power at 11m/s</td>
<td>650W *</td>
</tr>
<tr>
<td>Annual energy capture at 5m/s average</td>
<td>1,280 MWh/Annum</td>
</tr>
<tr>
<td>(For average wind speed of 5m/s and 12m tower at sea level)</td>
<td></td>
</tr>
<tr>
<td>Rated sound level at 5m/s and 60m downwind</td>
<td><40dB</td>
</tr>
<tr>
<td>Sound level at 8m/s</td>
<td>12dB above ambient</td>
</tr>
<tr>
<td>Cut-in wind speed</td>
<td>2,5m/s</td>
</tr>
<tr>
<td>Cut-out wind speed</td>
<td>N/A</td>
</tr>
<tr>
<td>Maximum voltage on open circuit generator</td>
<td>60V(12) 120V(24) 250V(48)</td>
</tr>
<tr>
<td></td>
<td>500V (110V) 750V(200)</td>
</tr>
<tr>
<td>Output power form</td>
<td>Two wire DC</td>
</tr>
<tr>
<td>Rotor diameter</td>
<td>2,30m</td>
</tr>
<tr>
<td>Rotor swept area</td>
<td>4,15 m²</td>
</tr>
<tr>
<td>No. of blades</td>
<td>3</td>
</tr>
<tr>
<td>Speed control</td>
<td>Patented Pitch Control</td>
</tr>
<tr>
<td>IEC turbine class</td>
<td>Class II</td>
</tr>
<tr>
<td>Design life</td>
<td>20 years minimum</td>
</tr>
<tr>
<td>Survival wind speed</td>
<td>60m/s (134mph)</td>
</tr>
<tr>
<td>Tower top mass</td>
<td>40kg</td>
</tr>
<tr>
<td>Lateral thrust at 12m/s</td>
<td>450N</td>
</tr>
<tr>
<td>Speed Control</td>
<td>Passive pitch</td>
</tr>
<tr>
<td>Protection</td>
<td>IP55</td>
</tr>
</tbody>
</table>

Tabla 6 - Especificaciones técnicas de e230i. Kestrel.
La gráfica siguiente muestra la capacidad de generación respecto de la velocidad del viento:

Gráfica 3- Característica de generación respecto de la velocidad del viento. Kestrel.

Se pedirá el suministro e instalación de un poste tubular de 10 metros altura con bisagra para aerogenerador marca Kestrel, soporte en punta peso de 50 Kg, incluso trabajos de obra civil y hormigonado.

1.14.3 Regulador en carga

El regulador de carga es el aparato de la instalación encargado de controlar los procesos de carga y descarga de las baterías. Las tareas que realiza son:

- Evitar sobrecargas en las baterías: cuando las baterías han estado cargadas al máximo, evita que se siga suministrando corriente para cargarlas. De esta manera evita problemas en las baterías y, así, aumentar la vida útil de éstas.
- Impedir una mala carga de las baterías en los periodos de luz solar escasa, ya que en estos momentos, los paneles pueden ser que pasen corriente a las baterías en la dirección inversa, causando problemas. También evitan problemas cuando hay un exceso o disminución de viento.
- Usando reguladores de carga MPPT, podemos asegurarnos el funcionamiento del sistema en el punto de máxima potencia. Así, los MPPT buscan continuamente con un microprocesador el punto que da más corriente, que corresponde al punto de máxima potencia. Muy indicado para instalaciones fotovoltaicas de grandes potencias.
Los reguladores que hay actualmente en el mercado ya disponen de diversas protecciones como protección contra la inversión de la polaridad, contra las sobretensiones, contras las sobreintensidades, contra cortocircuito y contra la desconexión del módulo fotovoltaico o batería.

1.14.3.1 Regulador Solar Xantrex XW-MPPT60-150

El controlador de carga solar Xantrex XW es un controlador fotovoltaico (FV) que rastrea el punto de potencia eléctrica máxima de un campo FV con el fin de cargar las baterías mediante la máxima intensidad disponible. Durante la carga el Xantrex XW regula la tensión e intensidad de salida de las baterías basándose en la cantidad de energía disponible proveniente del campo FV y el nivel de carga de las baterías.

El XW puede utilizarse con sistemas de baterías de CC de 12, 24, 36, 48 y 60 voltios y puede cargar una batería de tensión nominal reducida mediante un campo de tensión nominal más elevada. Esto aporta más flexibilidad a los instaladores, que pueden utilizar cables más largos sin perjudicar la eficacia del sistema.

El XW incorpora un algoritmo dinámico de seguimiento del punto de máxima potencia (MPPT), concebido para maximizar la obtención de energía del campo FV. El MPPT ajusta constantemente los puntos de funcionamiento del campo para asegurarse de que éste permanece en el punto de máxima potencia. No interrumpe el almacenamiento de energía para efectuar un barrido del campo, como otros productos de la competencia. Esta característica es beneficiosa en todo tipo de condiciones de luz, especialmente en áreas con nubosidad variable y condiciones solares que cambien rápidamente.

-Características:

- Seguimiento del punto de máxima potencia (MPPT) controla el suministro de la potencia máxima disponible del campo FV al banco de baterías.
- Protección integrada contra fallos a tierra del campo FV. Diseño refrigerado por convección, altamente fiable.
- No requiere ventilador; un disipador térmico de aluminio troquelado de grandes dimensiones permite producir el máximo de corriente hasta los 45° C sin disminución de la potencia por causas térmicas.
- Algoritmos de carga seleccionables de dos o tres etapas, con ecualización manual, maximiza el rendimiento del sistema y prolongar la vida de las baterías.
- Permite la conexión en paralelo y coordinada de hasta 16 módulos.
- Protección de las entradas contra sobretensiones y subtensiones, protección de las salidas contra sobreintensidades y protección contra realimentación (intensidad inversa) (la pantalla LCD muestra mensajes de aviso y fallo cuando la unidad se desconecta como medida de seguridad).
Protección contra sobretensión y disminución de potencia cuando la producción de potencia y la temperatura ambiente son elevadas.

Sensor de temperatura de las baterías (BTS) incluido; permite la carga compensada por temperatura de las baterías.

Tabla 7 - Especificaciones Técnicas. Xantrex.
1.14.3.2 **Regulador eólico Kestrel (e300-002-024) 1000W 40 A**

Las turbinas de viento generan una energía incontrolada que debe ser regulada para facilitar el uso correcto y seguro del almacenamiento en baterías. Este controlador de carga utiliza medios electrónicos para regular la energía proveniente del aerogenerador y aplicar la tensión de carga correcta al banco de baterías instalado.

La potencia de la turbina de viento se entrega a través del regulador al sistema de baterías. El controlador monitorea la batería / tensión del sistema y suministra la energía para el consumo de la carga y de la batería. Si la turbina eólica está produciendo un exceso de energía, el controlador desvía dicha energía sobre una resistencia de desvío llamada Dummy Load. Dicho exceso de energía se convierte entonces en calor en la resistencia.

El controlador es completamente automático y no requiere acción del usuario.

Este regulador utiliza el control de derivación electrónica dinámica. Toda la energía disponible es compartida entre la carga de los consumidores, la carga de la batería y el dumping. El consumo de carga se suministra siempre de acuerdo al nivel de tensión de las baterías. Cuando la batería está completamente cargada, el regulador "Flota" no cargando la batería, aunque está siempre conectado.

Cualquier exceso de energía se convierte en calor. El controlador desvía esta energía no deseada por el control de derivación electrónico.

Se ha desestimado la posibilidad de buscar un regulador de carga híbrido, ya que éstos pueden sufrir de algún problema al tener que controlar a dos dispositivos diferentes, por tanto buscaremos un regulador solar MPPT y uno independiente para la parte eólica.

En la siguiente página se muestran las especificaciones técnicas del regulador de carga eólico Kestrel, que es del mismo fabricante que el aerogenerador, ya que éste nos proporcionaba los aparatos necesarios para el correcto funcionamiento del aerogenerador.
-Características:

<table>
<thead>
<tr>
<th>Controller Model</th>
<th>Rated Power</th>
<th>Maximum Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 0102-1000-012 (é3004-002-012)</td>
<td>1000W</td>
<td>60A</td>
</tr>
<tr>
<td>Type 0102-1000-024 (é3004-002-024)</td>
<td>1000W</td>
<td>40A</td>
</tr>
<tr>
<td>Type 0102-1000-048 (é3004-002-048)</td>
<td>1000W</td>
<td>25A</td>
</tr>
</tbody>
</table>

- Tabla 8 - Especificaciones del regulador eólico. Kestrel

1.14.4 **Diversion Dummy Load o Carga Artificial**

En instalaciones con aerogenerador no debe considerarse la posibilidad de trabajar “sin carga” en condiciones de fuertes vientos, ya que puede traer consecuencias muy graves, e incluso a la autodestrucción. En momentos de viento y sin carga, el aerogenerador puede girar tan rápido que las cuchillas se pueden desprender o, en el menor de los casos, puede producir tensiones muy elevadas y deformaciones mecánicas de manera que se desgastarán muy rápido. En otras palabras, la turbina opera correctamente cuando se encuentra bajo una carga.

De esta manera, el regulador de la turbina controla la tensión del banco de baterías. Cuando estas ya están cargadas, conecta otro tipo de cargas para evitar que la tensión de las baterías siga creciendo. Estas cargas son unas cargas llamadas “cargas de derivaición” o “cargas fantasma”. Cuando la tensión de la batería ha caído lo suficiente, el regulador de
carga del aerogenerador detecta la condición y conmuta nuevamente la turbina eólica para la carga de las baterías.

Estas cargas de derivación se emplean como cargas calefactoras, que convierten la energía en calor, en nuestro caso como calentadoras, para calentar el agua de nuestro sistema de ACS.

Imagen 12- resistor de 10 Ω. Como se observa en la imagen, muy pequeño. [26]

1.14.4.1 24 Volt DC Resistencia calefactora sumergible

Se va a buscar unas cargas que cuando disipen la energía de exceso del aerogenerador calienten el agua que tenemos de un sistema de ACS de la vivienda.

Escogemos una carga sumergible, de Missouri Wind and Solar, especializada en productos para energías solares y eólicas, 24VDC Submersible Water Heater Element.

No se ha podido escoger las dummy load de la misma marca que el aerogenerador y el regulador de carga eólico puesto que no tenían dummy loads de elevada capacidad para disipar la energía excesiva.

- Características

La potencia de disipación es de 600 W a 24 V.

Sabiendo que el aerogenerador es de 800 W, se considera suficiente con instalar dos resistencias en paralelo para disponer de toda la energía al sistema de ACS.

La resistencia disipadora dummy load del sistema combinado eólico y solar fotovoltaico estará instalada en el calentador de agua del sistema de ACS solar de la vivienda. De esta forma se aprovechará dicha energía excedente para el apoyo al calentamiento del ACS de uso de la vivienda.
1.14.5 **Baterías o Acumuladores**

En los sistemas tanto solares como eólicos, la energía se produce en el momento en el que se dan las condiciones para ello, pero no siempre se puede consumir o no es necesario consumirla toda, por lo que se hace necesario el poder almacenar dicha energía para emplearla en otros periodos, por ejemplo, cuando hay nula o poca insolación o cuando no hay viento.

El siguiente paso será determinar las baterías más adecuadas para nuestra instalación híbrida.

Antes de ello vamos a aclarar tres términos:

- **Profundidad de descarga**: éste es el valor en tanto por ciento que se ha empleado del acumulador en una descarga.
- **Autodescarga**: es el proceso por el cual la batería, sin estar en uso, tiende a descargarse.
- **Eficiencia de carga**: es la relación entre la energía empleada para cargar la batería y la que realmente almacena.

Aclarados los términos, vamos a buscar en el mercado que tipos de baterías tenemos. Entre las que hay destacamos para nuestra aplicación las siguientes:

- **Baterías de Níquel-Cadmio (Ni-Cd)**: estas baterías tiene el electrolito alcalino, utilizan hidróxido de potasio, que es básico, en lugar de cloruro de amonio o de zinc. Admiten descargas profundas de hasta el 80 % de la capacidad nominal y presentan un bajo coeficiente de autodescarga. Aunque presentan unas cualidades excepcionales, tienen un alto coste si las comparamos con las baterías ácidas.
Baterías de Plomo-ácido: son las más empleadas en los sistemas de generación fotovoltaica puesto que se adaptan a cualquier régimen de carga y su precio no es muy elevado. Éstas pueden dividirse, a la vez, en tres tipos:

- Baterías de Plomo puro: presenta una autodescarga muy baja (1-3 % mensualmente), tienen una vida muy larga (de hasta 20 años) y su eficiencia de carga puede llegar al 98 %. Los problemas: el precio y la mala adaptación a los ciclos de servicio.

- Baterías de Plomo-Antimonio: tiene un precio mucho más bajo que cualquier otra batería ácida, pero tiene una alta autodescarga (entre el 10-15 %) y tienen, además, una vida útil muy corta.

- Baterías de Plomo-Calcio: son las más adecuadas para aplicaciones solares. Presentan una muy baja autodescarga (de 1 % mensualmente) y tienen una vida útil bastante alta (de unos 10 años o más). Tiene un consumo de electrolito muy reducido, por lo que ha dado lugar a baterías herméticas y libres de mantenimiento, por lo que serían las más adecuadas para nuestro sistema.

1.14.5.1 Baterías U-Power, OPZV

Las baterías trabajan conjuntamente con los sistemas generadores para alimentar las cargas de la vivienda. El trabajo se distribuye de esta manera:

- Durante el día, módulos fotovoltaicos y aerogenerador generan corriente. Si la corriente que entregan es mayor que la que necesita la vivienda, se almacenará en las baterías. Por el contrario, si esta corriente es menor que la que se necesita, las baterías deberán aportar el diferencial de corriente para satisfacer las necesidades de energía de la vivienda.
- Durante la noche, los paneles fotovoltaicos no producirán, pero el aerogenerador (dependiendo de las condiciones del viento que haya) puede seguir generando. Si la vivienda necesita más energía que la que le puede entregar el aerogenerador, las baterías deben aportar el diferencial de la energía que se necesita. Si sobra energía, se almacenará para un próximo uso.

- En cualquier momento del día, si las baterías no están cargadas al máximo, se almacenará esta energía mientras no sea usada por el consumo. Si por el contrario estuvieran cargadas, el regulador solar no cargará las baterías y el regulador eólico descargará sobre la Dummy Load.

-Características

Las baterías seleccionadas para la instalación solar fotovoltaica son unas Baterías OPzS Solar 1830, de la marca Victron. Tienen un almacenaje de 1830Ah y pueden aguantar hasta 1500 ciclos al 80% de profundidad de descarga. Estos modelos tienen baterías estacionarias para aplicaciones solares con un alto ciclo de descarga, un muy buen mantenimiento y una alta vida útil.

Estas baterías son de 2V pero vienen 6, por lo cual cada banco es de 12V.

Diseñadas para una vida útil de más de 20 años a 20ºC. Bajo mantenimiento, en condiciones normales de operación a 20ºC, y el agua destilada debe ser rellenada cada 2-3 años.

Como contrapartida presentan un rendimiento, si bien muy elevado, es del 79% en el conjunto.
En la siguiente imagen se muestran las características técnicas de las baterías.

<table>
<thead>
<tr>
<th>OPzS Solar type</th>
<th>OPzS Solar 1830</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal capacity (120 hr / 20°C)</td>
<td>1830 Ah</td>
</tr>
<tr>
<td>Capacity (10 hr / 20°C)</td>
<td>1278 Ah</td>
</tr>
<tr>
<td>Capacity 2 / 5 / 10 hours (% of 10hr capacity)</td>
<td>60 / 85 / 100 (@ 68°F/20°C, end of discharge 1,8 Volt per cell)</td>
</tr>
<tr>
<td>Capacity 20 / 24 / 48 / 72 hours (% of 120hr capacity)</td>
<td>77 / 80 / 89 / 95 (@ 68°F/20°C, end of discharge 1,85 Volt per cell)</td>
</tr>
<tr>
<td>Capacity 100 / 120 / 240 hours (% of 120hr capacity)</td>
<td>99 / 100 / 104 (@ 68°F/20°C, end of discharge 1,85 Volt per cell)</td>
</tr>
<tr>
<td>Self-discharge @ 70°F/20°C</td>
<td>3% per month</td>
</tr>
<tr>
<td>Absorption voltage (V) @ 70°F/20°C</td>
<td>2,35 to 2,50 V/cell (28,2 to 30,0 V for a 24 Volt battery)</td>
</tr>
<tr>
<td>Float voltage (V) @ 70°F/20°C</td>
<td>2,23 to 2,30 V/cell (26,8 to 27,6 V for a 24 Volt battery)</td>
</tr>
<tr>
<td>Storage voltage (V) @ 70°F/20°C</td>
<td>2,18 to 2,22 V/cell (26,2 to 26,6 V for a 24 Volt battery)</td>
</tr>
<tr>
<td>Float design life @ 70°F/20°C</td>
<td>20 years</td>
</tr>
<tr>
<td>Cycle design life @ 80% discharge</td>
<td>1500</td>
</tr>
<tr>
<td>Cycle design life @ 50% discharge</td>
<td>2500</td>
</tr>
<tr>
<td>Cycle design life @ 30% discharge</td>
<td>4000</td>
</tr>
<tr>
<td>Dimensions (LxWxH, mm)</td>
<td>210 x 275 x 711</td>
</tr>
<tr>
<td>Dimensions (LxWxH, inches)</td>
<td>8,3 x 10,8 x 28</td>
</tr>
<tr>
<td>Weight without acid (kg / pounds)</td>
<td>66 / 146</td>
</tr>
<tr>
<td>Weight with acid (kg / pounds)</td>
<td>93 / 205</td>
</tr>
</tbody>
</table>

Tabla 8 - Características de las baterías. Victron.

1.14.6 **Inversor de corriente**

Los inversores tienen la función de convertir la corriente continua que reciben, en este caso de la instalación híbrida eólica y solar, en corriente alterna para poder alimentar las cargas y receptores que trabajan en CA, que suelen ser la mayoría.

Para su funcionamiento utilizan unos dispositivos electrónicos que actúan a modo de interruptores permitiendo interrumpir las corrientes e invirtiendo su polaridad.

Para esta instalación, buscamos un inversor con alta potencia. Los inversores para aplicaciones residenciales y solares dan muy buenas prestaciones para las instalaciones híbridas.
1.14.6.1 **Inversor Cargador Energía Solar 24 V 5000 W, Victron**

Para el cálculo del inversor, deberemos tener en cuenta todas las potencias de la vivienda, como en el caso anterior, en el momento más desfavorable del año. Esta potencia se da en los meses de verano y es de **13.010 W/día.**

Como la tensión en alterna es de 230 V y el IGA será de 25 A para la vivienda, la potencia máxima que podremos tener será de 5750 W.

Se ha escogido el **Inversor Cargador Victron Energía Solar 24V 5000W**, de la casa **Victron**, que presenta potencia pico de hasta 10.000W.

Se ha escogido este inversor con un coeficiente de simultaneidad de los aparatos conectados al mismo tiempo y no se espera una demanda de potencia tan elevada al estar distribuidas las cargas entre un bus de CC y otro de CA.

Imagen 16 - Inversor-cargador Victron 24 V 5000W. *Victron.*
-Características:

<table>
<thead>
<tr>
<th>Inversor Phoenix</th>
<th>24/5000</th>
<th>48/5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVERSOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rango tensión entrada (V CC)</td>
<td>19 – 33</td>
<td>36 – 66</td>
</tr>
<tr>
<td>Salida</td>
<td>Tensión salida: 230 VAC ± 2%</td>
<td>Frecuencia: 50 Hz ±</td>
</tr>
<tr>
<td>Potencia salida cont. 25 ºC (kW)</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>Potencia salida cont. a 25 ºC (W)</td>
<td>4500</td>
<td>4500</td>
</tr>
<tr>
<td>Potencia salida cont. 40 ºC (W)</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>Potencia punta (W)</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>Máxima eficiencia (%)</td>
<td>94</td>
<td>95</td>
</tr>
<tr>
<td>Potencia con carga cero (W)</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>GENERAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relé multifuncional (4)</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>Protección (2)</td>
<td>a - h</td>
<td></td>
</tr>
<tr>
<td>Características comunes</td>
<td>Temp. funcionamiento: -20 to +50ºC (refrigeración por ventilador)</td>
<td>Humedad (sin condensado): máx. 95%</td>
</tr>
<tr>
<td>CARCASA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Características comunes</td>
<td>Material y color: aluminio (azar RAL 5012)</td>
<td>Protección: IP 21</td>
</tr>
<tr>
<td>Conexión de batería</td>
<td>Cuatro pernos M8 (2 conexiones positivas y 2 negativas)</td>
<td></td>
</tr>
<tr>
<td>Conexión CA 230 V</td>
<td>Abrazadera ajustable 13mm² (AWG 6)</td>
<td></td>
</tr>
<tr>
<td>Peso (kg)</td>
<td>66 lb</td>
<td>30 kg</td>
</tr>
<tr>
<td>Dimensiones (hxaxf en mm)</td>
<td>17,5 x 13,0 x 9,6 pulgadas</td>
<td>444 x 328 x 240 mm</td>
</tr>
<tr>
<td>ESTÁNDARES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seguridad</td>
<td>EN 60335-1, EN 60335-2-29</td>
<td></td>
</tr>
<tr>
<td>Emisiones/Inmunidad</td>
<td>EN55014-1, EN 61000-3-2 / EN 55014-2, EN 61000-3-3</td>
<td></td>
</tr>
</tbody>
</table>

1) Puede ajustarse a 60 Hz, 120 V/60 Hz si se solicita
2) Protección
 a. Cortocircuito de salida
 b. Sobrecarga
 c. Tensión de batería excesiva
 d. Tensión de batería muy baja
 f. 230 VCA en salida del inversor
 g. Tensión de ondulación de entrada excesiva
 h. Temperatura demasiado alta
3) Sin carga lineal, factor de cresta 3:1
4) Relé multifunción que puede configurarse para alarma general, baja tensión CC o función de señal de inicio de grupo generador.

Tabla 9 - Características Inversor Victron Energía Solar 24V 5000W. Victron.
1.14.7 Protecciones eléctricas

En este apartado se incluirán los sistemas de protecciones destinados a la protección de las personas y de la instalación.

Los sistemas fotovoltaicos conectados a la red interior están sometidos a la aplicación del Reglamento Electrotécnico de Baja Tensión. Como en cualquier otro tipo de instalación eléctrica de baja tensión, existe la posibilidad de descarga eléctrica y/o cortocircuito. Aunque el riesgo es muy bajo, para evitarlo se incluyen los dispositivos de protección magnetotérmicos, fusibles, diferenciales, tierras, etc., encargados de la protección de la propia instalación y de su interconexión con la red eléctrica, así como de las maniobras de operación necesarias. Estos dispositivos y elementos constituirán las protecciones de continua y alterna en baja tensión.

La instalación cumplirá todas las consideraciones técnicas y de seguridad expuestas en la reglamentación indicada anteriormente.

1.14.7.1 Protecciones del sistema de corriente continua

Al ser una instalación en continua, cada serie tiene su terminal positivo y negativo, por lo que se realizará protección contra cortocircuitos mediante fusibles.

1.14.7.1.1 Protección contra sobretensiones

Las sobretensiones transitorias son un aumento de voltaje de muy corta duración, medido entre conductores o entre conductor y tierra. Pueden deberse a descargas eléctricas atmosféricas (rayos), a procesos de conmutación (apertura y cierre de circuitos eléctricos) o a averías.

En instalaciones fotovoltaicas las sobretensiones pueden darse en los momentos de apertura de los circuitos alimentados por inversores principalmente.

Hay 3 tipos de protecciones frente a sobretensiones:

- Protección Tipo 1 (Basta): frente a corrientes producidas por descargas directas de rayo. Se emplean Descargadores de Corriente de Rayo.
- Protección Tipo 2 (Media): frente a sobretensiones de rayo indirectas, conmutaciones, inducciones, etc. Se emplean Descargadores de Sobretensiones.
- Protección Tipo 3 (Fina): específica de equipos finales, suele ser de parámetros reducidos en comparación con los dos tipos anteriores. Se emplean varistores.
Imagen 17 - Tipos de impulso y características. Tipo 1 – impacto directo de rayo y Tipo 2 – impacto lejano o por cese de conmutación. Obo Bettermann.

- Protección sobretensiones CC

El presente proyecto abarca dos tipos diferenciados de protecciones, una tipo 1 para el aerogenerador, susceptible de recibir impactos directos de rayos, y las placas solares y sistemas de alimentación en alterna, protegidos con elementos de tipo 2 para evitar sobretensiones de conmutación en placas e inversores.

Para el aerogenerador se instalan dos protecciones tipo 1 monofásicas a pie de torre de la firma OBO-BETTERMANN ref 5096-86-3, un descargador directo a tierra e indicado para:

- Conexión equipotencial de protección contra el rayo.
- Capacidad de descarga de 50 kA.
- Supresor de corrientes repetitivas de red de 125 kA Ipico.

En la página siguiente se muestra la protección tipo 1 para el aerogenerador y sus características.
Imagen 18 - Descargador combinado tipo 1. *Obo Bettermann.*

| Tabla 10 - Características del descargador tipo 1. *Obo Bettermann.*
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidad de división TE (17,5 mm)</td>
</tr>
<tr>
<td>Tipo de protección</td>
</tr>
<tr>
<td>Sección de conexión, conductor rígido</td>
</tr>
<tr>
<td>Sección de conexión, conductor multifilar</td>
</tr>
<tr>
<td>Sección de conexión, conductor flexible</td>
</tr>
<tr>
<td>Tensión nominal</td>
</tr>
<tr>
<td>Clasificación según la norma EN 61643-11</td>
</tr>
<tr>
<td>Clasificación según norma IEC 61643-11</td>
</tr>
<tr>
<td>LPZ</td>
</tr>
<tr>
<td>Valor cresta de corriente de rayo (10/350)</td>
</tr>
<tr>
<td>Corriente de impulso tipo rayo (10/350) [total]</td>
</tr>
<tr>
<td>Intensidad nominal de descarga (8/20)</td>
</tr>
<tr>
<td>Corriente de descarga (8/20) [total]</td>
</tr>
<tr>
<td>Nivel de protección</td>
</tr>
<tr>
<td>Tiempo de reacción</td>
</tr>
<tr>
<td>Capacidad de extinción de corriente de seguimiento</td>
</tr>
<tr>
<td>Máx. protección previa por fusibles</td>
</tr>
<tr>
<td>Gama de temperatura</td>
</tr>
<tr>
<td>Código</td>
</tr>
</tbody>
</table>
A la entrada del regulador eólico se instalarán dos descargadores tipo 2 de 75V ref 509957-9 para la protección del mismo por efectos atmosféricos y por sobretensiones del generador, específico para instalaciones eólicas. Dispone de capacidad de descarga hasta 40 kA, asimismo protección contra sobretensiones mediante varistor de óxido de zinc que logra una alta capacidad de derivación de la corriente en caso de sobretensión.

<table>
<thead>
<tr>
<th>Parte activa descargador de sobretensiones 75 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>V20-C 0-75</td>
</tr>
</tbody>
</table>

Imagen 19 - Descargador combinado tipo 2. *Obo Bettermann.*

<table>
<thead>
<tr>
<th>Tabla 11 - Características del descargador tipo 2 y esquema. Obo Bettermann.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión máxima de funcionamiento</td>
</tr>
<tr>
<td>Tensión máxima de funcionamiento DC</td>
</tr>
<tr>
<td>Clasificación según la norma EN 61643-11</td>
</tr>
<tr>
<td>Clasificación según norma IEC 61643-11</td>
</tr>
<tr>
<td>LPZ</td>
</tr>
<tr>
<td>Intensidad nominal de descarga (8/20)</td>
</tr>
<tr>
<td>Máx. intensidad de descarga</td>
</tr>
<tr>
<td>Nivel de protección</td>
</tr>
<tr>
<td>Tiempo de reacción</td>
</tr>
<tr>
<td>Máx. protección previa por fusibles</td>
</tr>
<tr>
<td>Gama de temperatura</td>
</tr>
<tr>
<td>Modo de protección</td>
</tr>
<tr>
<td>Unidad de división TE (17,5 min)</td>
</tr>
</tbody>
</table>

Código 509957-9
Memoria Descriptiva

Para las placas se instalará la protección tipo 2 ref 509362-B, en este caso combina el modo de protección contra sobretensiones mediante un varistor que permite descargar a tierra y posteriormente un conmutar con un fusible que al fundir separa el circuito de tierra y evita que quede cortocircuitado. Soporta corrientes nominales de descarga de hasta 30 kA y corrientes máximas de descarga de hasta 50 kA.

Imagen 20 - Descargador combinado tipo 2. *Obo Bettermann.*

Imagen 12 - Características del descargador tipo 2 y esquema. *Obo Bettermann.*
1.14.7.2 Protecciones sistemas corriente alterna

Todas las funciones de protección del inversor (vigilante de aislamiento, máxima y mínima tensión y frecuencia) son realizadas internamente y por tanto no accesibles. Consta de protecciones de mínima y máxima tensión ajustadas al +/- 5% respectivamente de la tensión nominal de la red y de protección de mínima y máxima frecuencia ajustada a 51 y 49 Hz respectivamente.

La norma MI-BT ICT 40 establece unos rangos máximos de distorsión armónica que debe cumplir la instalación generadora, de acuerdo con todas las partes, incluidas las compañías suministradoras. El propio fabricante del inversor establece una tasa máxima de distorsión en la señal inferior al 2% (THD) con lo que cumple con la normativa vigente.

Posterior al inversor se sitúa la caja general de protección y un conmutador con paso por cero para posible conexión futura a la red externa de la Compañía. En esta caja se alojan los elementos de protección de las líneas de conexión.

En la Memoria de Planos se muestra el esquema unifilar de la instalación solar y eólica, desde la generación de corriente en los módulos fotovoltaicos y el aerogenerador, hasta el punto de conexión en la instalación interior donde se ubicará el interruptor general e interruptor diferencial.

A la salida del inversor, se instalarán las protecciones magnetotérmicas, limitadoras, diferenciales, etc para la protección contra sobrecargas, cortocircuitos y contactos directos e indirectos.

- Protección contra sobretensiones:

Se instala la protección tipo 2 ref 509465-0, en este caso combina el modo de protección contra sobretensiones mediante un varistor que permite descargar a tierra y posteriormente un conmutar con un fusible que al fundir separa el circuito de tierra y evita que quede cortocircuitado.

Dispone de capacidad de descarga hasta 40 kA y protege de sobretensiones superiores a 230 V, lo cual protege a la instalación frente un posible malfuncionamiento del inversor.

En la siguiente página se muestra el descargador de sobretensiones unipolar y las características.
Memoria Descriptiva

Descargador de sobretensiones unipolar + NPE

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Tensión máxima de funcionamiento V</th>
<th>Ejecución</th>
<th>Emc</th>
<th>Peso</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>V20-C 1+NPE-280</td>
<td>230</td>
<td></td>
<td>1</td>
<td>22.300</td>
<td>5094 66 0</td>
</tr>
</tbody>
</table>

€/u.

Imagen 21 - Descargador combinado unipolar tipo 2. *Obo Bettermann.*

<table>
<thead>
<tr>
<th>Tensión nominal</th>
<th>U<sub>N</sub> V</th>
<th>230</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasificación según la norma EN 61643-11</td>
<td>Tipo 2</td>
<td></td>
</tr>
<tr>
<td>Clasificación según norma IEC 61643-11</td>
<td>clase II</td>
<td></td>
</tr>
<tr>
<td>LPZ</td>
<td>1-2</td>
<td></td>
</tr>
<tr>
<td>Intensidad nominal de descarga (8/20)</td>
<td>I<sub>n</sub> kA</td>
<td>20</td>
</tr>
<tr>
<td>Corriente de descarga (8/20) [total]</td>
<td>I<sub>Total</sub> kA</td>
<td>40</td>
</tr>
<tr>
<td>Máx. intensidad de descarga</td>
<td>I<sub>max</sub> kA</td>
<td>40</td>
</tr>
<tr>
<td>Nivel de protección</td>
<td>U<sub>p</sub> kV</td>
<td>< 1,3</td>
</tr>
<tr>
<td>Tiempo de reacción</td>
<td>t<sub>A</sub> ns</td>
<td>< 25</td>
</tr>
<tr>
<td>Máx. protección previa por fusibles</td>
<td>A</td>
<td>125</td>
</tr>
<tr>
<td>Gama de temperatura</td>
<td>Θ °C</td>
<td>-40 - +80</td>
</tr>
<tr>
<td>Unidad de división TE (17,5 mm)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Tipo de protección</td>
<td>IP20</td>
<td></td>
</tr>
<tr>
<td>Sección de conexión, conector rígido</td>
<td>mm<sup>2</sup></td>
<td>2,5 - 35</td>
</tr>
<tr>
<td>Sección de conexión, conector multifilar</td>
<td>mm<sup>2</sup></td>
<td>2,5 - 35</td>
</tr>
<tr>
<td>Sección de conexión, conector flexible</td>
<td>mm<sup>2</sup></td>
<td>2,5 - 25</td>
</tr>
<tr>
<td>Corriente de impulso tipo rayo (10/350) (NPE)</td>
<td>I<sub>imp</sub> kA</td>
<td></td>
</tr>
<tr>
<td>Capacidad de extinción de corriente de seguimiento</td>
<td>I<sub>fl</sub> kA</td>
<td></td>
</tr>
</tbody>
</table>

Código 5094 66 0

Tabla 13-Características del descargador de sobretensiones y esquema. *Obo Bettermann.*
1.14.7.3 Medición y control de los parámetros eléctricos de la instalación

Para la medición y control de los parámetros eléctricos del sistema se instalará en la parte de corriente continua un voltímetro de CC hasta 100V, y un amperímetro a la entrada del inversor para el control de la corriente de entrada.

A la salida del inversor se instalará un analizador de redes Circutor CVM-C5 monofásico y un contador de energía no fiscal para disponer de la referencia de energía generada por el sistema.

El CVM-C5 es un multímetro multifunción para panel en 96x96 mm con registro de energías compacto y con medida en 4 cuadrantes. Adecuado para instalaciones de Baja Tensión, tanto en circuitos trifásicos a 3 o 4 hilos, 2 fases con o sin neutro o sistemas monofásicos.

Características de visualización e interfaz:

- Visualización de parámetros básicos de la instalación.
- Visualiza el valor de consumo eléctrico según el coste por kWh.
- Indicador KgCO² en consumo/generación o según la procedencia de la energía.

Imagen 22 - Analizador de red Circutor CVM-C5. Circutor.
- Características:

<table>
<thead>
<tr>
<th>Características técnicas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuito de alimentación</td>
<td>Tensión alimentación: 85-265 V, / 95-300 V,</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuito de medida</td>
<td>Tensión: 300 V,a, 1-n / 520 V,a, F-1</td>
</tr>
<tr>
<td></td>
<td>Frecuencia: 50...60 Hz</td>
</tr>
<tr>
<td></td>
<td>Corriente: IC: ... / 1 A</td>
</tr>
<tr>
<td></td>
<td>IC-MC: ... / 250 mA</td>
</tr>
<tr>
<td></td>
<td>ADC: 64 muestras/ciclo</td>
</tr>
<tr>
<td></td>
<td>FFT - 256 muestras</td>
</tr>
<tr>
<td>Clase precisión</td>
<td>V, I</td>
</tr>
<tr>
<td></td>
<td>IC: 0,5%</td>
</tr>
<tr>
<td></td>
<td>MC-IC: 0,5% (sin transformador)</td>
</tr>
<tr>
<td></td>
<td>IC: 1%</td>
</tr>
<tr>
<td></td>
<td>MC-IC: 1% (sin transformador)</td>
</tr>
<tr>
<td>Salida</td>
<td>Potencias y Energías</td>
</tr>
<tr>
<td></td>
<td>Interfaz SO</td>
</tr>
<tr>
<td></td>
<td>Configurable hasta 1000 impulsos por kWh, kvarh, etc.</td>
</tr>
<tr>
<td></td>
<td>(24 Vcc, max. 50 mA, 5 imp/s,</td>
</tr>
<tr>
<td></td>
<td>Max Tor/Toff configurable)</td>
</tr>
<tr>
<td>Entrada</td>
<td>1 entrada digital</td>
</tr>
<tr>
<td></td>
<td>Selección de tarifa,</td>
</tr>
<tr>
<td></td>
<td>NPN, aislado</td>
</tr>
<tr>
<td>Características constructivas</td>
<td>Envoltura: Plástico VO autoextinguible</td>
</tr>
<tr>
<td></td>
<td>Grado protección: Equipo empotrado: IP 51</td>
</tr>
<tr>
<td></td>
<td>Sirena: IP 20</td>
</tr>
<tr>
<td></td>
<td>Dimensiones: 98 x 98 x 60,9 mm</td>
</tr>
<tr>
<td>Condiciones ambientales</td>
<td>Temperatura de uso: -10...+50 ºC</td>
</tr>
<tr>
<td></td>
<td>Humedad relativa: 5 ... 95%</td>
</tr>
<tr>
<td></td>
<td>Altitud máxima: 2000 m</td>
</tr>
<tr>
<td>Seguridad</td>
<td>Clase III según EN 61010</td>
</tr>
<tr>
<td></td>
<td>Protección frente a choque eléctrico por doble aislamiento Clase II</td>
</tr>
<tr>
<td>Normas</td>
<td>IEC 664, VDE 0110, UL 94, IEC 801, IEC 348,</td>
</tr>
<tr>
<td></td>
<td>IEC 571-1, EN 61000-6-3, EN 61000-6-1,</td>
</tr>
<tr>
<td></td>
<td>EN 61010-1, CE, de acuerdo con UL</td>
</tr>
</tbody>
</table>

Tabla 14 - Características técnicas Circutor CVM-C5. Circutor.

El medidor de energía es el Circutor modelo CEM-C10, para medida de energía activa y reactiva.

Es un contador monofásico de energía eléctrica de hasta 65 A. Dispone de display LCD (7 dígitos) con sistema de pantallas rotativas. Dispone de un puerto óptico de comunicaciones lateral (Sistema OSC) para colocar el módulo de comunicaciones (CEM-M). Dispone también de 2 botones (1 precintable) para visualizar toda la información medida.

Otras características son:

- Certificación MID módulo B+D (según tipo).
- Clase 1 en energía activa (Clase B según MID), Clase 2 en energía reactiva.
- Tamaño reducido (2 módulos, 36 mm).
- Contador parcial reseteable.
- 1 Salida impulsos programable según DIN 43864.
- Acumulación de energía incluso en caso de mal conexionado.
- Visualización de parámetros eléctricos (V, A, kW, kWh, PF, etc.).

La siguiente tabla muestra las características más importantes:

<table>
<thead>
<tr>
<th>Características técnicas</th>
<th>Circuito de alimentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión Nominal</td>
<td>230 Vc.a. / 127 Vc.a. según modelo</td>
</tr>
<tr>
<td>Tolerancia</td>
<td>± 20%</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>50...60 Hz</td>
</tr>
<tr>
<td>Consumo</td>
<td>< 2 W / 10 VA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circuito de medida de tensión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conexiónado</td>
</tr>
<tr>
<td>Tensión de referencia</td>
</tr>
<tr>
<td>Frecuencia</td>
</tr>
<tr>
<td>Autoconsumo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circuito de medida de corriente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corriente nominal In</td>
</tr>
<tr>
<td>Corriente máxima</td>
</tr>
<tr>
<td>Autoconsumo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía Activa</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Energía Reactiva</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Salida de impulsos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo</td>
</tr>
<tr>
<td>Características eléctricas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Características ambientales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura de trabajo</td>
</tr>
<tr>
<td>Humedad relativa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Características mecánicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grado de protección</td>
</tr>
<tr>
<td>Dimensiones</td>
</tr>
<tr>
<td>Peso</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Autoextinguible</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normas</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 50470-1, EN 50470-3, IEC 62052-11, IEC 62059-21, IEC 62053-23</td>
</tr>
</tbody>
</table>

1.14.7.4 Cableados y canalizaciones eléctricas

Los paneles fotovoltaicos estarán interconexionados mediante cable unipolar de cobre de 750 V máximo, de secciones indicadas en la memoria de cálculo.

Dichos conductores circularán por canalizaciones de tubo XLPE o EPR para instalaciones eléctricas de diámetros y secciones suficientes.

Por regla general, el tipo de conductor a emplear en estas interconexiones será un cableado especial solar, unipolar de cobre de la tipología Tecsun (PV) de la marca Prysmian, designación PV1-F de 06/1kV (2 kV en continua), y secciones determinadas en la memoria.

Este cable es:

- Resistente a temperaturas extremas, según la IEC 60216-1.
- Resistente a la intemperie, rayos ultravioleta, resistencia al ozono, y resistente a la absorción de agua.
- De alta seguridad, libre de halógenos, baja emisión de gases corrosivos, no propagador del incendio. (EN 50267 - 50266).

Para la instalación de corriente alterna se utilizarán conductores Unipolares con nivel de aislamiento de 450/750 V, PVC, siendo la designación según UNE de H07V-K.

Para el resto de conductores se empleará un cable tipo Bupreno DN-K 0,6/1KV H07RN-F, de las secciones y especificaciones indicadas en la memoria de cálculo.

1.15 Esquema del sistema híbrido eólico-solar

Una vez detallados todos los elementos principales del sistema híbrido de la vivienda y habiendo comentado cuál es su función, vamos a hacer un esquema general de las conexiones y a explicar el funcionamiento en conjunto.

Un sistema híbrido eólico y solar es un sistema que trabaja con dos energías renovables: la eólica, que utiliza la energía del viento, y la solar, que utiliza la energía del sol. De esta manera, puede convertir esta energía anteriormente desaprovechada en energía eléctrica que sea empleada por, en este caso, una vivienda.

En la imagen de la página siguiente, podemos ver los elementos principales del sistema y como se relacionan entre sí. Tenemos:

- Placas fotovoltaicas (12 paneles fotovoltaicos)
- Aerogenerador (1 aerogenerador)
- Regulador de carga solar (3 reguladores solares)
- Regulador de carga eólico (1 regulador eólico)
- Baterías (banco de baterías de 24 V)
- Dummy Load (2 Dummy Loads)
- Inversor CC/CA (1 inversor de corriente continua a corriente alterna)
Memoria Descriptiva

- Bus CC (un bus de corriente continua a 24 V)
- Bus CA (un bus de corriente alterna a 230 V)

1.15.1 **Diagrama de bloques del sistema híbrido**

A continuación se explicará cómo funciona el sistema con energías renovables que estamos realizando y la relación entre los elementos.

![Diagrama de bloques del sistema híbrido](image)

Imagen 24- Esquema general de conexiones de los elementos principales del sistema híbrido eólico-solar.

La generación es realizada por las placas fotovoltaicas y el aerogenerador. Estos captan la energía del sol y del viento, respectivamente, y la convierten en energía eléctrica.

Ahora nos podemos encontrar en tres situaciones diferentes:

- Si hay demanda energética por parte de la vivienda, los reguladores dejan pasar la electricidad en ese camino:
Si la demanda proviene del bus de corriente continua, las pérdidas del sistema se reducen al mínimo puesto que el inversor no está trabajando ya que la corriente que generan las placas y el aerogenerador es corriente continua.

Si la demanda proviene del bus de corriente alterna, la electricidad provendrá del inversor que transformará la corriente continua a alterna y después se distribuirá como se necesite.

- Si no hay demanda energética de la vivienda, la electricidad generada se almacenará en el banco de baterías de 24 V.
- Cuando no hay demanda energética por parte de la vivienda y el banco de baterías está cargado al 100 %, los reguladores gestionan la corriente:
 - Los reguladores solares controlarán la tensión de la batería y “desconectarán” (modo “no float”, explicado más adelante) los paneles solares. De esta manera, se deja de introducir corriente a las baterías hasta que los reguladores determinen mediante el valor de la tensión, que ha bajado lo suficiente para volver a conectar los paneles.
 - El regulador eólico detecta cuando las baterías están cargadas al 100 % y hace una conmutación entre las baterías y las dummy load. De esta manera, el aerogenerador no está nunca desconectado, ya que esto provocaría problemas muy importantes e, incluso, la destrucción de él mismo.

El tiempo que está el aerogenerador conectado a las dummy load se emplea como resistencias calentadoras de agua ACS y así reducir el gasto de aparatos de la vivienda para realizar esta acción.

Durante el día son las placas fotovoltaicas y el aerogenerador los que suministran la electricidad que necesita la vivienda y, en los momentos en los que no se necesita tanta electricidad o se genera en exceso, se va almacenando en las baterías. De esta manera, en los momentos del día en que hay demanda energética por parte de la vivienda pero las placas y/o el aerogenerador no pueden dar la electricidad que demanda la vivienda, como al atardecer y por la noche, la dan las baterías.

Igualmente, la implantación de este modelo de generación de electricidad por medio de las energías renovables supone que los habitantes de la vivienda deban hacer un consumo responsable de los recursos que tienen.

1.15.1.1 Detalles sobre las conexiones eléctricas de la segunda y tercera situación

En este apartado se detallan las conexiones eléctricas así como una explicación de la segunda y tercera situación, cuando hay la carga de las baterías y de las dummy load.

En las siguientes páginas se muestran dos imágenes: la primera son las conexiones eléctricas de la segunda situación, es decir, cargando las baterías y manteniendo el circuito
de las dummy load abierto. La otra imagen es de la tercera situación: las baterías cargadas, lo que implica que el interruptor de las dummy load esté cerrado.

La imagen nos la proporciona el fabricante de productos eólicos Primus Wind Power, en el manual de la turbina Air 40. No se muestra en regulador eólico ya que en este modelo es interno. También nos detallan las protecciones, medidores necesarios y puestas a tierra.

-Segunda situación: baterías cargándose

Como podemos ver en la imagen siguiente, las placas tienen su propio regulador de carga. En esta situación deja pasar la toda corriente producida a las baterías ya que las está cargando. Tiene un amperímetro para medir la corriente que van a suministrar.

En la parte del aerogenerador pasa lo mismo; el regulador del aerogenerador solo deja pasar la corriente a las baterías. Tiene las mismas protecciones que la parte de las placas fotovoltaicas: fusible para proteger las baterías y amperímetro ya que la turbina puede producir amperajes elevados. Tiene un interruptor de conexión/desconexión de las dummy load. También tiene un interruptor de parada. Éste sirve para cuando tenemos que parar el aerogenerador de forma segura en el caso que debamos hacer algún tipo de mantenimiento o queramos desconectarlo de las baterías. De esta manera, las palas dejarán de girar o empezarán a girar de manera lenta cuando haya mucho viento.
-Tercera situación: baterías cargadas

En este caso, los reguladores detectan que la tensión de las baterías ha llegado al límite, al 100%.

En la mayoría de reguladores solares hay uno o dos modos de funcionamiento cuando las placas están cargadas al máximo. Pueden estar en modo “float” o “no float”. El modo “float” deja las placas conectadas a las baterías y suministra la corriente necesaria para mantener las baterías cargadas. En el modo “no float” se desconecta de las baterías del sistema, puesto que las placas pueden estar desconectadas sin sufrir ningún problema.

En los dos modos, el regulador solar normalizará el sistema cuando determine que la tensión de las baterías ha bajado hasta el valor prefijado.

El regulador eólico, también llamado controlador de desvío, tiene dos modos pero diferentes: conectado a las baterías o conectado a las dummy load. Esto implica que el aerogenerador nunca va a estar desconectado, ya que sufriría varios problemas. Actúa de la misma forma que se ha explicado anteriormente.

Es mejor dejar el aerogenerador conectado a las baterías a la vez que carga las dummy load, ya que si se desconecta de las baterías, a no ser que las dummy load tengan una resistencia igual que la de las baterías, la turbina detectará una reducción o un incremento en la carga, lo que hará que la turbina reduzca o aumente velocidad. Al mismo tiempo, las baterías no tienen ninguna fuente de carga, lo que hará que se reduzca su tensión muy rápidamente y eso hará que el controlador eólico se reenganche. La turbina estará constantemente obligada a trabajar con una carga que cambia, lo que puede causar una acumulación de calor en el estator a medida que aumenta la carga y pueda ocasionar muchos problemas.

En la siguiente página se pueden ver las conexiones de esta situación: los paneles desconectados de las baterías y el aerogenerador conectado a las dummy load y a las baterías para controlar su tensión.
Imagen 26- Sistema de conexiones eléctricas de la tercera situación. Variación del manual de Primus Wind Power.

A continuación se muestra una imagen más clara y más sencilla de entender sobre el esquema de conexiones de las dummy load en una turbina y regulador Kestrel:

Imagen 27- Esquema más simple de las conexiones de las dummy load con el sistema híbrido. Éste sistema tiene un inversor a la salida de las baterías. *Kestrel.*
1.16 Garantías

Los siguientes equipos disponen de las siguientes garantías:

- Paneles solares fotovoltaicos: 10 años para el 90% de la potencia nominal y de 25 años para el 83%. La previsión de vida útil de los módulos es mayor de 25 años.
- Cargadores: 5 años
- Baterías: 10 años
- Inversores: 5 años

1.17 Mantenimiento de equipos e instalaciones

Se definen dos tipos de mantenimiento para la instalación:

- Mantenimiento preventivo
- Mantenimiento correctivo

El mantenimiento preventivo engloba las operaciones de inspección visual, verificación de actuaciones mediante uso de procedimientos de chequeo funcional de la instalación que nos permiten determinar el grado de funcionamiento y mantener aceptables las condiciones de operación, prestaciones y protecciones para garantizar la actividad de los equipos durante el periodo de operación.

Se establecen frecuencias de revisión, generalmente entre 6 meses y un año con inspecciones y controles determinados por el fabricante y por la experiencia del instalador / mantenedor.

Por regla general, al ser una instalación eléctrica, será obligatorio en cada inspección:

- Comprobación del disparo y funcionalidad de todas las protecciones eléctricas, verificación de valores de fusibles, comprobación de apriete de elementos de conexión.
- Verificación y seguimiento de los valores de la red de tierras, picas, puentes de prueba, estado de los componentes metálicos y oxidaciones, etc.
- Comprobación del estado de módulos de conversión, verificación de los registros de fallos y avería, etc.

Dicho mantenimiento preventivo se engloba dentro de un Plan de Mantenimiento general de la instalación.

El mantenimiento correctivo engloba todas las operaciones para reparar o sustituir aquellos elementos de la instalación que, bien fruto de una inspección de mantenimiento preventivo o por avería directa, están en fallo o se ha detectado malfuncionamiento, inclusive piezas que cerca de su vida útil aconseje sustituir.
Este plan de mantenimiento será realizado por personal cualificado bajo la responsabilidad de la empresa mantenedora.

Dentro del plan de mantenimiento se englobarán las actuaciones que a continuación se determinan:

1.17.1 **Mantenimiento de las placas solares**

El mantenimiento de las placas fotovoltaicas pasa por estos puntos:

- Inspección visual de posibles degradaciones.
- Control de la temperatura del panel.
- Control de la limpieza del panel como de elementos que puedan reducir la funcionamiento.
- Control del mantenimiento de las características eléctricas del panel.
- Comprobación de la estructura del soporte de los paneles.
- Control de las conexiones.

1.17.2 **Mantenimiento del aerogenerador**

Para realizar un correcto mantenimiento del aerogenerador, se deben realizar mantenimientos preventivos y correctivos indicados por el fabricante. Los siguientes pasos nos ayudaran a reducir futuros problemas en nuestro aerogenerador.

- Inspecciones de las partes visibles.
- Limpieza y revisión de elementos mecánicos.
- Medición de las vibraciones para identificar posibles problemas y su origen.

1.17.3 **Mantenimiento de los reguladores-cargadores**

El mantenimiento de los reguladores es mínimo. Debemos comprobar que las conexiones estén bien, que no haya corrosión en los bornes y que haya disipación de calor.

Asimismo se comprobará mediante consola las alarmas y eventos ocurridos.

Una vez al año se realizará un paro del equipo y una puesta en marcha.

1.17.4 **Mantenimiento de las baterías**

Deberemos llevar a cabo un seguido de comprobaciones y mantenimiento de las baterías de Plomo-Calcio para asegurarnos que cumplen con su función y que no son dañadas por ningún factor.
Memoria Descriptiva

- Comprobación de manera visual de las conexiones, del cargador, etc.
- Comprobación de posibles fugas del electrolito.
- Comprobación del nivel del electrolito. Nunca se debe dejar al aire ninguna parte de las placas.
- Comprobación de la densidad del electrolito. Comprobar el valor de cada celda.
- Comprobar posibles partículas extrañas en el electrolito.
- Mantener las baterías en un lugar que esté entre 15 y 25 grados, ya que el calor aumenta la evaporación del agua del electrolito y promueve la oxidación de las placas positivas, y el frío ralentiza las operaciones tanto de carga como de descarga.
- Fijar las baterías para evitar el movimiento.
- Comprobar y mantener los terminales de las conexiones limpios y apretados.
- Comprobar y mantener el nivel adecuado de electrolito. Si se requiere, añadir agua destilada para evitar dejar al aire parte de las placas y evitar llenar en exceso por riesgo de desbordamiento del electrolito.
- Evitar siempre la descarga completa de las baterías ya que esto puede reducir su vida útil.
- Evitar siempre que sea posible las cargas rápidas de las baterías ya que las dañan mucho.

1.17.5 Mantenimiento de las Dummy Load

Estas resistencias son de uso temporal, es decir, solo se usaran algunas veces y durante poco tiempo. De esta manera, no se desgastarán mucho ni se debe tener un mantenimiento muy exhaustivo pero si se deben tener en cuenta diversos puntos:

- Controlar que soporten la potencia (y la corriente) que deben disipar. Medir el valor de resistencia y verificar con los anteriores tomados.
- Chequear el buen estado de la protección contra contactos de las dummy loads, ya que son resistencias que se calientan mucho y deben estar ubicadas en zonas que no sean accesibles a los niños.
- Controlar su funcionamiento con amperímetro.

1.17.6 Mantenimiento del inversor

Este tipo de aparatos no requiere de mucho mantenimiento. En el manual del inversor se detallan pasos previos a la instalación como el espacio que debe tener, los posibles problemas que puede tener y como evitar ciertas situaciones a la hora de montar el inversor.

Debemos comprobar que las conexiones estén bien, que no haya corrosión en los bornes y que haya disipación de calor.
Asimismo se comprobará mediante consola las alarmas y eventos ocurridos.

Una vez al año se realizará un paro del equipo y una puesta en marcha.

Cada 5 años se realizará un chequeo de protecciones del equipo por el servicio técnico oficial.

Se recomienda realizar el mantenimiento preventivo de forma regular a lo largo de su ciclo de vida para asegurar al máximo la disponibilidad y los mínimos costos por imprevistos de reparación.

1.17.7 Repuestos de la instalación

Se estará a lo dispuesto por las recomendaciones del fabricante, pero por regla general, se dispondrá de una unidad del inversor CC-CA, dado que es el único elemento común que a fallo anula un sistema completo de alimentación de CA, mientras que el bus de CC está activo.

Para los demás elementos, cargadores solares y eólicos, el fallo de uno de ellos se evalúa de la forma siguiente:

- El valor de MTTR (tiempo medio de la reparación) es de 3 días para todos los convertidores y reguladores, por tanto:
 - El fallo de uno de los tres reguladores solares deja fuera de servicio una parte reducida de la instalación por lo que es susceptible de no ser necesario disponer de repuesto. El tiempo de la reparación será suficiente para no dejar la instalación en precario (<de 3 días).
 - El fallo del regulador eólico reduce la capacidad de la instalación, pero su incidencia no es significativa. El tiempo de la reparación será suficiente para no dejar la instalación en precario (<de 3 días).

Para los demás elementos, se precisarán fusibles de repuesto y un elemento de protección tipo 2 de las instalaciones de protección contra descargas y transitorios.
1.18 Resumen del presupuesto de la instalación

El presupuesto de ejecución de la instalación, el cual está detallado en la memoria de Presupuesto es:

<table>
<thead>
<tr>
<th>CAPÍTULO</th>
<th>IMPORTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo solar</td>
<td>5.820.75 €</td>
</tr>
<tr>
<td>Aerogenerador</td>
<td>10.954,29 €</td>
</tr>
<tr>
<td>Sistemas de CC y baterías</td>
<td>14.258,62 €</td>
</tr>
<tr>
<td>Inversor y sistemas de CA</td>
<td>5.168,96 €</td>
</tr>
<tr>
<td>TOTAL P.E.M.</td>
<td>36,202,62 €</td>
</tr>
</tbody>
</table>

PRESUPUESTO DE EJECUCIÓN MATERIAL (P.E.M.) **36,202,62 €**
GASTOS GENERALES (7%) 2.534,18 €
BENEFICIO INDUSTRIAL (10%) 3.620,26 €

PRESUPUESTO DE INVERSIÓN 42.357,06 €
I.V.A. (21%) 8.894,98 €

TOTAL PRESUPUESTO **51.252,04 €**

El presupuesto asciende a un total de CINCUENTA Y UN MIL DOSCIENTOS CINCUENTA Y DOS CON CUATRO CENTIMOS.

1.19 Características técnicas de la actividad objeto de este Proyecto

1.19.1 Instalaciones sanitarias y de evacuación de aguas

No están afectadas ni disponen de las mismas, si bien el tejado tiene su propia instalación de evacuación de aguas.

1.19.2 Ventilación e iluminación

La habitación donde se ubican los equipos estará suficientemente ventilada, y con dos sistemas independientes de alumbrado de emergencia, uno a 230 VAC y otro a 24 VDC.
1.19.3 **Agua potable**

No aplica

1.19.4 **Repercusión sobre el medio ambiente**

1.19.4.1 **Humos, gases y olores**

La instalación está libre de humos. Para los gases está previsto un detector de hidrógeno en la sala de baterías, y para los olores la habitación estará ventilada permanentemente.

1.19.4.2 **Aguas residuales**

No aplican en esta actividad.

1.19.4.3 **Residuos sólidos**

Esta actividad no produce residuos sólidos, excepto los embalajes y materiales sobrantes de la instalación que no puedan ser reutilizados y serán gestionados por un gestor de residuos autorizado para tal fin. En este sentido se dispondrá de cuatro contenedores de residuos, uno de embalajes, uno de cables eléctricos, otro de ferralla y otro de banales o no clasificables.

1.19.4.4 **Ruido y vibraciones**

El ruido generado por el generador eólico está dentro de los parámetros dada la distancia entre el mismo y la vivienda y los límites de la finca, como indica el fabricante.

En la siguiente tabla se da una referencia de las intensidades del ruido generadas por algunas fuentes típicas:
Tabla de decibelios (db)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Silencio</td>
<td>0</td>
</tr>
<tr>
<td>Pisada</td>
<td>10</td>
</tr>
<tr>
<td>Hojas de los árboles en movimiento</td>
<td>20</td>
</tr>
<tr>
<td>Conversación en voz baja</td>
<td>30</td>
</tr>
<tr>
<td>Biblioteca</td>
<td>40</td>
</tr>
<tr>
<td>Despacho tranquilo</td>
<td>50</td>
</tr>
<tr>
<td>Conversación</td>
<td>60</td>
</tr>
<tr>
<td>Tráfico en una ciudad</td>
<td>80</td>
</tr>
<tr>
<td>Aspiradora</td>
<td>90</td>
</tr>
<tr>
<td>Motocicleta con tubo de escape</td>
<td>100</td>
</tr>
<tr>
<td>Concierto de rock</td>
<td>120</td>
</tr>
<tr>
<td>Martillo neumático</td>
<td>130</td>
</tr>
<tr>
<td>Despegue de un avión a reacción</td>
<td>150</td>
</tr>
<tr>
<td>Explosión de un artefacto</td>
<td>180</td>
</tr>
</tbody>
</table>

Tabla 16 - Intensidades de ruido. [23]

1.19.5 Seguridad de las instalaciones y de sus usuarios

1.19.5.1 Instalaciones sanitarias

No se instala ningún elemento para este fin, dada la actividad a desarrollar.

1.19.5.2 Carga térmica

No aplica en este proyecto.
1.19.5.3 **Riesgo de incendio y explosión**

De acuerdo al ITC-BT-40 del REBT, los locales cumplirán con las disposiciones reguladoras de protección contra incendios correspondientes.

En este caso, la instalación generadora está ubicada en la cubierta de la casa y en el terreno alejado de la vivienda. El local donde se ubican los equipos y cuadros generales, en la planta inferior de la vivienda, es considerado local de riesgo bajo, por lo que no se modifican las condiciones de uso de la vivienda.

Se dispondrá dentro del local de un extintor de polvo seco para tipo poli ABC, dado que al ser un local el uso de CO₂ puede ser perjudicial para el personal.
Instalación eléctrica de una vivienda unifamiliar mediante un sistema híbrido de corriente continua y alterna

MEMORIA DE CÁLCULO

Autora: Imma Membrives Galea
Director: Ángel Cid Pastor
Fecha: Junio – 2015
2 Memoria de cálculo

Partimos de una vivienda unifamiliar en la cual se instalará un sistema híbrido eólico y solar para abastecer al máximo la vivienda.

El requisito del diseño es calcular la potencia de los módulos solares fotovoltaicos y del aerogenerador necesitado y realizar el conexionado de los dos aparatos a la vivienda para que ésta pueda recibir dos buses de corriente: un bus de corriente alterna a 230 V y un bus directo de corriente continua a 24 V.

2.1 Estudio del consumo energético de la vivienda

Como se ha explicado anteriormente, la vivienda unifamiliar se ubicará en una zona del término municipal de Valls (Tarragonés), en una zona libre de edificios de más de tres pisos y bastante abierto, en donde las condiciones climatológicas para la instalación de un sistema híbrido eólico-solar son más que favorables.

Esta vivienda será utilizada como vivienda diaria. La cocina se encuentra excluida de las necesidades eléctricas ya que dispone de un sistema de cocción por butano y, de esta manera, conseguimos reducir una importante carga del consumo total diario. Los aparatos estudiados serán los más habituales en el uso diario.

La tabla siguiente muestra los aparatos que hay en la vivienda, diferenciados en los que usan corriente continua (CC) y corriente alterna (CA). También se muestra la potencia de cada aparato sin detallar las horas diarias y los días a la semana que se emplearan, ya que estos irán en función de los meses del año en que se empleen.

La necesidad de energía de los aparatos eléctricos por parte de la vivienda son los siguientes:
<table>
<thead>
<tr>
<th>Tipo de electricidad</th>
<th>Electrodoméstico</th>
<th>Nº electr.</th>
<th>Pot (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>Bombillas LED</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Ordenador portátil</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Televisor</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Frigorífico</td>
<td>1</td>
<td>120</td>
</tr>
<tr>
<td>CA</td>
<td>Microondas</td>
<td>1</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Lavadora</td>
<td>1</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>Lavavajillas</td>
<td>1</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>Aire acondicionado</td>
<td>1</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>Secador</td>
<td>1</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>Extractor cocina</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Plancha</td>
<td>1</td>
<td>1500</td>
</tr>
</tbody>
</table>

Tabla 17 - Número de aparatos, su potencia y clasificación según la corriente que usan.

A continuación haremos un balance energético del consumo por día. Cada día se estudiará en tres situaciones diferentes ya que en Cataluña, el clima y las condiciones meteorológicas permiten dividirlo de esta manera.

La división será:

- Meses de Junio, Julio y Agosto: meses más calurosos del año y con menos concurrencia en la vivienda.
- Meses de Marzo, Abril, Mayo, Setiembre, Octubre y Noviembre: son los meses del año con un consumo energético más parecido.
- Meses de Diciembre, Enero y Febrero: meses más fríos del año y con más concurrencia en la vivienda.
Para el balance energético deberemos tener en cuenta varios aspectos:

- Habrá un factor de uso, que determinará el tiempo de uso real del aparato y, si hay más de uno, se utilizará como factor de simultaneidad.
- Las potencias son referidas a las potencias de los aparatos de alta eficiencia del mercado (A+++ si es posible).
- Las horas de uso al día variarán según el mes del año en el que nos encontremos.
- El aire acondicionado/calefacción con bomba de calor será empleado:
 - En verano como aire acondicionado.
 - En invierno como calefacción.
- Los comentarios de cada tabla estarán referidos a la tabla 19, la tabla de consumos energéticos del resto de meses del año, ya que se considera el más estándar por ser el que predomina (mayores meses del año con este consumo).
En los meses de verano, al haber más luz natural y al pasar menos tiempo en la vivienda, se reduce una pequeña parte el consumo por alumbrado y actividades interiores (tal como los ordenadores, la televisión). En contrapartida, hay un mayor consumo del aire acondicionado que eleva el consumo energético final.

Tabla 18- Balance energético para los meses de Junio, Julio y Agosto.

<table>
<thead>
<tr>
<th>Tipo de electricidad</th>
<th>Electrodoméstico</th>
<th>Nº electr.</th>
<th>Pot (W)</th>
<th>Factor de uso</th>
<th>Horas/día</th>
<th>En un día (Wh/día)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>Bombillas LED</td>
<td>20</td>
<td>6</td>
<td>0,35</td>
<td>3</td>
<td>126</td>
</tr>
<tr>
<td>CC</td>
<td>Ordenador portátil</td>
<td>2</td>
<td>50</td>
<td>0,5</td>
<td>4</td>
<td>200</td>
</tr>
<tr>
<td>CC</td>
<td>Televisor</td>
<td>2</td>
<td>40</td>
<td>1</td>
<td>5</td>
<td>400</td>
</tr>
<tr>
<td>CC</td>
<td>Frigorífico</td>
<td>1</td>
<td>120</td>
<td>0,7</td>
<td>24</td>
<td>2016</td>
</tr>
<tr>
<td>CA</td>
<td>Microondas</td>
<td>1</td>
<td>700</td>
<td>0,8</td>
<td>0,25</td>
<td>140</td>
</tr>
<tr>
<td>CA</td>
<td>Lavadora</td>
<td>1</td>
<td>2000</td>
<td>0,5</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>CA</td>
<td>Lavavajillas</td>
<td>1</td>
<td>900</td>
<td>0,34</td>
<td>0,5</td>
<td>153</td>
</tr>
<tr>
<td>CA</td>
<td>Aire acondicionado</td>
<td>1</td>
<td>1300</td>
<td>0,75</td>
<td>8</td>
<td>7800</td>
</tr>
<tr>
<td>CA</td>
<td>Secador</td>
<td>1</td>
<td>1500</td>
<td>1</td>
<td>0,25</td>
<td>375</td>
</tr>
<tr>
<td>CA</td>
<td>Extractor cocina</td>
<td>1</td>
<td>200</td>
<td>1</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>CA</td>
<td>Plancha</td>
<td>1</td>
<td>1500</td>
<td>1</td>
<td>0,4</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total energía (Wh)</td>
</tr>
</tbody>
</table>

Memoria de Cálculo
Durante los meses de primavera y otoño hay un consumo parecido y no hay ningún pico de consumo debido a algún factor adverso. Hay un consumo equitativo en el uso de todos los electrodomésticos.

Tabla 19- Balance energético para los meses de Primavera y Otoño

<table>
<thead>
<tr>
<th>Tipo de electricidad</th>
<th>Electrodoméstico</th>
<th>Nº electr.</th>
<th>Pot (W)</th>
<th>Factor de uso</th>
<th>Horas/día</th>
<th>En un día (Wh/día)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bombillas LED</td>
<td>20</td>
<td>6</td>
<td>0,35</td>
<td>5</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Ordenador portátil</td>
<td>2</td>
<td>50</td>
<td>0,5</td>
<td>3</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Televisor</td>
<td>2</td>
<td>40</td>
<td>1</td>
<td>5</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Frigorífico</td>
<td>1</td>
<td>120</td>
<td>0,7</td>
<td>24</td>
<td>2016</td>
</tr>
<tr>
<td>CA</td>
<td>Microondas</td>
<td>1</td>
<td>700</td>
<td>0,8</td>
<td>0,5</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>Lavadora</td>
<td>1</td>
<td>2000</td>
<td>0,7</td>
<td>1</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>Lavavajillas</td>
<td>1</td>
<td>900</td>
<td>0,65</td>
<td>0,5</td>
<td>292,5</td>
</tr>
<tr>
<td></td>
<td>Aire acondicionado</td>
<td>1</td>
<td>1300</td>
<td>0,75</td>
<td>2</td>
<td>1950</td>
</tr>
<tr>
<td></td>
<td>Secador</td>
<td>1</td>
<td>1500</td>
<td>1</td>
<td>0,4</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>Extractor cocina</td>
<td>1</td>
<td>200</td>
<td>1</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Plancha</td>
<td>1</td>
<td>1500</td>
<td>1</td>
<td>0,5</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>Total energía (Wh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8249</td>
</tr>
</tbody>
</table>
Tabla 20- Balance energético para los meses de Diciembre, Enero y Febrero.

<table>
<thead>
<tr>
<th>Tipo de electricidad</th>
<th>Electrodoméstico</th>
<th>Nº electr.</th>
<th>Pot (W)</th>
<th>Factor de uso</th>
<th>Horas/día</th>
<th>En un día (Wh/día)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>Bombillas LED</td>
<td>20</td>
<td>6</td>
<td>0,35</td>
<td>6</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>Ordenador portátil</td>
<td>2</td>
<td>50</td>
<td>0,5</td>
<td>4</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Televisor</td>
<td>2</td>
<td>40</td>
<td>1</td>
<td>5</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Frigorífico</td>
<td>1</td>
<td>120</td>
<td>0,7</td>
<td>24</td>
<td>2016</td>
</tr>
<tr>
<td>AC</td>
<td>Microondas</td>
<td>1</td>
<td>700</td>
<td>0,8</td>
<td>0,5</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>Lavadora</td>
<td>1</td>
<td>2000</td>
<td>0,3</td>
<td>1</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>Lavavajillas</td>
<td>1</td>
<td>900</td>
<td>0,65</td>
<td>0,5</td>
<td>292,5</td>
</tr>
<tr>
<td></td>
<td>Aire acondicionado</td>
<td>1</td>
<td>1300</td>
<td>0,75</td>
<td>6</td>
<td>5850</td>
</tr>
<tr>
<td></td>
<td>Secador</td>
<td>1</td>
<td>1500</td>
<td>1</td>
<td>0,4</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>Extractor cocina</td>
<td>1</td>
<td>200</td>
<td>1</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Plancha</td>
<td>1</td>
<td>1500</td>
<td>1</td>
<td>0,6</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>Total energía (Wh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11591</td>
</tr>
</tbody>
</table>

En los fríos meses de invierno es cuando se pasa más tiempo en la vivienda y se registra un mayor consumo por parte de aparatos como los portátiles, televisión, cocina y alumbrado. El consumo del aire acondicionado (en modo aire caliente) es más elevado pero no tanto como en los meses de verano.
Como resumen, tendremos unas necesidades consumo útil de:

<table>
<thead>
<tr>
<th>Necesidades de Energía diaria según el mes</th>
<th>Consumo diario (Wh/día)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>11.591</td>
</tr>
<tr>
<td>Febrero</td>
<td>11.591</td>
</tr>
<tr>
<td>Marzo</td>
<td>8.249</td>
</tr>
<tr>
<td>Abril</td>
<td>8.249</td>
</tr>
<tr>
<td>Mayo</td>
<td>8.249</td>
</tr>
<tr>
<td>Junio</td>
<td>13.010</td>
</tr>
<tr>
<td>Julio</td>
<td>13.010</td>
</tr>
<tr>
<td>Agosto</td>
<td>13.010</td>
</tr>
<tr>
<td>Septiembre</td>
<td>8.249</td>
</tr>
<tr>
<td>Octubre</td>
<td>8.249</td>
</tr>
<tr>
<td>Noviembre</td>
<td>8.249</td>
</tr>
<tr>
<td>Diciembre</td>
<td>11.591</td>
</tr>
</tbody>
</table>

Tabla 21- Necesidades de energía en la vivienda (Wh/día)

Para disponer de la energía de consumo de la tabla anterior, será necesario generar tanto energía eólica como solar en las proporciones y estimaciones que a continuación se realizarán mediante los estudios eólico y solar. Como veremos más adelante, este consumo se verá afectado por un coeficiente de seguridad del 10% en incremento para los cálculos básicos.
2.2 Estudio eólico

En una instalación eólica no hay tantos factores a tener en cuenta como en una instalación fotovoltaica. Los dos factores más importantes a determinar son:

- Conocer la velocidad del viento de la zona.
- Determinar si se supera la velocidad mínima para que el aerogenerador funcione.

Para ello nos ayudaremos de programas que calculan la velocidad media del viento diariamente en la zona y de programas climatológicos para poder hacer un estudio más exacto.

En el estudio eólico, igual que vamos a realizar en el estudio solar, necesitamos una primera aproximación a los aerogeneradores que se venden en el mercado.

En este apartado vamos a buscar un modelo de aerogenerador pequeño para determinar si la zona cumple o no con las exigencias mínimas para que empiece a funcionar. Se tratará de un aerogenerador de pequeñas potencias ya que para la vivienda es el más recomendable, ya sea por su potencia, por el ruido o por las dimensiones.

2.2.1 Determinación de la posición

La velocidad del viento puede variar en una misma zona dependiendo de varios factores que habrá que estudiar. Estos son:

- La zona donde se ubique la vivienda.
- La presencia o no de obstáculos.
- Los datos climatológicos.

De acuerdo a la ubicación y presencia/no presencia de obstáculos descrita en la Memoria Descriptiva, los resultados son óptimos.

El aerogenerador con el que se trabajará será un **Kestrel e230i 800 W con tensión de salida 24 V dc**, del cual se han comentado las características y las especificaciones.

2.2.2 Datos climatológicos

Para determinar la velocidad del viento, hemos consultado diversos programas. Uno de ellos y de los más exactos es el [19], una consulta on-line donde se pueden ver todos los datos relacionados con el clima de diversas zonas de España. Como su nombre indica, se centra más en los datos del viento y podemos obtener tablas completas sobre el viento como la que se muestra a continuación.
De la tabla anterior, los datos que más nos interesan para el estudio eólico es el promedio de la velocidad del viento (en la tabla, el tercer dato). Los datos son basados en las observaciones tomadas entre los períodos de 05/2013 y el 02/2015 diariamente desde las 7am hasta las 7pm.

Están expresados en kts (nudos por segundo), pero lo convertiremos a km/h y luego a m/s para ver, realmente, cuál es la media de velocidad a cada mes.

<table>
<thead>
<tr>
<th>Promedio velocidad del viento (m/s)</th>
<th>ENE</th>
<th>FEB</th>
<th>MAR</th>
<th>ABR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5,70</td>
<td>6,74</td>
<td>7,26</td>
<td>5,70</td>
<td>7,26</td>
<td>5,70</td>
<td>6,22</td>
<td>5,70</td>
<td>4,67</td>
<td>4,15</td>
<td>3,63</td>
<td>5,39</td>
</tr>
</tbody>
</table>

Tabla 22- Datos sobre el viento en la zona de Valls. [19].

Uno de los requisitos para poder instalar un aerogenerador en una zona cualquiera, es que la velocidad del viento sea superior a la velocidad mínima requerida por el aerogenerador para empezar a girar y funcionar. En nuestro estudio, la Kestrel e230i tiene una velocidad mínima de inicio de 2,5 m/s. Hemos podido observar en la tabla 23 que en todos los meses del año se superan los 2,5 m/s para que el aerogenerador esté todo el tiempo en funcionamiento, por lo que siempre vamos a tener un apoyo para las placas fotovoltaicas, sea mayor como en los meses de marzo o mayo, o menor como en los meses de octubre o noviembre.

2.2.3 Resultados y decisiones

Por lo comentado en los anteriores apartados, la colocación de un aerogenerador de pequeñas potencias en la zona de la vivienda en Valls es una buena opción ya que cumple con los requisitos mínimos para que pueda funcionar correctamente. La altura seleccionada será unos 10 m a una distancia de la vivienda de 25 m.
2.2.4 Determinación de la potencia real

Hemos seleccionado una turbina eólica de 800 W, pero esta potencia no es del todo cierta. Para que se den esos 800 W de potencia generada por la turbina necesitamos estar en unas condiciones que solo algunos meses del año las cumplen.

Necesitamos estar a una velocidad del viento por encima de 7 m/s, cosa que solo en los meses de marzo y mayo se cumple.

Por otra parte, hay meses en los cuales la velocidad media del viento es mucho más baja, por lo cual la potencia será mucho más baja que los 800 W. Esta será la potencia real que genera la turbina.

En las especificaciones técnicas se adjuntan esta tabla con las potencias por año según la velocidad del viento:

<table>
<thead>
<tr>
<th>Velocidad del viento (m/s)</th>
<th>Energía generada Mes (Kwh/mes)</th>
<th>Energía generada Mes (Kwh/mes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,47 mph (2 m/s)</td>
<td>83</td>
<td>6,9</td>
</tr>
<tr>
<td>6,71 mph (3 m/s)</td>
<td>317</td>
<td>26,4</td>
</tr>
<tr>
<td>8,95 mph (4 m/s)</td>
<td>724</td>
<td>60,3</td>
</tr>
<tr>
<td>11,18 mph (5 m/s)</td>
<td>1281</td>
<td>106,8</td>
</tr>
<tr>
<td>13,42 mph (6 m/s)</td>
<td>1913</td>
<td>159,4</td>
</tr>
<tr>
<td>15,66 mph (7 m/s)</td>
<td>2514</td>
<td>209,5</td>
</tr>
<tr>
<td>17,90 mph (8 m/s)</td>
<td>3049</td>
<td>254,1</td>
</tr>
</tbody>
</table>

Tabla 24- Energía generada según la velocidad del viento para el aerogenerador estudiado. *Kestrel*.

La siguiente tabla se ha realizado por interpolación de los valores del fabricante y muestra la potencia generada por el aerogenerador en función de la velocidad media del viento por mes:
Generación eólica estimada según mes	Velocidad media m/s	Potencia generada kWh/mes
Enero | 5.7 | 144
Febrero | 6.74 | 196
Marzo | 7.26 | 221
Abril | 5.7 | 144
Mayo | 7.26 | 221
Junio | 5.7 | 144
Julio | 6.22 | 170
Agosto | 5.7 | 144
Septiembre | 4.67 | 91
Octubre | 4.15 | 67
Noviembre | 3.63 | 48
Diciembre | 5.39 | 132

Tabla 25- Potencia generación eólica por mes

De acuerdo a lo anterior, anualmente se espera una generación de 1.722 kWh eólicos.

Como podemos comprobar, depende del mes del año en el que nos encontremos vamos a producir más potencia o menos, por tanto, deberemos estudiar también cuanta potencia recibimos del aerogenerador para determinar la potencia que deben entregar las placas.

También debemos tener en cuenta que esto es potencia media, por lo que la instalación puede llegar a generar valores tanto superiores como inferiores. En el caso de generación superior, la resistencia de carga Dummy Load convertirá esta energía excedentaria en calor para el ACS. En el caso contrario, los dos días de acumulación hacen de margen de seguridad para mantener los equipos previstos en marcha, bus de CC y bus de CA en servicio. En caso catastrófico, la disposición de un generador auxiliar para casos excepcionales deberá ser tenida en cuenta.

Como la generación solar es mayoritaria en el sistema y no suelen haber periodos de más de tres días sin viento, no se esperan alteraciones como para usar un generador eólico auxiliar de emergencia, por tanto esta contingencia no se estudia ni se implementa, aunque es posible instalar mediante un generador de 600 W a 24 VDC inyectado directamente en el bus de CC.

Otros factores a tener en cuenta son los rendimientos de los elementos que componen el sistema. Si bien el generador ya está cuantificado, siendo la curva del fabricante incluido el rendimiento, el cargador es del 94% y los cables del sistema de un 98% por las pérdidas por efecto Joule.
2.3 Estudio solar fotovoltaico

En una instalación solar fotovoltaica hay diversos factores con una gran repercusión a la hora de obtener un resultado óptimo en el diseño de la instalación solar. Unos de los más importantes y los que consideraremos son:

- Pérdidas por sombras.
- Pérdidas por inclinación.
- Tipología de placas a utilizar.

De esta manera procederemos a determinar los siguientes puntos:

- Determinar las pérdidas por sombras debido a elementos externos a la vivienda.
- Escoger la mejor zona para la colocación de las placas.
- Determinar, entre los modelos de placas existentes en el mercado, la opción más adecuada.

2.3.1 Determinación de las pérdidas por sombras

Para determinar las pérdidas por sombras en un módulo solar fotovoltaico se siguen las siguientes pautas:

- Estudio de los datos climatológicos.
- Estudio de la zona a las horas de sol.
- Cálculo de las sombras.
- Resultados y decisiones.

2.3.1.1 Estudio de datos climatológicos

Es la información climatológica básica sobre los valores medios y valores extremos de las series de datos climatológicos de la zona. Los datos recogidos serán valorados posteriormente.

Las fuentes oficiales para obtener estos datos son las siguientes:

- Datos según el Atlas de radiación de Catalunya [3].
- Datos según la Agencia Estatal de Meteorología de España [13].
- Datos según Meteonorm [28], programa que cuenta con una base de datos para aplicación solar y que nos permite obtener los datos climatológicos en cualquier zona del mundo. Esto se realiza haciendo una interpolación de las estaciones meteorológicas más cercanas al emplazamiento de estudio. A
demás, el programa tiene en cuenta la altura y la tipología de la zona, por lo que hace un estudio más acurado.

El programa también puede generar los valores horarios de radiación solar, temperaturas, precipitación y la velocidad del viento de todos los días del año.

En nuestro caso de estudio, se llevó a cabo la interpolación entre 5 estaciones meteorológicas: la de Reus, Tortosa, el aeropuerto de Barcelona, Gerona y el aeropuerto de Zaragoza.

Obtenemos los siguientes valores de irradiación solar media anual en el periodo de 1991-2010:

![Gráfica sobre la irradiación solar media anual entre el 1991-2010, en kWh/m², en Valls. [28]](image)

Como se puede observar, son en los meses de verano y en Mayo cuando hay más irradiación solar debido a que hay más horas de sol en la zona, mientras que en invierno llegaríamos como máximos a un poco más de 60 kWh/m².
Este programa también nos permite ver las horas de sol al día, como se puede ver en la gráfica 5, y que es en los meses de verano los que más horas de sol tienen, alcanzando casi 15 horas al día de sol en los meses de Junio y Julio. Los meses con menos horas de sol al día son los de invierno, pero no bajan de 9 horas al día, cosa que nos permitiría aprovechar al máximo esas horas para la carga de baterías con los módulos solares.

Gráfica 5- Duración de las horas del sol media anuales entre el 1991-2010, en h, en Valls. [28]

Otra ventaja de [28] es la posibilidad de realizar una simulación, ya que los valores son muy próximos a los reales, el cálculo se hace con mucha precisión y disponemos de un modo para ver estos valores en el futuro, como se muestra a continuación.
Como se puede observar en las gráficas anteriores, los valores actuales y los posteriores son muy parecidos y eso nos deja pensar que las condiciones para el funcionamiento de las placas solares fotovoltaicas se reducen a cuales son las indicadas ya que las condiciones de irradiación y horas de sol se mantienen constantes. A demás, podemos concluir que esta es una buena zona para instalar módulos solares fotovoltaicos ya que el clima es favorable para ello.
2.3.1.2 Estudio de la zona a las horas de sol

Para ello vamos a utilizar el programa Ecotec Analysis [29], que simula la zona en 3D y realiza un estudio de varios parámetros, entre ellos la incidencia solar, y vamos a realizar los siguientes pasos:

- Buscar la zona a estudiar y los datos climatológicos.
- Realizar, en 3D, el edificio y la zona escogida.
- Ver las sombras y reflexiones.
- Ver la incidencia del sol en la zona a estudiar.
- Determinar las horas más favorables para la utilización de las placas solares.

Primero, debemos importar al programa la zona a estudiar. En nuestro caso se ha buscado la zona de Tarragona y, una vez importada y con los datos climatológicos de la zona, se han insertado las coordenadas de Valls (latitud y longitud) ya que los demás datos eran los mismos que para la zona de Tarragona.

Una vez realizado el paso anterior, ya tenemos el terreno y el clima a estudiar en el programa. El siguiente paso es hacer un dibujo, lo más fiel a la realidad, del edificio que queremos simular, colocándolo en la posición correcta.

Imagen 28- Simulación en 3D de la vivienda situada Valls con el programa [29].
La vivienda de Valls consta de dos pisos, una planta baja total y una segunda planta que solo abarca parte del primer piso, y dos tejados planos. No hay vegetación alrededor que pudiera entorpecer la llegada de la radiación al tejado de la vivienda.

Cuando tenemos nuestro edificio en la posición correcta, podemos pasar al estudio de la incidencia solar con los diagramas estereográficos, que son la representación en 2D de las trayectorias solares a lo largo del día, para distintos momentos del año y para una latitud en concreto. Este estudio se va a realizar sobre el tejado mayor (de color marrón claro en la imagen de la página siguiente), al que llamaremos *tejado 1*, y el tejado menor (de color marrón oscuro en la página siguiente), al que llamaremos *tejado 2*. La distribución de las placas en los tejados se determinará en el siguiente apartado.

Imagen 29- Posición de la vivienda y diagrama estereográfico del sol un día cualquiera. [29]

Imagen 30- vista superior de la vivienda y de los dos tejados donde se prevé la colocación de las placas fotovoltaicas. [29]
Gráfica 8- Porcentaje de cielo no obstruido para que llegue la irradiancia solar al tejado 1, el más grande de la vivienda, mensualmente.

[29].
Gráfica 9- Porcentaje de cielo no obstruido para que llegue la irradiancia solar al tejado 1, el más grande de la vivienda, diariamente. [29].
Gráfica 10- Porcentaje de cielo no obstruido para que llegue la irradiancia solar al tejado 2, el más pequeño de la vivienda, mensualmente. [29].
Gráfica 11- Porcentaje de cielo no obstruido para que llegue la irradiancia solar al tejado 2, el más pequeño de la vivienda, diariamente.
[29].
En las gráficas anteriores podemos ver cuáles son las mejores horas para el óptimo funcionamiento de las placas fotovoltaicas si se instalan en el tejado de la vivienda, así como el porcentaje de cielo no obstruido para la mejor recepción de la irradiancia solar.

Podemos ver que en los meses más fríos es cuantas menos horas de irradiancia solar llegan al tejado (8 horas), de la misma manera que en verano hay más horas aprovechables (14 horas).

En las siguientes dos páginas se podrán ver cuatro gráficas que nos muestran la irradiancia solar incidente a cada hora en el plano a estudiar (diariamente y mensualmente). Como se podrá observar, es en los meses de Mayo a Agosto donde se registran las máximas de incidencia solar en los tejados de la vivienda de Valls, siendo en Julio cuando hay más horas con máximas de incidencia. Por el contrario, en los meses de invierno se reducen las horas y la potencia que podremos aprovechar.

1 La radiación incidente o global (o irradiancia incidente) es la radiación a la que está expuesta el planeta, y es la suma de la radiación solar directa, que es aquella que llega a la superficie de la Tierra desde el Sol, y la difusa, que es aquella cuya dirección ha sido modificada y viene de todas las direcciones.

La irradiancia es la radiación solar que llega a la Tierra y que es aprovechable, se mide en W/m².

La irradiación es la irradiancia en un tiempo determinado, medida en Wh/m².
Gráfica 12- Irradiancia solar incidente en el tejado 1 diariamente. [29].
Gráfica 13- Irradiación solar incidente en el tejado 1 mensualmente. [29].
Gráfica 14- Irradiancia solar incidente en el tejado 2 diariamente. [29].
Gráfica 15 – Irradiación solar incidente en el tejado 2, mensualmente. Como era de esperar, los valores son muy parecidos a los del tejado 1, puesto que están en la misma zona y presentan características similares. [29].
2.3.1.3 **Calculo de las sombras**

De acuerdo a las figuras anteriores y a la descripción de la instalación, las placas estarán situadas en un tejado diáfano, instaladas en dos hileras alejadas suficientemente, de forma que no se tendrá en cuenta el efecto de las sombras propias, ni tampoco las creadas por elementos circundantes dado que no hay elevaciones en la trayectoria del sol que puedan afectar a las placas. De todas formas se realizarán unos cálculos básicos para justificar lo antedicho.

Las placas estarán en dos alineaciones, la primera de dos conjuntos de 4 placas en el tejado 1 y la segunda de un conjunto de 4 placas en el tejado 2, coincidiendo así con el número de inversores.

Imagen 31 – Posición de los paneles fotovoltaicos en el tejado. [29]

Para el estudio de sombras se emplea el programa SunPosition [32], que nos ofrece los cálculos necesarios de acuerdo al posicionamiento de la vivienda. Para el cálculo se ha calculado el efecto de la sombra el día del equinoccio de invierno, 21 de Diciembre en tres puntos significativos, 12:00, 13:00 y 14:00, en el tejado menor, ya que será éste el que pueda traer problemas de sombras.

Mediante la aplicación determinamos las curvas de trayectoria solar y tenemos:
Imagen 32– Sombras de las placas fotovoltaicas ubicadas en el tejado pequeño al tejado grande. [32]

Asimismo nos da la trayectoria del sol durante el día:

Imagen 33 – Trayectoria solar respecto los tejados de la vivienda. [32]
Se genera una tabla resumen:

<table>
<thead>
<tr>
<th>Fecha</th>
<th>21/12/2015</th>
<th>GMT1</th>
</tr>
</thead>
<tbody>
<tr>
<td>coordinar.</td>
<td>41.289675</td>
<td>1.2337893</td>
</tr>
<tr>
<td>ubicación</td>
<td>T-742, 43800 Valls, Tarragona, España</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>hora</th>
<th>Elevación</th>
<th>Azimut</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:17:12</td>
<td>-0.833º</td>
<td>121.1º</td>
</tr>
<tr>
<td>10:00:00</td>
<td>5.77º</td>
<td>128.37º</td>
</tr>
<tr>
<td>11:00:00</td>
<td>13.87º</td>
<td>139.65º</td>
</tr>
<tr>
<td>12:00:00</td>
<td>20.17º</td>
<td>152.45º</td>
</tr>
<tr>
<td>13:00:00</td>
<td>24.12º</td>
<td>166.68º</td>
</tr>
<tr>
<td>14:00:00</td>
<td>25.25º</td>
<td>181.77º</td>
</tr>
<tr>
<td>15:00:00</td>
<td>23.44º</td>
<td>196.74º</td>
</tr>
<tr>
<td>16:00:00</td>
<td>18.9º</td>
<td>210.67º</td>
</tr>
<tr>
<td>17:00:00</td>
<td>12.13º</td>
<td>223.1º</td>
</tr>
<tr>
<td>18:00:00</td>
<td>3.68º</td>
<td>234.07º</td>
</tr>
<tr>
<td>18:28:48</td>
<td>-0.833º</td>
<td>238.89º</td>
</tr>
</tbody>
</table>

Tabla 26 – Resumen de la trayectoria solar y sombras. [32]

Mediante esta tabla y por trigonometría hallaremos las posibles sombras respecto las placas del tejado 2 a las placas del tejado 1, teniendo en cuenta el caso más desfavorable, que sería la hora 13h, puesto que es cuando impacta la irradiancia solar en las placas de la segunda alineación y podríamos tener sombras.

Los datos iniciales son:

<table>
<thead>
<tr>
<th>Long. de placa (mm)</th>
<th>1956</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclinación placa (º)</td>
<td>63</td>
</tr>
<tr>
<td>Altura de placa (mm)</td>
<td>1743</td>
</tr>
</tbody>
</table>

Tabla 27 – Datos de las placas fotovoltaicas para el estudio de las pérdidas por sombras. Atersa.
Con los ángulos de la tabla anterior y los datos de las dimensiones de las placas, tenemos que:

\[X = \frac{H}{\tan(\alpha)} \]

(1)

Donde:

- \(X \) es la distancia en la que habrá sombra (mm).
- \(H \) es la altura de las placas (mm).
- \(\alpha \) es el ángulo con el que llega la irradiación solar al tejado 2 (°).

Aplicando la fórmula (1), obtenemos el siguiente valor:

\[X = \frac{1743}{\tan(24,12)} = 3892,9 \text{ mm} \rightarrow 3,9 \text{ metros} \]

Como hemos podido comprobar, no habrá sombra alguna de las placas del tejado 2 a las placas del tejado 1 puesto que la distancia a la que están colocadas es más que suficiente para evitar el problema -entre las placas distan más de 4,4 metros-.

2.3.1.4 Resultados y decisiones

Como hemos determinado, la colocación de las placas fotovoltaicas será la siguiente:

- Una alineación de 8 placas solares fotovoltaicas en el tejado 1.
- Una alineación de 4 placas solares fotovoltaicas en el tejado 2.

Haciendo un estudio de las mejores horas para el máximo aprovechamiento de la irradiancia solar incidente, obtenemos una tabla que nos muestra las franjas horarias de uso de las placas fotovoltaicas para los dos tejados y así conseguir un porcentaje más elevado del aprovechamiento solar.

Esta tabla no quiere limitar el uso de las placas fotovoltaicas a esta franja horaria, sino que busca determinar de manera más real y aproximada, las horas en donde se conseguirá una mayor energía de las placas.

Como se puede apreciar en la siguiente página, es en los meses de verano donde mayor aprovechamiento del sol vamos a tener, mientras que en invierno tenemos menos horas y menos potencia.
2.3.2 Pérdidas por inclinación

Como hemos comentado anteriormente, se buscará la inclinación óptima para asegurarnos que el rendimiento y el aprovechamiento de las placas es el máximo, de esta manera se reducirán las pérdidas por inclinación de las placas fotovoltaicas. A la vez, se irán comentando los resultados obtenidos.

2.3.2.1 Cálculo de la inclinación

En este apartado vamos a determinar cuál es la inclinación que deben tener las placas fotovoltaicas. Para realizar este apartado nos serviremos del PVGIS [33], un programa online de la Joint Research Centre (JRC), Institute for Energy and Transport (IET) que nos permite calcular la irradiancia media diaria mensual en la zona y nos da la inclinación óptima para la zona determinada.

<table>
<thead>
<tr>
<th>Meses</th>
<th>Horas de sol incidentes</th>
<th>Horas de sol del proyecto</th>
<th>Franja solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>9 horas</td>
<td>8 horas</td>
<td>9h-17h</td>
</tr>
<tr>
<td>Febrero</td>
<td>10 horas</td>
<td>7 horas</td>
<td>9h-18h</td>
</tr>
<tr>
<td>Marzo</td>
<td>12 horas</td>
<td>10 horas</td>
<td>8h-18h</td>
</tr>
<tr>
<td>Abril</td>
<td>12 horas</td>
<td>12 horas</td>
<td>7h-19h</td>
</tr>
<tr>
<td>Mayo</td>
<td>14 horas</td>
<td>12 horas</td>
<td>7h-19h</td>
</tr>
<tr>
<td>Junio</td>
<td>14 horas</td>
<td>13:30 horas</td>
<td>6:30h-20h</td>
</tr>
<tr>
<td>Julio</td>
<td>14 horas</td>
<td>13:30 horas</td>
<td>6:30h-20h</td>
</tr>
<tr>
<td>Agosto</td>
<td>14 horas</td>
<td>12 horas</td>
<td>7h-19h</td>
</tr>
<tr>
<td>Septiembre</td>
<td>12 horas</td>
<td>9:30 horas</td>
<td>9h-18:30h</td>
</tr>
<tr>
<td>Octubre</td>
<td>11 horas</td>
<td>10 horas</td>
<td>8h-18h</td>
</tr>
<tr>
<td>Noviembre</td>
<td>9 horas</td>
<td>8:30 horas</td>
<td>8:30h-17h</td>
</tr>
<tr>
<td>Diciembre</td>
<td>8 horas</td>
<td>8 horas</td>
<td>9h-17h</td>
</tr>
</tbody>
</table>

Tabla 28- Horas de sol incidentes en el tejado, horas de mejor utilización de las placas solares y franja horaria donde más provecho conseguiremos.
La tabla siguiente nos muestra los valores anteriormente comentados. Pero el dato más interesante en este apartado es el estudio de cuál es la inclinación más adecuada para cada mes y un resultado final, que es una inclinación constante y óptima de las placas solares para todo el año y así poder aprovechar, de manera global, la irradiancia solar que llega a la zona.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Hh</th>
<th>Hopt</th>
<th>H(30)</th>
<th>lopt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ene</td>
<td>2150</td>
<td>3920</td>
<td>3670</td>
<td>65</td>
</tr>
<tr>
<td>Feb</td>
<td>3110</td>
<td>4880</td>
<td>4660</td>
<td>57</td>
</tr>
<tr>
<td>Mar</td>
<td>4600</td>
<td>5930</td>
<td>5820</td>
<td>44</td>
</tr>
<tr>
<td>Abr</td>
<td>5320</td>
<td>5800</td>
<td>5850</td>
<td>28</td>
</tr>
<tr>
<td>Mayo</td>
<td>6560</td>
<td>6360</td>
<td>6550</td>
<td>16</td>
</tr>
<tr>
<td>Jun</td>
<td>7330</td>
<td>6720</td>
<td>7000</td>
<td>8</td>
</tr>
<tr>
<td>Jul</td>
<td>7200</td>
<td>6770</td>
<td>7020</td>
<td>11</td>
</tr>
<tr>
<td>Ago</td>
<td>6140</td>
<td>6390</td>
<td>6500</td>
<td>23</td>
</tr>
<tr>
<td>Sep</td>
<td>4770</td>
<td>5770</td>
<td>5720</td>
<td>39</td>
</tr>
<tr>
<td>Oct</td>
<td>3520</td>
<td>5040</td>
<td>4870</td>
<td>52</td>
</tr>
<tr>
<td>Nov</td>
<td>2330</td>
<td>4020</td>
<td>3790</td>
<td>63</td>
</tr>
<tr>
<td>Dic</td>
<td>1890</td>
<td>3680</td>
<td>3400</td>
<td>67</td>
</tr>
<tr>
<td>Año</td>
<td>4590</td>
<td>5440</td>
<td>5410</td>
<td>37</td>
</tr>
</tbody>
</table>

| El ángulo de inclinación óptimo es: 37 grados |
| Irradiación anual perdida a causa de las sombras (horizontal): 0.0 % |

Donde:

- \(H_h\) es la irradiancia sobre el plano horizontal \((\text{Wh/m}^2/\text{dia})\).
- \(H_{opt}\) es la irradiancia sobre un plano la inclinación óptima \((\text{Wh/m}^2/\text{dia})\).
- \(H(30)\) es la irradiancia sobre un plano inclinado 30 grados \((\text{Wh/m}^2/\text{dia})\).
- \(l_{opt}\) es la irradiancia óptima \((\text{grados})\).

Para obtener un aprovechamiento máximo, deberíamos variar cada mes la inclinación de las placas de nuestra instalación. En este trabajo se ha optado por una segunda opción: determinar tres inclinaciones óptimas dependiendo de los meses del año en el que nos encontremos. Esto hará que varíen los resultados de la tabla anterior.
De esta manera tendremos 3 inclinaciones en tres situaciones diferentes: una para los meses de verano (junio, julio y agosto), otra para los meses de invierno (diciembre, enero y febrero) y otra para el resto de los meses del año. Estas inclinaciones vendrán en función de la media de las inclinaciones de los meses en las tres situaciones.

Dicho esto, la tabla con las inclinaciones sería la siguiente:

<table>
<thead>
<tr>
<th>Meses</th>
<th>Inclinación óptima</th>
<th>Inclinación media según la situación</th>
<th>Nueva irradiación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>65</td>
<td>63°</td>
<td>4380</td>
</tr>
<tr>
<td>Febrero</td>
<td>57</td>
<td>63°</td>
<td>5140</td>
</tr>
<tr>
<td>Marzo</td>
<td>44</td>
<td>40°</td>
<td>5960</td>
</tr>
<tr>
<td>Abril</td>
<td>28</td>
<td>40°</td>
<td>5760</td>
</tr>
<tr>
<td>Mayo</td>
<td>16</td>
<td>40°</td>
<td>6250</td>
</tr>
<tr>
<td>Junio</td>
<td>8</td>
<td>14°</td>
<td>7350</td>
</tr>
<tr>
<td>Julio</td>
<td>11</td>
<td>14°</td>
<td>7300</td>
</tr>
<tr>
<td>Agosto</td>
<td>23</td>
<td>14°</td>
<td>6470</td>
</tr>
<tr>
<td>Septiembre</td>
<td>39</td>
<td>40°</td>
<td>5770</td>
</tr>
<tr>
<td>Octubre</td>
<td>52</td>
<td>40°</td>
<td>5100</td>
</tr>
<tr>
<td>Noviembre</td>
<td>63</td>
<td>40°</td>
<td>4110</td>
</tr>
<tr>
<td>Diciembre</td>
<td>67</td>
<td>63°</td>
<td>4160</td>
</tr>
</tbody>
</table>

Tabla 30 – Inclinaciones de las placas según los meses.

Comparando las inclinaciones óptimas con las calculadas, vemos que para la gran mayoría de meses la inclinación es adecuada. De esta manera obtenemos un mayor aprovechamiento de las horas de sol y de la irradiación.

2.3.2.2 Resultados finales

Tal y como hemos comentado, para mejorar el rendimiento de las placas fotovoltaicas según su grado de inclinación, vamos a instalar un mecanismo en donde irán ubicadas las placas fotovoltaicas y que servirá para realizar un cambio de inclinaciones según la situación en la que se encuentren los meses (verano, invierno o resto de los meses). Como hemos podido observar, el aprovechamiento es mayor que si dejáramos las placas en una misma posición todos los meses.
2.3.3 Determinación de los módulos fotovoltaicos

Tanto en el mercado como en los laboratorios de investigación, existen células y módulos solares diversos. Los más comunes son los de silicio monocristalino, silicio policristalino (estos dos son las más empradas ya que presentan un mayor rendimiento) y los módulos de capa fina.

Primero de todo vamos a determinar cuál es el dimensionamiento que deben tener las placas solares fotovoltaicas. Se seguirán los pasos enunciados a continuación.

- Determinar el consumo.
- Dimensionado del generador fotovoltaico (número de paneles necesarios).
- Dimensionado del sistema de acumulación (número de baterías).
- Dimensionado del regulador.
- Dimensionado del inversor.

Los tres últimos puntos no se realizaran en este apartado puesto que el sistema que vamos a realizar es un sistema híbrido eólico-solar y necesitamos saber, también, los datos eólicos para poder dimensionar estos dos elementos ya que son elementos que usan en común.

Una vez tengamos los datos necesarios, procederemos a buscar en el mercado la solución para este sistema fotovoltaico, tal y como se realizó con el sistema eólico.

2.3.3.1 Determinación del consumo

Para poder empezar con el cálculo de los módulos fotovoltaicos, debemos saber cuáles son las demandas de potencia de la vivienda. Como vimos en las tablas 18, 19 y 20 tenemos el cálculo de la demanda en tres circunstancias diferentes y, dentro de ellas, la demanda cada día.

Vamos a tener que determinar la demanda de potencia que deben generar las placas teniendo en cuenta que una pequeña parte la genera el aerogenerador.

2.3.3.2 Dimensionamiento de las placas fotovoltaicas

En este apartado vamos a proceder al cálculo del número total de módulos necesarios. Para ello debemos realizar dos pasos: uno es la elección de las placas a instalar y, el segundo, buscar cuál es el momento del año en el cual es más difícil asegurar el suministro de energía.

Para determinar cuál es el momento del año en el cual debemos asegurar el suministro dimensionando la instalación, deberemos tener en cuenta cuáles son los meses con menor radiación solar y, también, la potencia que genera el aerogenerador en esos meses.
De esta manera obtendremos el caso más desfavorable y, a partir de allí, realizaremos los cálculos para dimensionar la instalación solar.

Dicho esto, las placas fotovoltaicas con las que trabajaremos serán las **A-320M GS de Atersa**.

Con los datos de la tabla 30 según la inclinación por meses, podemos determinar cuáles son los meses con menor radiación solar y, por tanto, los meses que se deberán estudiar. Estos son los meses de noviembre, diciembre y enero.

Ahora procederemos al cálculo de los módulos solares en cada caso y determinaremos cual es el caso más desfavorable, por tanto, el que deberemos escoger para la instalación.

Primero determinaremos el consumo energético de la vivienda. Éste vendrá dado por la siguiente fórmula, que es el consumo medio de energía diario:

\[
L_{med, \text{dia}} = \frac{L_{md, DC} + L_{md, AC}}{\eta \text{ inv}} \frac{1}{\eta \text{ bat} \cdot \eta \text{ cond} \cdot \eta \text{ reg}}
\]

Donde:

- **Lmed, dia** es el consumo medio de energía diario (Wh/día).
- **Lmd,DC** es el consumo medio de energía diario de las cargas en continua (Wh/día).
- **Lmd,AC** es el consumo medio de energía diario de las cargas en alterna (Wh/día).
- **η bat** es el rendimiento de las baterías (%).
- **η cond** es el rendimiento de los conductores (%).
- **η reg** es el rendimiento de los reguladores de cc (%).
- **η inv** es el rendimiento del inversor (%).

Esta fórmula se emplea con un margen de seguridad (en este caso se le ha aplicado un 10%, siendo Lmd el consumo medio de energías de la vivienda más el margen de seguridad) y debemos tener también en cuenta que en la instalación habrá pérdidas por el rendimiento de elementos como la batería, el inversor, de los reguladores y los conductores, siendo éstos de 79%, 94%, 94% y 98% respectivamente.
Para disponer de los datos iniciales, de las tablas de consumo por aparatos y mes, obtenemos los datos de Lmd,DC y Lmd,AC por sumatorio directo de los consumos estimados en dicha tabla. Así obtendremos los siguientes resultados:

<table>
<thead>
<tr>
<th>Consumos de Energía según el mes</th>
<th>Consumo diario (kWh/día)</th>
<th>Lmd,DC (kWh/día)</th>
<th>Lmd,AC (kWh/día)</th>
<th>Consumo estimado total (kWh/día)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>11,6</td>
<td>97,80</td>
<td>297,44</td>
<td>395,2</td>
</tr>
<tr>
<td>Febrero</td>
<td>11,6</td>
<td>97,80</td>
<td>297,44</td>
<td>395,2</td>
</tr>
<tr>
<td>Marzo</td>
<td>8,2</td>
<td>94,66</td>
<td>186,61</td>
<td>281,3</td>
</tr>
<tr>
<td>Abril</td>
<td>8,2</td>
<td>94,66</td>
<td>186,61</td>
<td>281,3</td>
</tr>
<tr>
<td>Mayo</td>
<td>8,2</td>
<td>94,66</td>
<td>186,61</td>
<td>281,3</td>
</tr>
<tr>
<td>Junio</td>
<td>13,0</td>
<td>93,50</td>
<td>350,14</td>
<td>443,6</td>
</tr>
<tr>
<td>Julio</td>
<td>13,0</td>
<td>93,50</td>
<td>350,14</td>
<td>443,6</td>
</tr>
<tr>
<td>Agosto</td>
<td>13,0</td>
<td>93,50</td>
<td>350,14</td>
<td>443,6</td>
</tr>
<tr>
<td>Septiembre</td>
<td>8,2</td>
<td>94,66</td>
<td>186,61</td>
<td>281,3</td>
</tr>
<tr>
<td>Octubre</td>
<td>8,2</td>
<td>94,66</td>
<td>186,61</td>
<td>281,3</td>
</tr>
<tr>
<td>Noviembre</td>
<td>8,2</td>
<td>94,66</td>
<td>186,61</td>
<td>281,3</td>
</tr>
<tr>
<td>Diciembre</td>
<td>11,6</td>
<td>97,80</td>
<td>297,44</td>
<td>395,2</td>
</tr>
<tr>
<td>Total energía</td>
<td></td>
<td></td>
<td></td>
<td>4.204,3</td>
</tr>
</tbody>
</table>

Tabla 31- Consumo estimado total incluido margen de seguridad.

A partir de esta tabla de consumo y los nuevos valores de Lmd,DC y Lmd,AC, y aplicando la fórmula (2) obtendremos la necesidad bruta de generación mínima para el diseño mostrada en la siguiente página, sabiendo que la energía diaria es la energía media diaria mensualmente:
<table>
<thead>
<tr>
<th>Mes/Energía</th>
<th>Consumo diario mensual (Wh/mes)</th>
<th>Lmed (Wh/mes)</th>
<th>Energía Total a generar mensual (kWh/mes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>11,6</td>
<td>17.181</td>
<td>532,6</td>
</tr>
<tr>
<td>Febrero</td>
<td>11,6</td>
<td>17.181</td>
<td>532,6</td>
</tr>
<tr>
<td>Marzo</td>
<td>8,2</td>
<td>11.853</td>
<td>367,5</td>
</tr>
<tr>
<td>Abril</td>
<td>8,2</td>
<td>11.853</td>
<td>367,5</td>
</tr>
<tr>
<td>Mayo</td>
<td>8,2</td>
<td>11.853</td>
<td>367,5</td>
</tr>
<tr>
<td>Junio</td>
<td>13,0</td>
<td>19.527</td>
<td>605,3</td>
</tr>
<tr>
<td>Julio</td>
<td>13,0</td>
<td>19.527</td>
<td>605,3</td>
</tr>
<tr>
<td>Agosto</td>
<td>13,0</td>
<td>19.527</td>
<td>605,3</td>
</tr>
<tr>
<td>Septiembre</td>
<td>8,2</td>
<td>11.853</td>
<td>367,5</td>
</tr>
<tr>
<td>Octubre</td>
<td>8,2</td>
<td>11.853</td>
<td>367,5</td>
</tr>
<tr>
<td>Noviembre</td>
<td>8,2</td>
<td>11.853</td>
<td>367,5</td>
</tr>
<tr>
<td>Diciembre</td>
<td>11,6</td>
<td>17.181</td>
<td>532,6</td>
</tr>
<tr>
<td>Total energía</td>
<td></td>
<td></td>
<td>5.618,5</td>
</tr>
</tbody>
</table>

Tabla 32- Energía total a generar aplicando la fórmula anterior.

Estos son los datos reales de demanda de potencia de nuestra vivienda. Anualmente se precisará de 5.619 kWh de generación híbrida.

A continuación procederemos con el cálculo del número de módulos fotovoltaicos necesarios en los meses que menor irradiancia solar hay, teniendo en cuenta la demanda de potencia de la vivienda y la potencia que genera el aerogenerador, puesto que la diferencia entre ellos será la potencia real que deben entregar los paneles fotovoltaicos.

De esta manera tenemos que:

\[
N_t = \frac{\text{Lmed} - \text{Laero}}{\text{Pmp} \ast \text{HPS} \ast \text{PR}}
\]

(3)

Donde:

\(N_t\) es el número de módulos necesarios.

\(\text{Lmed}\) es el consumo medio de energía diario mensualmente (Wh/mes).
Laero es la generación de potencia media diaria mensualmente del aerogenerador (Wh/mes).

Pmpp es la potencia pico del módulo en condiciones estándar (W). En el caso de las placas A-320M GS de Atersa con 1000W/m² es de unos 320 W.

HPS son las horas de sol pico del mes crítico calculado a partir del cociente de la radiación del mes y la irradiancia de referencia de 1000 W/m².

PR es el factor global de funcionamiento que varía, normalmente, entre 0,65 y 0,90. Usaremos 0,84 por defecto.

Para aplicar la ecuación (3) anterior, debemos tomar el valor de la potencia que genera el aerogenerador en cada mes y que tenemos de la Tabla 25.

Asimismo debemos calcular el valor HPS mediante la siguiente expresión:

\[
HPS = \frac{\text{Irradiancia, mes}}{\text{Irradiancia de referencia}}
\]

Donde:

Irradiancia, mes la obtendremos de la tabla.

Irradiancia de referencia es de 1000 W/m².

De los valores obtenidos de HPS posteriormente calculamos el Nt (número total de placas):
Necesidades de energía según el mes

<table>
<thead>
<tr>
<th>Mes</th>
<th>Lmed (Wh/mes)</th>
<th>Laero (Wh/mes)</th>
<th>HPS</th>
<th>Número de Placas a instalar (Nt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>17.181</td>
<td>4.268</td>
<td>4,38</td>
<td>11</td>
</tr>
<tr>
<td>Febrero</td>
<td>17.181</td>
<td>6.464</td>
<td>5,14</td>
<td>8</td>
</tr>
<tr>
<td>Marzo</td>
<td>11.853</td>
<td>6.570</td>
<td>5,96</td>
<td>3</td>
</tr>
<tr>
<td>Abril</td>
<td>11.853</td>
<td>4.410</td>
<td>5,76</td>
<td>5</td>
</tr>
<tr>
<td>Mayo</td>
<td>11.853</td>
<td>6.570</td>
<td>6,25</td>
<td>3</td>
</tr>
<tr>
<td>Junio</td>
<td>19.527</td>
<td>4.410</td>
<td>7,35</td>
<td>8</td>
</tr>
<tr>
<td>Julio</td>
<td>19.527</td>
<td>5.065</td>
<td>7,30</td>
<td>7</td>
</tr>
<tr>
<td>Agosto</td>
<td>19.527</td>
<td>4.268</td>
<td>6,47</td>
<td>9</td>
</tr>
<tr>
<td>Septiembre</td>
<td>11.853</td>
<td>2.808</td>
<td>5,77</td>
<td>6</td>
</tr>
<tr>
<td>Octubre</td>
<td>11.853</td>
<td>2.000</td>
<td>5,10</td>
<td>7</td>
</tr>
<tr>
<td>Noviembre</td>
<td>11.853</td>
<td>1.467</td>
<td>4,11</td>
<td>9</td>
</tr>
<tr>
<td>Diciembre</td>
<td>17.181</td>
<td>3.909</td>
<td>4,16</td>
<td>12</td>
</tr>
</tbody>
</table>

Tabla 33- Determinación del número de módulos a instalar.

De esta manera concluimos que el mes más desfavorable es en diciembre, por lo que deberemos colocar **12 placas fotovoltaicas** para asegurar la demanda.

A continuación se calculará cuáles serán las conexiones entre las placas fotovoltaicas una vez las vayamos a colocar en los tejados de la vivienda, es decir, qué tipo de conexiones eléctricas (serie y/o paralelo) debe haber entre las 12 placas para asegurar el suministro en todos los meses del año.

Para ello vamos a emplear dos fórmulas que utilizan la tensión máxima del panel como referencia ya que, si fuéramos a utilizar un regulador de carga sin seguimiento del punto de máxima potencia MPPT (que no es el caso), deberíamos usar otro criterio, el de Amperios-Hora, donde sería la batería la que marcase la tensión del sistema.

De esta manera, las fórmulas que vamos a utilizar son las siguientes:

\[
N_{serie} = \frac{V_{bat}}{V_{mod, MPP}} \quad (5)
\]

\[
N_{paralelo} = \frac{N_t}{N_{serie}} \quad (6)
\]
Donde:

- Nserie es el número de placas a conectar en serie.
- Nparalelo es el número de placas a conectar en paralelo.
- Vbat es la tensión en bornes de la batería (V).
- Vmod, MPP es la tensión máxima del módulo fotovoltaico (V).
- Nt es el número de placas fotovoltaicas total.

Entonces, sustituyendo los valores anteriores en (5) y (6) tenemos que:

\[N_{serie} = \frac{V_{bat}}{V_{mod, MPP}} = \frac{24V}{37V} = 0,65 \approx 1 \text{ panel} \]

\[N_{paralelo} = \frac{N_t}{N_{serie}} = 12 = 12 \text{ modulos} \]

Así pues, necesitamos 12 módulos en paralelo con 1 módulo por serie.

Asimismo, comprobamos que el número de ramas en paralelo cumpla con la exigencia de que la corriente de cortocircuito máxima de una rama por el número de ramas conectados (3 agrupaciones de 4 ramas) debe ser menor que la corriente máxima admisible de entrada al inversor.

Debido al uso de 3 reguladores de 60 A Xantrex los cálculos serán:

\[Ifv = Isc \times N_{paralelo} \quad (7) \]

Donde:

- Ifv es la corriente que soporta el circuito fotovoltaico (A).
- Isc es la corriente de cortocircuito de cada panel fotovoltaico (A).
- Nparalelo es el número de ramas en paralelo de la instalación.
De esta manera obtenemos:

\[Ifv = Isc \times Nparalelo = 9,1 \times 4 = 36,4 \, A \]

Que, como hemos visto anteriormente, es un valor de corriente muy por debajo del que puede soportar el regulador Xantrex.

A la hora de realizar las conexiones, tanto en serie como en paralelo, debemos tener en cuenta una serie de requisitos:

- Hay que respetar la polaridad de las conexiones de cada módulo y de cada grupo de paneles.
- Para que no haya problemas a la hora del montaje y para que no se manipulen las cajas de conexiones de los paneles fotovoltaicos, se suministran los módulos con cables de salida terminados en conectores. De esta manera, simplemente deberemos enchufar los conectores para realizar las conexiones.
- Podremos conectar en serie tantos paneles iguales siempre y cuando no se sobrepase la tensión máxima del sistema que viene indicada en la placa de características de cada panel.
- De la misma manera, podremos conectar en paralelo tantos paneles iguales como admita el regulador de carga o el equipo al cual vayan conectados los paneles.
- Deberemos prestar mucha importancia a las secciones de los cables.
- En el caso que haya un aumento de la demanda de potencia, se recomienda conectar varios paneles en serie para incrementar el voltaje de salida (sin llegar nunca a la tensión máxima que soporta el sistema y comprobando que no se ha llegado a la tensión máxima que puede soportar el regulador, sino deberíamos cambiarlo), ya que un aumento de ramas en paralelo supone un aumento de la corriente y esto supondría aumentar la sección de los cables siendo esta opción más difícil que la anterior.

Dicho lo anterior y sabiendo que las placas son de 24 V, las conexiones eléctricas de los 12 paneles fotovoltaicos serán en paralelo.

La colocación física será de 2 alineaciones: una de 4 y otra de 8 paneles en paralelo sin interacción por sombras.

Con este escenario, podemos calcular la energía a generar máxima, conociendo los valores anteriores de HPS, Potencia generada por el sistema cólico y la nueva capacidad de generación con 12 elementos solares.
Usando las fórmulas de los apartados anteriores determinamos la siguiente tabla:

<table>
<thead>
<tr>
<th>Mes/Energía</th>
<th>Energía útil generada por las placas (kWh/mes)</th>
<th>Energía Generada Eólica (Wh/mes)</th>
<th>Energía total generada (kWh/mes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>438</td>
<td>132</td>
<td>570</td>
</tr>
<tr>
<td>Febrero</td>
<td>464</td>
<td>181</td>
<td>645</td>
</tr>
<tr>
<td>Marzo</td>
<td>596</td>
<td>204</td>
<td>800</td>
</tr>
<tr>
<td>Abril</td>
<td>557</td>
<td>132</td>
<td>690</td>
</tr>
<tr>
<td>Mayo</td>
<td>625</td>
<td>204</td>
<td>829</td>
</tr>
<tr>
<td>Junio</td>
<td>711</td>
<td>132</td>
<td>844</td>
</tr>
<tr>
<td>Julio</td>
<td>730</td>
<td>157</td>
<td>887</td>
</tr>
<tr>
<td>Agosto</td>
<td>647</td>
<td>132</td>
<td>779</td>
</tr>
<tr>
<td>Septiembre</td>
<td>558</td>
<td>84</td>
<td>643</td>
</tr>
<tr>
<td>Octubre</td>
<td>510</td>
<td>62</td>
<td>572</td>
</tr>
<tr>
<td>Noviembre</td>
<td>398</td>
<td>44</td>
<td>442</td>
</tr>
<tr>
<td>Diciembre</td>
<td>416</td>
<td>121</td>
<td>537</td>
</tr>
<tr>
<td>Total energía</td>
<td>6.651</td>
<td>1.586</td>
<td>8.237</td>
</tr>
</tbody>
</table>

Tabla 34 - Cálculos de energía generada con 12 placas solares y un aerogenerador.

2.3.3.3 Ahorro económico de la instalación

La decisión de instalar un sistema híbrido eólico y solar nos permite un interesante ahorro:

- El ahorro de la energía que produce en la instalación diseñada y que es consumida que no tendrá que ser comprada a la red.
- Esta energía producida mejora la calidad del medioambiente y representa una apuesta por la sostenibilidad y el medioambiente, reduciendo emisiones de CO\textsubscript{2} a la atmósfera.
- También se mejora la calidad de la energía, al adolecer de caídas de tensión y fallos de la calidad de la onda que estamos acostumbrados a sufrir en instalaciones rurales.

Teniendo en cuenta que al confeccionar el proyecto la concienciación del ahorro energético es más patente, se harán los cálculos con los valores obtenidos del proyecto a efectos orientativos, dado que la intención del titular es la de apostar por la energía renovable al margen del ahorro real. Aun así será de interés dicho cálculo.
La energía producida la obtenemos de las tablas y usaremos lo siguiente extraído de una factura del mes de Abril del 2015:

- Tarifa: 2.0 A
- Potencia contratada: 5,5 kWh
- Precio peaje acceso Potencia contratada: 38,043426 €/kW/año
- Importe Margen de Comercialización: 4€ kW/año
- Precio peaje acceso Energía: 0,044027 €/kWh
- Precio de la energía en el periodo: 0,072725 € kWh
- Impuesto de la electricidad: 5,11269632% del total del coste de la energía
- IVA: 21%

<table>
<thead>
<tr>
<th>Mes/importe</th>
<th>Ahorro por consumo total (Euros/año)</th>
<th>Energía total generada (Euros/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>83,20</td>
<td>109,19</td>
</tr>
<tr>
<td>Febrero</td>
<td>83,20</td>
<td>120,32</td>
</tr>
<tr>
<td>Marzo</td>
<td>66,28</td>
<td>143,25</td>
</tr>
<tr>
<td>Abril</td>
<td>66,28</td>
<td>126,92</td>
</tr>
<tr>
<td>Mayo</td>
<td>66,28</td>
<td>147,55</td>
</tr>
<tr>
<td>Junio</td>
<td>90,39</td>
<td>149,77</td>
</tr>
<tr>
<td>Julio</td>
<td>90,39</td>
<td>156,22</td>
</tr>
<tr>
<td>Agosto</td>
<td>90,39</td>
<td>140,22</td>
</tr>
<tr>
<td>Septiembre</td>
<td>66,28</td>
<td>119,93</td>
</tr>
<tr>
<td>Octubre</td>
<td>66,28</td>
<td>109,44</td>
</tr>
<tr>
<td>Noviembre</td>
<td>66,28</td>
<td>90,10</td>
</tr>
<tr>
<td>Diciembre</td>
<td>83,20</td>
<td>104,27</td>
</tr>
<tr>
<td>Total</td>
<td>918,41 €</td>
<td>1.517,18 €</td>
</tr>
</tbody>
</table>

Tabla 35– Ahorro por consumo y energía total generada.
2.4 Equipos electrónicos de regulación y conversión

2.4.1 Regulador Solar Xantrex XWMPPT 60 150 Schneider Electric

2.4.1.1 Características

Se ha buscado un regulador de carga MPPT solar ya que ofrece un mayor rendimiento a los módulos fotovoltaicos, se pueden añadir paneles en serie con un voltaje superior al del banco de baterías y trabajan a la tensión que más conviene.

El regulador eólico que se ha buscado es también de la misma marca que la turbina, ya que en el manual de esta recomiendan su uso, junto con la dummy load que veremos más adelante, y viene detallado su conexionado y más información.

Se ha desestimado la posibilidad de buscar un regulador de carga híbrido, ya que los reguladores híbridos pueden sufrir de algún problema al tener que controlar a dos dispositivos diferentes, por tanto buscaremos un regulador solar MPPT y uno independiente para la parte eólica.

2.4.1.2 Cálculos

Podemos conocer la corriente que debe soportar empleando la fórmula (8):

\[Ifv = Isc \times Nparalelo \]

Donde:

Ifv es la corriente que soporta el circuito fotovoltaico (A).

Isc es la corriente de cortocircuito de cada panel fotovoltaico (A).

Nparalelo es el número de ramas en paralelo de la instalación.

De esta manera obtenemos:

\[Ifv = Isc \times Nparalelo = 9,1 \times 12 = 109,2 \text{ A} \]

Para calcular cuál es la corriente que debe soportar el regulador, vamos a emplear la siguiente fórmula. Para ello vamos a multiplicar el valor anterior por un margen de seguridad para evitar que el regulador trabaje al límite de la corriente máxima que debe soportar.
Donde
Iregulador es la corriente que debe soportar el regulador (A).

Valor 1,2 es el margen de seguridad del 20 %.

Como la corriente es muy elevada, buscaremos poner dos reguladores en paralelo.

\[N_{\text{reg en paralelo}} = \frac{\text{Iregulador}}{\text{Ireg1}} = \frac{131 A}{60 A} = 2,18 \approx 3 \text{ reguladores} \]

Donde:

Ireg1 es la corriente del regulador del mercado (A).

De esta manera se determina la necesidad de 3 reguladores en paralelo para soportar toda la intensidad de carga del campo solar en condiciones de máxima carga del sistema.

Los dispondremos de manera que, por cada 4 paneles fotovoltaicos haya un regulador de carga solar.

El regulador escogido es un **Xantrex Controlador de carga solar XW MPPT 60 150**, de **Schneider Electric**, que ofrece un conjunto de características adecuadas para la instalación y muy adecuado para su uso en instalaciones solares, permitiendo la conexión de hasta 16 unidades en paralelo y en red única de comunicación.

- **Características:**
 - Pantalla LCD informativa de la capacidad de carga de las baterías y del consumo de la instalación.
 - Soporta baterías Gel, AGM, solar monoblock, OPZS.
 - Permite ajustar los voltajes de carga y todos los parámetros según la batería utilizada, así como la carga de las baterías en 2, 3 o 4 etapas.
 - Permite conectar hasta 16 unidades en paralelo para cubrir altas corrientes.
 - Precisión de carga en baterías de 12V, 24V y 48V con fácil configuración.
Memoria de Cálculo

- Función de compensación de temperatura integrada para una carga segura y completa. Sistemas de seguridad de paro del regulador ante sobrecargas.
- Potencia de salida continuada sin límite hasta los 50°C de temperatura ambiente.

Más especificaciones técnicas del regulador han sido mostradas en la Memoria Descriptiva.

Imagen 34– Regulador Xantrex XW MPPT 60 150. Schneider Electric.

2.4.2 Regulador Eólico 0102-1000-024 (e300-002-024) 1000W 40A, Kestrel

2.4.2.1 Cálculos

El cálculo de este regulador de carga es la comprobación de los datos de fabricante, esto es, asegurar cuál debe ser según las características eléctricas.

Igual que en el cálculo del regulador solar, debemos determinar la corriente que circulará, aplicando la ecuación (11).

\[
I = \frac{P}{V} \rightarrow 800 \, W / 24 \, V = 33,33 \, A \quad (11)
\]

Donde:

- \(P \) es la potencia máxima del generador (W).
- \(V \) es la tensión de utilización (V).
- \(I \) es la corriente que circulará (A).
Aunque escogemos como potencia 800 W, prácticamente motivado por las velocidades del viento, no se llegará a este valor, sin embargo no podemos descartar que el aerogenerador llegue a proporcionarnos esta potencia; por lo tanto, se determina que se necesita un regulador de capacidad sobre 40 A o mayor para usos eólicos, con lo cual el fabricante dispone del regulador Kestrel Charge Controller type 0102-1000-024 (e300-002-024) 1000W 40 A. Si bien es para turbinas de 1000W, en nuestro caso es adecuado para la tensión y corrientes del generador de 800 W.

Imagen 35- Regulador eólico 0102-1000-024. Kestrel.

2.4.3 Baterías

2.4.3.1 Cálculos

Procederemos a determinar de qué tensión deben ser los acumuladores y cómo se deben conectar.

Motivado por la tensión de uso del bus y de los elementos instalados, la tensión del banco de baterías es de 24 V.

Las conexiones se harán en función de las necesidades de tensión del sistema y de la tensión de las baterías. Se conectarán en serie, en paralelo o una combinación de ambas para llegar a la tensión necesaria de 24 V.

Para seleccionar las baterías, emplearemos la fórmula siguiente:

$$C_{total} = \frac{Nd \cdot Ec}{Vn \cdot P_{descarga}}$$ \hspace{1cm} (12)
Memoria de Cálculo

Donde:

- **C total** es la capacidad total de la instalación (Ah).
- **Nd** es el número de días de autonomía (días). Escogemos 2 días.
- **Ec** es la energía consumida máxima por la vivienda (Wh/día). Consideramos un factor de seguridad del 20% y pérdidas del 8% del cargador, en el caso más desfavorable.
- **Pdescarga** es la profundidad de descarga de las baterías (%).
- **Vn** es la tensión nominal del sistema.

Pre calculamos **Ec** como \((13.010 \times 1,2)/0,92 \) siendo el valor de **16.970 W**.

De esta manera obtenemos:

\[
C_{total} = \frac{Nd \times Ec}{Vn \times P_{descarga}} = \frac{2 \times 16.970}{24 \times 0.8} = \frac{33218}{19.2} = 1768 \text{ Ah}
\]

Ahora determinaremos el banco de baterías necesario, conociendo que cada grupo de baterías está constituido de 6 células de 2 V cada una:

\[
N \text{ baterías en serie} = \frac{Vn}{V_{baterías}} = \frac{24 V}{12 V} = 2 \text{ grupos de 6 baterías} \quad (13)
\]

\[
N \text{ baterías en paralelo} = \frac{C_{total}}{C_{batería}} = \frac{1830}{1768} \cong 1 \text{ banco} \quad (14)
\]

Las conexiones deberán ser de 2 agrupaciones en paralelo compuesta cada agrupación por 6 baterías de 2V en serie.
2.4.3.2 Características

Las baterías seleccionadas para la instalación solar fotovoltaica son unas **Baterías OPzS Solar 1830**, de la marca **Victron**. Tienen un almacenaje de 1830Ah aptas para hasta 1500 ciclos al 80%. Estos modelos tienen baterías estacionarias para aplicaciones solares con un alto ciclo de descarga, un muy buen mantenimiento y una alta vida útil. El rendimiento de las mismas es del 79%, dato usado a la hora de calcular la energía necesaria a generar.

Estas baterías son de 2V pero vienen 6, por lo cual cada banco es de 12V. De esta manera, necesitaremos dos grupos de 6 baterías de 2 V para llegar a los 24 V.

![Imagen 36- Baterías estacionarias Solares OPzS 1830Ah Victron. Victron.](image)

2.4.4 Dummy Load

En este apartado determinamos las necesidades de cargas de disipación. El mismo fabricante nos detalla la información necesaria siendo de 24 VDC y 600 W de disipación.

De esta manera tenemos que:
Memoria de Cálculo

$$Ndummy\ loads = \frac{Paero}{Pdl}$$ \hspace{1cm} (15)

Donde

Paero es la potencia máxima del aerogenerador (W).

Pdl es la potencia disipativa de la Dummy Load (W).

Sustituyendo los valores en (15), tenemos que:

$$Ndummy\ loads = \frac{Paero}{Pdl} = \frac{800}{600} = 1,33 \cong 2 \ dummy\ load$$

De esta manera, necesitamos 2 resistencias sumergibles calefactoras de 24 Vdc y de 600 W.
2.5 Instalación eléctrica de Baja Tensión: Cálculos

2.5.1 Cálculo del sistema híbrido eólico-solar

En este apartado realizaremos el cálculo de las secciones. Para ello se ha empleado el programa *Prysmitool* [30] de la empresa *Prysmian*. Este programa sirve para calcular conductores siguiendo los criterios del REBT, incluyendo la normativa actual y pudiendo escoger las características de los conductores y las instalaciones.

Se han considerado para cada cable de cada utilización los siguientes criterios de dimensionamiento, donde apliquen:

Por regla general se tiene en cuenta en todos:

- El criterio de cálculo es por caída de tensión.
- El cuanto al criterio térmico se ha considerado un sobredimensionamiento del 125% -por ser generación de BT- según las recomendaciones técnicas del reglamento de baja tensión en su ITC-BT 40.
- Se han tenido en cuenta las indicaciones y datos obtenidos de la ITC-BT-19 del Reglamento de Baja Tensión y se han aplicado Factores de corrección sobre la Intensidad Admisible en el conductor:
 - Coeficiente por temperatura ambiente.
 - Coeficiente por exposición al sol.
 - Otros coeficientes si aplican.

Las soluciones escogidas son:

- Conductor Tecsun para aplicaciones fotovoltaicas:
 - Cobre.
 - Aislamiento XLPE.
 - No propagador de llama, resistente al agua, frío, abrasión.
 - Temperatura máxima de 120 °C y servicio a alta temperatura.

- Conductor Bupreno para el resto de aplicaciones:
 - Cobre electrolítico recocido desnudo.
 - Temperatura máxima de servicio 90 °C.
 - Aislamiento de EPR.
 - Cubierta de neopreno.
 - Resistencia a los rayos ultravioletas, al frío y a golpes.
 - Cable flexible.

A continuación se muestra una tabla resumen de las secciones determinadas y los valores más importantes.
Más abajo, se detallan los cálculos.

<table>
<thead>
<tr>
<th>ASIGNACIÓN</th>
<th>INT. CALC.</th>
<th>COEF.</th>
<th>LONGITUD</th>
<th>CABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrupación solar</td>
<td>8.65</td>
<td>1.25</td>
<td>4</td>
<td>24x4 mm²</td>
</tr>
<tr>
<td>Agrupación solar 1 a reguladores solares</td>
<td>36.4</td>
<td>1.25</td>
<td>15</td>
<td>4x50 mm²</td>
</tr>
<tr>
<td>Agrupación solar 2 a regulador solar</td>
<td>36.4</td>
<td>1.25</td>
<td>30</td>
<td>2x95 mm²</td>
</tr>
<tr>
<td>Del aerogenerador a regulador eólico</td>
<td>33.33</td>
<td>1.25</td>
<td>40</td>
<td>2x120 mm²</td>
</tr>
<tr>
<td>Del regulador a las dummy load</td>
<td>33.33</td>
<td>1.25</td>
<td>20</td>
<td>2x50 mm²</td>
</tr>
<tr>
<td>De los reguladores al embarrado</td>
<td>40</td>
<td>1.25</td>
<td>5</td>
<td>2x16 mm²</td>
</tr>
<tr>
<td>Embarrado común</td>
<td>630</td>
<td>1.25</td>
<td>2</td>
<td>1 pletina de 40x10mm²</td>
</tr>
<tr>
<td>De embarrado a baterías</td>
<td>260</td>
<td>1.25</td>
<td>5</td>
<td>2x120 mm²</td>
</tr>
<tr>
<td>De embarrado a inversor</td>
<td>240</td>
<td>1.25</td>
<td>5</td>
<td>2x120 mm²</td>
</tr>
<tr>
<td>De embarrado a bus cc</td>
<td>20</td>
<td>1.25</td>
<td>5</td>
<td>2x10 mm²</td>
</tr>
</tbody>
</table>

Tabla 36- Tabla de los resultados del cálculo de secciones de los conductores.

Realmente se dispondrá de un embarrado bipolar capaz de soportar hasta 630 A para las interconexiones entre los diferentes elementos del conjunto.
- Agrupación solar

Imagen 37- Detalles técnicos del conductor 1. [30]

- Agrupación solar 1 a reguladores solares

Imagen 38- Detalles técnicos del conductor 2. [30]
Agrupación solar 2 a regulador solar

<table>
<thead>
<tr>
<th>Tipo de Instalación I:</th>
<th>ITC-BT 20 Instalaciones interiores o receptoras en general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de Instalación II:</td>
<td>Bajo tubo, canal o conducto de sección no circular</td>
</tr>
<tr>
<td>Tipo de Instalación III:</td>
<td>En montaje superficial</td>
</tr>
</tbody>
</table>

Nombre del cable seleccionado: Tecsun (PV) (AS) (Cable para fotovoltaica)

Características instalación

<table>
<thead>
<tr>
<th>Intensidad de corriente:</th>
<th>36.40 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia activa:</td>
<td>0.87 kW</td>
</tr>
<tr>
<td>Tensión utilizada:</td>
<td>24 V</td>
</tr>
<tr>
<td>Cos ϕ:</td>
<td>--</td>
</tr>
<tr>
<td>Tiempo disparo protecciones:</td>
<td>0.30 s</td>
</tr>
</tbody>
</table>

Coeficiente por tipo de instalación: 1.25 (generación en BT)

| Otro coeficiente: | 1.00 |

Temperatura ambiente: 30 °C (1.10)

Cable expuesto al sol directamente: SI (0.90)

| n° de circuitos adicionales: | 0 (1.00)* |

Imagen 39- Detalles técnicos del conductor 3. [30]

Del aerogenerador a regulador eólico

<table>
<thead>
<tr>
<th>Tipo de Instalación I:</th>
<th>ITC-BT 20 Instalaciones interiores o receptoras en general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de Instalación II:</td>
<td>Bajo tubo, canal o conducto de sección no circular</td>
</tr>
<tr>
<td>Tipo de Instalación III:</td>
<td>En montaje superficial</td>
</tr>
</tbody>
</table>

Nombre del cable seleccionado: Bupreno (Cable de goma para instalaciones fijas)

Características instalación

<table>
<thead>
<tr>
<th>Intensidad de corriente:</th>
<th>33.33 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia activa:</td>
<td>0.80 kW</td>
</tr>
<tr>
<td>Tensión utilizada:</td>
<td>24 V</td>
</tr>
<tr>
<td>Composición de cable:</td>
<td>Conductores aislados o cables unipolares</td>
</tr>
<tr>
<td>Tiempo disparo protecciones:</td>
<td>0.30 s</td>
</tr>
<tr>
<td>Intensidad de cortocircuito:</td>
<td>1.00 kA</td>
</tr>
<tr>
<td>Caída de tensión:</td>
<td>2.1 V</td>
</tr>
<tr>
<td>Longitud de la línea:</td>
<td>40 m</td>
</tr>
<tr>
<td>Reactancia:</td>
<td>0.00 Ω/km</td>
</tr>
</tbody>
</table>

Resistencia térmica: 2.50 (1.00)

<table>
<thead>
<tr>
<th>Profundidad:</th>
<th>70 (1.00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de instalación agrupamiento:</td>
<td>Un circuito completo por tubo</td>
</tr>
</tbody>
</table>

| n° de circuitos adicionales: | 0 (1.00)* |

Imagen 40- Detalles técnicos del conductor 4. [30]
-Del regulador a las dummy load

Imagen 41- Detalles técnicos del conductor 5. [30]

-De los reguladores al embarrado

Imagen 42- Detalles técnicos del conductor 6. [30]
- Embarrado común

Imagen 43- Detalles técnicos del conductor 7. [30]

- De embarrado a baterías

Imagen 44- Detalles técnicos del conductor 8. [30]
-De embarrado a inversor

<table>
<thead>
<tr>
<th>Tipo de Instalación I:</th>
<th>ITC-BT 20 Instalaciones interiores o receptores en general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de Instalación II:</td>
<td>Fijados directamente sobre paredes o techos (sin tubo o conducto)</td>
</tr>
<tr>
<td>Tipo de Instalación III:</td>
<td>Sobre pared</td>
</tr>
</tbody>
</table>

Nombre del cable seleccionado: Bupreno (Cable de goma para instalaciones fijas)

<table>
<thead>
<tr>
<th>Características instalación</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensidad de corriente: 240.00 A</td>
<td>Tipo de corriente utilizada: Continua</td>
</tr>
<tr>
<td>Potencia activa: 5.76 kW</td>
<td>Tensión utilizada: 24 V</td>
</tr>
<tr>
<td>Potencia aparente: --</td>
<td>Composición de cable: Conductores aislados o cables unipolares</td>
</tr>
<tr>
<td>Cos φ: --</td>
<td>Intensidad de cortocircuito: 1.00 kA</td>
</tr>
<tr>
<td>Rendimiento (motor): --</td>
<td>Tiempo disparo protecciones: 0.30 s</td>
</tr>
<tr>
<td>Coeficiente por tipo de instalación: 1.25 (generación en BT)</td>
<td>% Cada de tensión: 2.1</td>
</tr>
<tr>
<td>Coeficiente por tipo de receptor: 1 (otros)</td>
<td>Cada de tensión: 0.5 V</td>
</tr>
<tr>
<td>Otro coeficiente: 1.00</td>
<td>Longitud de la línea: 4 m</td>
</tr>
<tr>
<td>Temperatura ambiente: 30 °C (0.97)</td>
<td>Reactancia: 0.00 C/km</td>
</tr>
<tr>
<td>Cable expuesto al sol directamente: NO (1.00)</td>
<td></td>
</tr>
<tr>
<td>Nº de circuitos adicionales: 0 (1.00)*</td>
<td></td>
</tr>
</tbody>
</table>

* Ver el valor final de aplicación en el cuadro de resultados

<table>
<thead>
<tr>
<th>Sección por intensidad:</th>
<th>120 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de conductores por fase: 1</td>
<td></td>
</tr>
<tr>
<td>Intensidad máxima admisible del circuito: 337.56 A</td>
<td></td>
</tr>
</tbody>
</table>

NOTA: factor de corrección por agrupación final (nº send por fase = circuitos ad.): 1.00

Imagen 45- Detalles técnicos del conductor 9. [30]

-De embarrado a bus cc

<table>
<thead>
<tr>
<th>Tipo de Instalación I:</th>
<th>ITC-BT 20 Instalaciones interiores o receptores en general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de Instalación II:</td>
<td>Fijados directamente sobre paredes o techos (sin tubo o conducto)</td>
</tr>
<tr>
<td>Tipo de Instalación III:</td>
<td>Sobre pared</td>
</tr>
</tbody>
</table>

Nombre del cable seleccionado: Bupreno (Cable de goma para instalaciones fijas)

<table>
<thead>
<tr>
<th>Características instalación</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensidad de corriente: 20.00 A</td>
<td>Tipo de corriente utilizada: Continua</td>
</tr>
<tr>
<td>Potencia activa: 0.48 kW</td>
<td>Tensión utilizada: 24 V</td>
</tr>
<tr>
<td>Potencia aparente: --</td>
<td>Composición de cable: Conductores aislados o cables unipolares</td>
</tr>
<tr>
<td>Cos φ: --</td>
<td>Intensidad de cortocircuito: 1.00 kA</td>
</tr>
<tr>
<td>Rendimiento (motor): --</td>
<td>Tiempo disparo protecciones: 0.30 s</td>
</tr>
<tr>
<td>Coeficiente por tipo de instalación: 1.25 (generación en BT)</td>
<td>% Cada de tensión: 2.1</td>
</tr>
<tr>
<td>Coeficiente por tipo de receptor: 1 (otros)</td>
<td>Cada de tensión: 0.5 V</td>
</tr>
<tr>
<td>Otro coeficiente: 1.00</td>
<td>Longitud de la línea: 4 m</td>
</tr>
<tr>
<td>Temperatura ambiente: 30 °C (0.97)</td>
<td>Reactancia: 0.00 C/km</td>
</tr>
<tr>
<td>Cable expuesto al sol directamente: NO (1.00)</td>
<td></td>
</tr>
<tr>
<td>Nº de circuitos adicionales: 0 (1.00)*</td>
<td></td>
</tr>
</tbody>
</table>

* Ver el valor final de aplicación en el cuadro de resultados

<table>
<thead>
<tr>
<th>Sección por intensidad:</th>
<th>2.5 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de conductores por fase: 1</td>
<td></td>
</tr>
<tr>
<td>Intensidad máxima admisible del circuito: 29.10 A</td>
<td></td>
</tr>
</tbody>
</table>

NOTA: factor de corrección por agrupación final (nº send por fase = circuitos ad.): 1.00

Imagen 46- Detalles técnicos del conductor 10. [30]
2.5.2 Cálculo del bus de corriente continua

Ahora vamos a realizar el cálculo de las secciones necesarias para la derivación individual en corriente continua.

Para ello necesitamos saber la potencia de los electrodomésticos que vayan a ir conectados a esta tensión de 24 V cc.

Tenemos:

- 20 bombillas LED de 24 V con potencia de 6 W cada una.
- 2 ordenadores Apple iBook a 24 V, de potencia 50 W cada uno.
- 2 televisores HD 24” LED a 24 V dc, de potencia 40 W cada uno.
- 1 nevera (modelo BCD198) + 1 congelador (modelo BR170C4) de 120 W en total.

Estos son los electrodomésticos que vamos a conectar al bus de 24 V de corriente continua. De esta manera, vamos a reducir las pérdidas en el cobre y a reducir la potencia total de consumo de la vivienda.

A continuación determinaremos cuál es la sección que deben tener los conductores:

![Imagen 47- Detalles técnicos del conductor 11. ALUMBRADO. [30]](image-url)
-Conductores para los ordenadores portátiles

| Tipo de Instalación I: ITC-BT 20 Instalaciones interiores o receptoras en general |
|----------------------------------|----------------------------------|
| Nombre del cable seleccionado: | Bupreno (Cable de goma para instalaciones fijas) |

Características instalación

Intensidad de corriente: 4.20 A	Tipo de corriente utilizada: Continuo
Potencia activa: 0.10 kW	Tensión utilizada: 24 V
Potencia aparente: –	Composición de cable: Conductores aislados o cables unipolares
Cos φ: –	Intensidad de cortocircuito: 1.00 kA
Rendimiento (motor): –	Tiempo disparo protección: 0.30 s
Coeficiente por tipo de instalación: 1.25 (generación en BT)	% Caida de tensión: 2.1
Coeficiente por tipo de receptor: 1 (otros)	Caida de tensión: 0.5 V
Otro coeficiente: 1.00	Longitud de la línea: 32 m
Temperatura ambiente: 30 °C (0.97)	Resistencias: 0.000 Ω/km
Cable expuesto al sol directamente: NO (1.00)	N° de circuitos adicionales: –
n° de circuitos adicionales: 0 (1.00)*	Factor Corrección por circuitos en 1 capa (bandejas): –

* Ver el valor final de aplicación en el cuadro de resultados

Resultados

<table>
<thead>
<tr>
<th>Sección por intensidad:</th>
<th>1.5 mm²</th>
<th>Sección por cortocircuito:</th>
<th>4 mm²</th>
<th>Sección por caída de tensión:</th>
<th>10 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de conductores por fase:</td>
<td>1</td>
<td>N° de conductores por fase:</td>
<td>1</td>
<td>N° de conductores por fase:</td>
<td>1</td>
</tr>
<tr>
<td>Intensidad máxima admisible del circuito: 16.01 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTA: factor de corrección por agrupación final

Imagen 48- Detalles técnicos para la elección del conductor 12. PORTÁTILES. [30]

- Conductor para las televisiones

Tipo de instalación

| Tipo de Instalación I: ITC-BT 20 Instalaciones interiores o receptoras en general |
|----------------------------------|----------------------------------|
| Nombre del cable seleccionado: | Bupreno (Cable de goma para instalaciones fijas) |

Características instalación

Intensidad de corriente: 2.33 A	Tipo de corriente utilizada: Continuo
Potencia activa: 0.08 kW	Tensión utilizada: 24 V
Potencia aparente: –	Composición de cable: Conductores aislados o cables unipolares
Cos φ: –	Intensidad de cortocircuito: 1.00 kA
Rendimiento (motor): –	Tiempo disparo protección: 0.30 s
Coeficiente por tipo de instalación: 1.25 (generación en BT)	% Caida de tensión: 2.1
Coeficiente por tipo de receptor: 1 (otros)	Caida de tensión: 0.5 V
Otro coeficiente: 1.00	Longitud de la línea: 32 m
Temperatura ambiente: 30 °C (0.97)	Resistencias: 0.000 Ω/km
Cable expuesto al sol directamente: NO (1.00)	N° de circuitos adicionales: –
n° de circuitos adicionales: 0 (1.00)*	Factor Corrección por circuitos en 1 capa (bandejas): –

* Ver el valor final de aplicación en el cuadro de resultados

Resultados

<table>
<thead>
<tr>
<th>Sección por intensidad:</th>
<th>1.5 mm²</th>
<th>Sección por cortocircuito:</th>
<th>4 mm²</th>
<th>Sección por caída de tensión:</th>
<th>10 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de conductores por fase:</td>
<td>1</td>
<td>N° de conductores por fase:</td>
<td>1</td>
<td>N° de conductores por fase:</td>
<td>1</td>
</tr>
<tr>
<td>Intensidad máxima admisible del circuito: 16.01 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTA: factor de corrección por agrupación final

Imagen 49- Detalles técnicos para la elección del conductor 13. TELEVISIONES. [30]
-Conductores para el frigorífico y el congelado

<table>
<thead>
<tr>
<th>Selección cable</th>
<th>Memoria de Cálculo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensidad de corriente: 5.00 A</td>
<td>Tipo de instalación: B2</td>
</tr>
<tr>
<td>Potencia activa: 0.12 kW</td>
<td>Tipo de corriente utilizada: Continua</td>
</tr>
<tr>
<td>Potencia aparente:</td>
<td>Tensión utilizada: 24 V</td>
</tr>
<tr>
<td>Cos φ:</td>
<td>Composición de cable: Conductores aislados o cables unipolares</td>
</tr>
<tr>
<td>Rendimiento (motores):</td>
<td>Intensidad de cortocircuito: 1.00 kA</td>
</tr>
<tr>
<td>Coeficiente por tipo de instalación:</td>
<td>Tiempo disparo protección: 0.30 s</td>
</tr>
<tr>
<td>Coeficiente por tipo de receptor: 1 (otro)</td>
<td>% Calda de tensión: 2.1</td>
</tr>
<tr>
<td>Otros coeficientes: 1.00</td>
<td>Cada de tensión: 0.5 V</td>
</tr>
<tr>
<td>Temperatura ambiente: 30 °C (1.10)</td>
<td>Longitud de la línea: 20 m</td>
</tr>
<tr>
<td>Cable expoado al sol directamente: NO (1.00)</td>
<td>Reactancia: 0.00 Ω/km</td>
</tr>
<tr>
<td>nº de circuitos adicionales: 0 (1.00)*</td>
<td>Separación circuitos: --</td>
</tr>
<tr>
<td>Factor Corrección por circuitos en 1 capa (bandejas):</td>
<td>Factor corrección capas: --</td>
</tr>
</tbody>
</table>

Imagen 50 - Detalles técnicos para la elección del conductor 14. NEV+CONG. [30]

- Conduetores para el alumbrado de emergencia de las baterías

<table>
<thead>
<tr>
<th>Selección cable</th>
<th>Memoria de Cálculo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensidad de corriente: 0.83 A</td>
<td>Tipo de instalación: B2</td>
</tr>
<tr>
<td>Potencia activa: 0.02 kW</td>
<td>Tipo de corriente utilizada: Continua</td>
</tr>
<tr>
<td>Potencia aparente:</td>
<td>Tensión utilizada: 24 V</td>
</tr>
<tr>
<td>Cos φ:</td>
<td>Composición de cable: Conductores aislados o cables unipolares</td>
</tr>
<tr>
<td>Rendimiento (motores):</td>
<td>Intensidad de cortocircuito: 1.00 kA</td>
</tr>
<tr>
<td>Coeficiente por tipo de instalación: 1.25 (generación en BT)</td>
<td>Tiempo disparo protección: 0.30 s</td>
</tr>
<tr>
<td>Coeficiente por tipo de receptor: 1 (otro)</td>
<td>% Calda de tensión: 2.1</td>
</tr>
<tr>
<td>Otros coeficientes: 1.00</td>
<td>Cada de tensión: 0.5 V</td>
</tr>
<tr>
<td>Temperatura ambiente: 30 °C (0.97)</td>
<td>Longitud de la línea: 30 m</td>
</tr>
<tr>
<td>Cable expoado al sol directamente: NO (1.00)</td>
<td>Reactancia: 0.00 Ω/km</td>
</tr>
<tr>
<td>nº de circuitos adicionales: 0 (1.00)*</td>
<td>Separación circuitos: --</td>
</tr>
<tr>
<td></td>
<td>Factor Corrección por circuitos en 1 capa (bandejas): --</td>
</tr>
</tbody>
</table>

Imagen 51 - Detalles técnicos para la elección del conductor 15. ALUM. EMER. [30]
2.5.3 Cálculo del bus de corriente alterna

Para el cálculo de este apartado se va a emplear el programa CIEBT [31], programa de DMELECT.

2.5.3.1 Fórmulas empleadas

Emplearemos las siguientes:

Sistema Trifásico:

\[I = \frac{P_c}{1,732 \times U \times \cos \alpha \times R} = \text{amp (A)} \]

\[e = \left(L \times \frac{P_c}{K \times U \times n \times S \times R} \right) + \left(L \times \frac{P_c \times \rho}{1000 \times U \times n \times R \times \cos \alpha} \right) = \text{voltios (V)} \]

Sistema Monofásico:

\[I = \frac{P_c}{U \times \cos \alpha \times R} = \text{amp (A)} \]

\[e = \left(2 \times L \times \frac{P_c}{K \times U \times n \times S \times R} \right) + \left(2 \times L \times P_c \times \rho \times S \times R \times \cos \alpha \right) = \text{voltios (V)} \]

En donde:

- \(P_c \) = Potencia de Cálculo en Watios.
- \(L \) = Longitud de Cálculo en metros.
- \(e \) = Caída de tensión en Voltios.
- \(K \) = Conductividad.
- \(I \) = Intensidad en Amperios.
- \(U \) = Tensión de Servicio en Voltios (Trifásica ó Monofásica).
- \(S \) = Sección del conductor en mm².
- \(\cos \alpha \) = Coseno de fí. Factor de potencia.
- \(R \) = Rendimiento. (Para líneas motor).
- \(n \) = Nº de conductores por fase.
- \(\rho \) = Reactancia por unidad de longitud
Fórmula Conductividad Eléctrica

\[K = \frac{1}{\rho} \]

\[\rho = \rho_{20}[1 + \alpha(T-20)] \]

\[T = T_0 + [(T_{\text{max}}-T_0)(I/I_{\text{max}})^2] \]

Siendo,

\(K = \) Conductividad del conductor a la temperatura \(T \).

\(\rho = \) Resistividad del conductor a la temperatura \(T \).

\(\rho_{20} = \) Resistividad del conductor a 20\(^\circ\)C.

\(\alpha = \) Coeficiente de temperatura:

\(\text{Cu} = 0.018 \)

\(\text{Al} = 0.029 \)

\(\text{Cu} = 0.00392 \)

\(\text{Al} = 0.00403 \)

\(T = \) Temperatura del conductor (\(^\circ\)C).

\(T_0 = \) Temperatura ambiente (\(^\circ\)C):

\(\text{Cables enterrados} = 25^\circ\)C

\(\text{Cables al aire} = 40^\circ\)C

\(T_{\text{max}} = \) Temperatura máxima admisible del conductor (\(^\circ\)C):

\(\text{XLPE, EPR} = 90^\circ\)C

\(\text{PVC} = 70^\circ\)C

\(I = \) Intensidad prevista por el conductor (A).

\(I_{\text{max}} = \) Intensidad máxima admisible del conductor (A).
Fórmulas Sobrecargas

\[I_b \leq I_n \leq I_z \]
\[I_2 \leq 1,45 \ I_z \]

Donde:

\(I_b \): intensidad utilizada en el circuito.

\(I_z \): intensidad admisible de la canalización según la norma UNE 20-460/5-523.

\(I_n \): intensidad nominal del dispositivo de protección. Para los dispositivos de protección regulables, \(I_n \) es la intensidad de regulación escogida.

\(I_2 \): intensidad que asegura efectivamente el funcionamiento del dispositivo de protección. En la práctica \(I_2 \) se toma igual:

- a la intensidad de funcionamiento en el tiempo convencional, para los interruptores automáticos (1,45 \(I_n \) como máximo).
- a la intensidad de fusión en el tiempo convencional, para los fusibles (1,6 \(I_n \)).

Fórmulas compensación energía reactiva

\[\cos \varnothing = \frac{P}{\sqrt{P^2 + Q^2}} \cdot \omega \]

\[\tan \varnothing = \frac{Q}{P}. \]

\(Q_c = P \times (\tan \varnothing_1 - \tan \varnothing_2). \)

\(C = Q_c \times 1000 / U^2 \times \omega; \) (Monofásico - Trifásico conexión estrella).

\(C = Q_c \times 1000 / 3 \times U^2 \times \omega; \) (Trifásico conexión triángulo).

Siendo:

\(P = \) Potencia activa instalación (kW).

\(Q = \) Potencia reactiva instalación (kVAR).

\(Q_c = \) Potencia reactiva a compensar (kVAR).

\(\varnothing_1 = \) Angulo de desfase de la instalación sin compensar.

\(\varnothing_2 = \) Angulo de desfase que se quiere conseguir.
U = Tensión compuesta (V).

ω = 2πxf; f = 50 Hz.

C = Capacidad condensadores (F); cx1000000(µF).

Fórmulas Cortocircuito

* IpccI = Ct U / ω3 Zt

Siendo,

IpccI: intensidad permanente de c.c. en inicio de línea en kA.

Ct: Coeficiente de tensión.

U: Tensión trifásica en V.

Zt: Impedancia total en mohm, aguas arriba del punto de c.c. (sin incluir la línea o circuito en estudio).

* IpccF = Ct UF / 2 Zt

Siendo,

IpccF: Intensidad permanente de c.c. en fin de línea en kA.

Ct: Coeficiente de tensión.

UF: Tensión monofásica en V.

Zt: Impedancia total en mohm, incluyendo la propia de la línea o circuito (por tanto es igual a la impedancia en origen más la propia del conductor o línea).

* La impedancia total hasta el punto de cortocircuito será:

Zt = (Rt² + Xt²)½

Siendo,

Rt: R1 + R2 ++ Rn (suma de las resistencias de las líneas aguas arriba hasta el punto de c.c.)
Xt: \(X_1 + X_2 + \ldots + X_n \) (suma de las reactancias de las líneas aguas arriba hasta el punto de c.c.)

\[
R = L \cdot 1000 \cdot \frac{C_R}{K \cdot S \cdot n} \quad \text{(mohm)}
\]

\[
X = X_u \cdot \frac{L}{n} \quad \text{(mohm)}
\]

R: Resistencia de la línea en mohm.
X: Reactancia de la línea en mohm.
L: Longitud de la línea en m.
C_R: Coeficiente de resistividad.
K: Conductividad del metal.
S: Sección de la línea en mm².
X_u: Reactancia de la línea, en mohm por metro.
n: nº de conductores por fase.

* \(t_{mcc} = C_c \cdot S^2 / I_{pccF}^2 \)

Siendo,
tmcc: Tiempo máximo en sg que un conductor soporta una Ipcc.
C_c: Constante que depende de la naturaleza del conductor y de su aislamiento.
S: Sección de la línea en mm².
IpccF: Intensidad permanente de c.c. en fin de línea en A.

* \(t_{ficc} = \text{cte. fusible} / I_{pccF}^2 \)

Siendo,
tficc: tiempo de fusión de un fusible para una determinada intensidad de cortocircuito.
IpccF: Intensidad permanente de c.c. en fin de línea en A.

* \(L_{max} = 0,8 \cdot U_F / 2 \cdot I_{F5} \cdot \left[(1,5 / K \cdot S \cdot n)^2 + (X_u / n \cdot 1000)^2 \right] \)
Siendo,

L_{max}: Longitud máxima de conductor protegido a c.c. (m) (para protección por fusibles)

U_F: Tensión de fase (V)

K: Conductividad

S: Sección del conductor (mm²)

X_u: Reactancia por unidad de longitud (mohm/m). En conductores aislados suele ser 0,1.

n: nº de conductores por fase

C_t= 0,8: Es el coeficiente de tensión.

C_R = 1,5: Es el coeficiente de resistencia.

I_{F5} = Intensidad de fusión en amperios de fusibles en 5 sg.

* Curvas válidas.(Para protección de Interruptores automáticos dotados de Relé electromagnético).

<table>
<thead>
<tr>
<th>CURVA</th>
<th>IMAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>5 In</td>
</tr>
<tr>
<td>C</td>
<td>10 In</td>
</tr>
<tr>
<td>D Y MA</td>
<td>20 In</td>
</tr>
</tbody>
</table>

Fórmulas Embarrados

Cálculo electrodinámico

\[\sigma_{max} = \frac{I_{pc}^2 \cdot L^2}{(60 \cdot d \cdot W_y \cdot n)} \]

Siendo,

\(\sigma_{max} \): Tensión máxima en las pletinas (kg/cm²)

I_{pc}: Intensidad permanente de c.c. (kA)

L: Separación entre apoyos (cm)

d: Separación entre pletinas (cm)
n: nº de pletinas por fase
Wy: Módulo resistente por pletina eje y-y (cm³)
σadm: Tensión admisible material (kg/cm²)

Comprobación por solicitación térmica en cortocircuito

\[I_{cccs} = K_c \cdot S / (1000 \cdot t_{cc}) \]

Siendo,

\(I_{pcc} \): Intensidad permanente de c.c. (kA)

\(I_{cccs} \): Intensidad de c.c. soportada por el conductor durante el tiempo de duración del c.c. (kA)

\(S \): Sección total de las pletinas (mm²)

\(t_{cc} \): Tiempo de duración del cortocircuito (s)

\(K_c \): Constante del conductor: Cu = 164, Al = 107

2.5.3.2 Demanda de potencia

- Potencia total instalada:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Potencia (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAVAJILLAS</td>
<td>900</td>
</tr>
<tr>
<td>AIRE/CALEFACCIÓN</td>
<td>1300</td>
</tr>
<tr>
<td>BAÑO (SECADOR)</td>
<td>1500</td>
</tr>
<tr>
<td>COCINA VARIOS</td>
<td>900</td>
</tr>
<tr>
<td>ENCH. GRAL.</td>
<td>1500</td>
</tr>
<tr>
<td>ENCH. LAVAD+PLANCH</td>
<td>2000</td>
</tr>
<tr>
<td>ALUMBR EMERG</td>
<td>20</td>
</tr>
</tbody>
</table>

TOTAL 8120 W
- Potencia Instalada Fuerza (W): 8120
- Potencia Máxima Admisible (W): 4600

Cálculo de la Línea: LAVAVAJILLAS

- Tensión de servicio: 230 V.
- Canalización: B1-Unip.Tubos Superf. o Emp. Obra
- Longitud: 15 m; Cos α: 0.8; X_u(mΩ/m): 0;
- Potencia a instalar: 900 W.
- Potencia de cálculo: 900 W.

$I=\frac{900}{230 \times 0.8}=4.89$ A.

Se eligen conductores Unipolares $2 \times 2.5 + TT \times 2.5$ mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C ($F_c=1$) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 41.63

e(parcial)$=2 \times 15 \times 900/51.21 \times 230 \times 2.5=0.92$ V.$=0.4 \%$

e(total)$=2.22$% ADMIS (6.5% MAX.)

Prot. Térmica:

Mag. Bipolar Int. 16 A.
Cálculo de la Línea: AIRE/CALEFACCIÓN

- Tensión de servicio: 230 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 35 m; Cos α: 0.8; Xu(mΩ/m): 0;
- Potencia a instalar: 1300 W.
- Potencia de cálculo: 1300 W.

\[I = \frac{1300}{230} \times 0.8 = 7.07 \text{ A.} \]

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 43.4
\[e(\text{parcial}) = 2 \times 35 \times 1300 \times 50.89 \times 2.5 = 3.11 \text{ V.} = 1.35 \% \]
\[e(\text{total}) = 3.17\% \text{ ADMIS (6.5\% MAX.)} \]

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: BAÑO (SECADOR)

- Tensión de servicio: 230 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 20 m; Cos α: 0.8; Xu(mΩ/m): 0;
- Potencia a instalar: 1500 W.
- Potencia de cálculo: 1500 W.

\[I = \frac{1500}{230} \times 0.8 = 8.15 \text{ A.} \]
Se eligen conductores Unipolares 2x2.5+TTx2.5 mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 44.52

e(parcial)=2x20x1500/50.68x230x2.5=2.06 V. =0.9 %

e(total)=2.72% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: COCINA VARIOS

- Tensión de servicio: 230 V.
- Canalización: B1-Unip.Tubos Superf. o Emp.Obra
- Longitud: 20 m; Cos α: 0.8; X_u(mΩ/m): 0;
- Potencia a instalar: 900 W.
- Potencia de cálculo: 900 W.

$I=900/230\times0.8=4.89$ A.

Se eligen conductores Unipolares 2x2.5+TTx2.5 mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.
Caída de tensión:

Temperatura cable (°C): 41.63

e(parcial)=2x20x900/51.21x230x2.5=1.22 V.=0.53 %
e(total)=2.35% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: ENCH. GRAL.

- Tensión de servicio: 230 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 50 m; Cos α: 0.8; Xu(mΩ/m): 0;
- Potencia a instalar: 1500 W.
- Potencia de cálculo: 1500 W.

I=1500/230x0.8=8.15 A.

Se eligen conductores Unipolares 2x4+TTx4mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 27 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 42.73

e(parcial)=2x50x1500/51.01x230x4=3.2 V.=1.39 %
e(total)=3.21% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.
Cálculo de la Línea: ENCH. LAVAD+PLANCH

- Tensión de servicio: 230 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 30 m; Cos α: 0.8; Xu(mΩ/m): 0;
- Potencia a instalar: 2000 W.
- Potencia de cálculo: 2000 W.

\[I = \frac{2000}{230 \times 0.8} = 10.87 \text{ A.} \]

Se eligen conductores Unipolares 2x4+TTx4mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 27 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 44.86

\[e(\text{parcial}) = 2 \times 30 \times 2000 \times 50.62 \times 230 \times 4 = 2.58 \text{ V} = 1.12 \% \]

\[e(\text{total}) = 2.94\% \text{ ADMIS (6.5\% MAX.)} \]

Prot. Térmica:

Mag. Bipolar Int. 16 A.

Cálculo de la Línea: ALUMB EMERG

- Tensión de servicio: 230 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 30 m; Cos α: 0.9; Xu(mΩ/m): 0;
- Potencia a instalar: 20 W.
- Potencia de cálculo: (Según ITC-BT-44):

\[20 \times 1.8 = 36 \text{ W.} \]
I=36/230x1=0.17 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Diámetro exterior tubo: 16 mm.

Caída de tensión:
Temperatura cable (ºC): 40

\[e(\text{parcial}) = 2 \times 30 \times 36 / 51.52 \times 230 \times 1.5 = 0.12 \text{ V.} = 0.05 \% \]

\[e(\text{total}) = 1.88\% \text{ ADMIS (4.5\% MAX.)} \]

Prot. Térmica:
I. Mag. Bipolar Int. 10 A.

Los resultados obtenidos se reflejan en las siguientes tablas:

Cuadro General de Mando y Protección

<table>
<thead>
<tr>
<th>Denomin. Tub, canal</th>
<th>P.Calc W</th>
<th>Dist.Calc m</th>
<th>Sección mm²</th>
<th>I.Cálculo A</th>
<th>I.Ad m A</th>
<th>C.T.Par e. %</th>
<th>C.T.Total %</th>
<th>Dim mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALA INSTRUMENT.</td>
<td>4068</td>
<td>30</td>
<td>2x10+TTx10Cu</td>
<td>22.11</td>
<td>65</td>
<td>0.91</td>
<td>1.83</td>
<td>40</td>
</tr>
<tr>
<td>LAVAVAJILLAS</td>
<td>900</td>
<td>15</td>
<td>2x2.5+TTx2.5Cu</td>
<td>4.89</td>
<td>21</td>
<td>0.4</td>
<td>2.22</td>
<td>20</td>
</tr>
<tr>
<td>AIRE/CALEFACCIÓN BAÑO (SECADOR)</td>
<td>1300</td>
<td>35</td>
<td>2x2.5+TTx2.5Cu</td>
<td>7.07</td>
<td>21</td>
<td>1.35</td>
<td>3.17</td>
<td>20</td>
</tr>
<tr>
<td>COCINA VARIOS</td>
<td>1500</td>
<td>20</td>
<td>2x2.5+TTx2.5Cu</td>
<td>8.15</td>
<td>21</td>
<td>0.9</td>
<td>2.72</td>
<td>2.0</td>
</tr>
<tr>
<td>ENCH.GRAL</td>
<td>900</td>
<td>20</td>
<td>2x2.5+TTx2.5Cu</td>
<td>4.89</td>
<td>21</td>
<td>0.53</td>
<td>2.35</td>
<td>20</td>
</tr>
<tr>
<td>ENCH.LAVAD+PLANCHA</td>
<td>1500</td>
<td>50</td>
<td>2x4+TTx4Cu</td>
<td>8.15</td>
<td>27</td>
<td>1.39</td>
<td>3.21</td>
<td>20</td>
</tr>
<tr>
<td>ALUMB. EMERG</td>
<td>200</td>
<td>30</td>
<td>2x4+TTx4Cu</td>
<td>10.87</td>
<td>27</td>
<td>1.12</td>
<td>2.94</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>30</td>
<td>2x1.5+TTx1.5Cu</td>
<td>0.16</td>
<td>15</td>
<td>0.05</td>
<td>1.88</td>
<td>16</td>
</tr>
</tbody>
</table>

Tabla 37 – Especificaciones técnicas de las derivaciones en CC. [31].

Cortocircuito

<table>
<thead>
<tr>
<th>Denomin.</th>
<th>Long</th>
<th>Sección</th>
<th>IpccI</th>
<th>PdC</th>
<th>IpccF</th>
<th>Tmcicc</th>
<th>Curvas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tub, canal</td>
<td>m</td>
<td>mm²</td>
<td>Ka</td>
<td>Ka</td>
<td>A</td>
<td>sg</td>
<td></td>
</tr>
<tr>
<td>SALA INSTRUMENT.</td>
<td>30</td>
<td>2x10+TTx10Cu</td>
<td>2.35</td>
<td>4.5</td>
<td>644.43</td>
<td>4.92</td>
<td>25;B,C,D</td>
</tr>
<tr>
<td>LAVAJILLAS</td>
<td>15</td>
<td>2x2.5+TTx2.5Cu</td>
<td>1.29</td>
<td>4.5</td>
<td>339.15</td>
<td>0.72</td>
<td>16; B,C,D</td>
</tr>
<tr>
<td>AIRE/ CALEFACCIÓN</td>
<td>35</td>
<td>2x2.5+TTx2.5Cu</td>
<td>1.29</td>
<td>4.5</td>
<td>207.83</td>
<td>1.91</td>
<td>16;B,C</td>
</tr>
<tr>
<td>BAÑO (SECADOR)</td>
<td>20</td>
<td>2x2.5+TTx2.5Cu</td>
<td>1.29</td>
<td>4.5</td>
<td>292.89</td>
<td>0.96</td>
<td>16;B,C</td>
</tr>
<tr>
<td>COCINA VARIOS</td>
<td>20</td>
<td>2x2.5+TTx2.5Cu</td>
<td>1.29</td>
<td>4.5</td>
<td>292.89</td>
<td>0.96</td>
<td>16;B,C</td>
</tr>
<tr>
<td>ENCH.GRAL</td>
<td>50</td>
<td>2x4+TTx4Cu</td>
<td>1.29</td>
<td>4.5</td>
<td>224.1</td>
<td>4.21</td>
<td>16;B,C</td>
</tr>
<tr>
<td>ENCH.LAVAD+ PLANCHA</td>
<td>50</td>
<td>2x4+TTx4Cu</td>
<td>1.29</td>
<td>4.5</td>
<td>303.23</td>
<td>23</td>
<td>16;B,C</td>
</tr>
<tr>
<td>ALUMB. EMERG</td>
<td>30</td>
<td>2x1.5+TTx1.5Cu</td>
<td>1.29</td>
<td>4.5</td>
<td>161.06</td>
<td>1.15</td>
<td>16;B,C</td>
</tr>
</tbody>
</table>

Tabla 38 – Especificaciones técnicas de cortocircuito de las derivaciones en CC. [31].

2.5.4 Protección frente a contactos directos

2.5.4.1 Aislamiento de partes activas

Todas las partes activas, tanto de CC como de CA estarán recubiertas de aislamiento que no pueda ser eliminado más que por destrucción del mismo. Los conductores serán de aislamiento 750 V.

Los bornes, conexiones, barras y pletinas y demás elementos que no lleven su propio aislamiento estarán instalados dentro de envolventes o detrás de barreras que sean, mínimo IP 55 para envolventes situadas en el interior del edificio, e IP 65 para envolventes situadas en el exterior.

Se asegurará que para abrir dichas envolventes sea necesario el uso de llave o herramienta para que garantice su cierre.
Todos los conductores se asegurarán que estén conducidos por canalizaciones separadas en la parte de corriente continua, de forma que no sea posible el contacto entre ellos y posibles contactos directos.

Asimismo, todos los bornes, conexiones, embarrados, estarán protegidos contra contactos directos por medio de envolventes adecuadas a tal fin de forma que se eviten los contactos directos.

2.5.5 Protección frente a contactos indirectos

Según las especificaciones del ITC-24 del REBT, todas las masas de los equipos eléctricos deben ser interconectadas y unidas por un conductor de protección a una misma tierra. Se conectarán las masas al borne de puesta a tierra del edificio, tal y como se indica en la Nota de interpretación técnica de la equivalencia de la separación galvánica de la conexión de instalaciones generadoras en baja tensión.

En nuestro caso uniremos los marcos de los módulos fotovoltaicos mediante cable unipolar de tierra 0.6/1 KV de 16 mm2.

Tanto la instalación fotovoltaica como eólica cumplirán con la ITC-BT-40 donde se indica que:

La puesta a tierra de protección de la torre y el generador eólico montado contra descargas atmosféricas será independiente del resto de las tierras de la instalación.

La puesta a tierra de instalaciones generadoras aisladas conectadas a instalaciones receptoras que son alimentadas de forma exclusiva por dichos grupos será independiente de cualquier otra red de tierras.

Por todo lo anterior, la puesta a tierra de la instalación fotovoltaica será independiente de la instalación de consumo y equipos instalados en el edificio. Por un lado se realizará una puesta a tierra del generador fotovoltaico, conectando la estructura de suportación a tierra, ajustándose a la MI BT 39. Esta toma de tierra tiene como misión eliminar las tensiones residuales estáticas o de descargas atmosféricas posibles, pero NO la de proteger contra una posible derivación, como ocurre en las instalaciones BT.

De la misma forma, la toma de tierra del generador eólico será independiente también. Esta toma de tierra tiene como misión proteger al generador contra descargas atmosféricas.

Estas dos tomas de tierra deberán ser de resistencia inferior a 10 Ω, esto se conseguirá mediante el uso de componentes minerales, Quibacsol, en el pozo de instalación del electrodo de 2 metros.
En este caso el uso de un sistema de generación IT en el lado de continua de los sistemas fotovoltaicos y eólicos aislados, provee protección frente a contactos indirectos que pueda sufrir una persona que se ponga en contacto accidentalmente con una parte metálica de la instalación puesta en tensión por el contacto con un conductor activo, ya que no existe riesgo de derivación a tierra a través de ella, ni siquiera cuando ésta toca directamente un conductor activo. Esto significa que el grado de seguridad alcanzado con esta disposición es comparable al que se consigue en las instalaciones ordinarias de corriente alterna con los interruptores diferenciales. El segundo defecto provocará el cortocircuito directo.

Los equipos cargadores, inversores, protecciones contra sobretensiones, etc., la instalación interior de CA (en esquema TT) y la instalación interior de CC (en esquema IT) serán unidas al mismo punto de toma de tierra independiente de los demás y situado en la casa, con la misma sección que los conductores activos.

De acuerdo a la MI BT-23, se dispondrá el número de electrodos necesario para conseguir una resistencia inferior a los 37 Ω que recomienda el reglamento. En el circuito de CA, el neutro de salida del inversor se conectará directamente a tierra. Esto queda asegurado mediante el producto de mejora de resistividad del terreno.
Se comprobará que el valor de la puesta a Tierra será tal que ninguna masa pueda alcanzar una tensión de contacto de un valor superior a 24 V, tensión de seguridad para el cuerpo humano en locales húmedos.

Así, los sistemas de puesta a tierra serán:

Vivienda: un electrodo de acero cobreado de 2 m de longitud y diámetro 18 mm, instalado en poceta directamente sobre el terreno relleno con compuesto mineral Quibacsol mejorador de la conductividad eléctrica del terreno para obtener bajas resistencias en puestas a tierra (mejor de 10 Ω). El electrodo estará situado a 5 m de distancia de la casa. Se unirá a la misma con cable de cobre desnudo de 50 mm².

La pica dispondrá de una caja de registro formada por una arqueta de polipropileno de 30 x 30 x 30 cm donde se instalará la conexión de la pica con el cable de 50 mm². En el otro extremo se conectará a un puente de prueba situado en la casa para poder aislar las picas.

Se instalará una pletina de cobre de 400 x 50 x 10 mm instalada en la sala de los convertidores/baterías, montada sobre aisladores. Todos los cables de tierra de la vivienda serán conexionados a dicha pletina, y especialmente los de los equipos electrónicos, protecciones contra descargas, estructuras excepto la de las placas, etc y desde esta se unirá a la pica.
Soporte de las placas fotovoltaicas: a 5 metros de la vivienda se instalará un electrodo de acero cobreado de 2 m de longitud y diámetro 18 mm, instalado en poceta directamente sobre el terreno relleno con compuesto mineral mejorador de la conductividad eléctrica del terreno para obtener bajas resistencias en puestas a tierra (mejor de 10 Ω).

Pararrayos: A 15 metros de la casa se instalará un pararrayos mediante un mástil de 14 metros, instalando en la base 3 electrodos de acero cobreado de 2 m de longitud y diámetro 18 mm, a 3 metros de distancia entre ellos e instalados en poceta directamente sobre el terreno relleno con compuesto mineral mejorador de la conductividad eléctrica del terreno para obtener bajas resistencias en puestas a tierra (mejor de 10 Ω). Dispondrá de caja de puente de prueba y contador de pararrayos.

Aerogenerador: El aerogenerador dispondrá de un electrodo de acero cobreado de 2 m de longitud y diámetro 18 mm, instalado en poceta directamente sobre el terreno relleno con compuesto mineral mejorador de la conductividad eléctrica del terreno para obtener bajas resistencias en puestas a tierra (mejor de 10 Ω). El electrodo estará situado en la base de la torre y unido directamente a la misma con cable de cobre de 95 mm2, dispondrá de puente de prueba en la base de la torre.

Mediante el relleno de compuesto especial de INGESCO, se garantiza una baja resistencia de tierra, muy por debajo de los 80 Ω. Igualmente se comprobará una vez instalados los electrodos que todos cumplen con el requisito. Se comprobará que el valor esté en torno a los 10 Ω.

Cabe destacar que el terreno es cultivable y fértil, con un valor medio de resistividad por debajo de los 50 Ω/m.

Si aplicamos la fórmula de determinación de la resistencia en función de la resistividad, obtendremos 50 Ω por pica o mejor sin aplicación de ninguna sustancia, por lo que se determina que el uso de Quibacsol de Ingesco, estudiado para reducir la resistencia de puesta a tierra, es suficiente.

2.5.6 Protección ante armónicos

No hay interconexión con la red, aun así el medidor Circutor analizador de red nos informará de la Tasa de Distorsión Armónica THD.

En la instalación solar fotovoltaica el único elemento que puede generar armónicos es el inversor de conexión a Red.

La norma ITC-BT-40 establece unos rangos máximos de distorsión armónica que debe cumplir la instalación generadora, de acuerdo con todas las partes, incluidas las compañías suministradoras.

El propio fabricante de inversores establece una tasa máxima de distorsión en la señal inferior al 2% (THD) con lo que cumplen con la normativa vigente.
2.5.7 Protecciones del sistema híbrido eólico-solar

Vamos a dividir las protecciones y los medidores que debe llevar del sistema híbrido en dos partes:

- Protecciones y medidores del sistema solar.
- Protecciones y medidores del sistema eólico.

Como protecciones usaremos fusibles para la parte de corriente continua. En la ITC-BT-22 se indica la protección contra sobreintensidades en las instalaciones de baja tensión. Se elige una protección por fusible, de uso general limitador de corriente que es capaz de interrumpir todas las corrientes, desde su intensidad asignada hasta su poder de corte asignado. Sirve para sobrecargas y cortocircuitos.

La fórmula a emplear es:

\[
I_b \leq I_n \leq I_z
\]
\[
I_z \leq 1,45 I_x
\]

donde

- \(I_b\) es la intensidad del circuito según la previsión de cargas
- \(I_n\) es la intensidad nominal del circuito de protección (el calibre asignado)
- \(I_x\) es la intensidad que asegura el funcionamiento efectivo del dispositivo de protección. En fusibles es la intensidad de fusión \(I_x\), en 5 sg
- \(I_z\) es la intensidad máxima admisible del conductor

Por tanto aplicaremos el criterio de seguridad del 1,45\% de la intensidad de consumo, buscando el más cercano normalizado.

2.5.8 Protecciones y medidores del sistema solar

A continuación se van a exponer las protecciones y medidores necesarios para el buen funcionamiento y protección del sistema solar. Tendremos:

-Fusible entre los paneles solares y el regulador de carga solar

Debemos evitar que cualquier cortocircuito o defecto en los paneles pueda afectar al regulador solar, y viceversa.

De esta manera colocaremos un fusible de 50 A, puesto que la corriente máxima de cortocircuito en esta parte es de 36,4 A.
-Diodo de bloqueo entre los paneles solares y el regulador de carga solar

Cada placa dispone de un diodo de Bloqueo que evita que el panel absorba flujo de corriente de otro grupo conectado a él en paralelo o de la batería por malfuncionamiento. Estos diodos son tipo Schottky, al tener la característica de una tensión umbral muy baja respecto de los diodos comunes, que asegura una disipación de potencia muy baja. Los modelos instalados son de VRRM = 100 V y IF = 20 amperios.

-Fusible entre el regulador de carga solar y las baterías

Para evitar que cualquier problema del regulador solar afecte a las baterías, colocaremos un fusible de 50 A, ya que la corriente máxima es la de la agrupación, 36,4 A.

-Interruptores-seccionadores

Se colocarán dos interruptores-seccionadores en cada una de las 3 agrupaciones fotovoltaicas, dispuestos de manera que se pueda aislar cada componente, lo que quiere decir que tendremos uno entre los paneles y el regulador solar y otro entre el regulador solar y el embarrado. Éstos serán de 63 A.

También se colocarán a la entrada del inversor (de 630 A) y del bus de corriente continua (de 32 A).

2.5.9 Protecciones y medidores del sistema eólico

Las protecciones y medidores que necesitaremos para nuestra parte eólica serán los siguientes:

-Fusible entre el aerogenerador y el regulador eólico

Se colocará un fusible de 50 A ya que la corriente es de 33,33 A.

-Fusible entre el regulador eólico y las baterías

Necesitamos un fusible para controlar la corriente que suministra el regulador eólico a las baterías, de 50 A.

-Fusible entre el regulador eólico y las dummy load

Colocaremos un fusible de 50 A entre el regulador eólico y las dummy load para protegerlas de cualquier sobre pico de corriente.

-Interruptores-seccionadores

Se colocarán dos interruptores-seccionadores, dispuestos de manera que se pueda aislar cada componente, lo que quiere decir que tendremos uno entre el aerogenerador y el regulador eólico y otro entre el regulador solar y el embarrado. Éstos serán de 63 A.
2.5.10 Protecciones y medidores del bus de corriente continua

Las protecciones para el bus de corriente continua serán fusibles para todas las ramas. De esta manera, los fusibles serán:

- Fusible del bus de corriente continua:

 Tendremos un fusible de 20 A para proteger todo el bus.

 \[
 I = \frac{440 \, W \times 0.7 \times 1.20}{24 \, V} = 15.4 \, A \cong 20 \, A
 \]

 Se ha añadido a los cálculos un factor de seguridad de un 20 % y un coeficiente de simultaneidad de 0.7.

- Fusible para el frigorífico

 Colocaremos un fusible de fusión lenta de 10 A para proteger el frigorífico, ya que puede producir sobre picos de corriente.

- Fusible para el alumbrado

 Para el alumbrado utilizaremos un fusible de 6 A, ya que la corriente que puede circular es de 5 A.

- Fusible para los ordenadores portátiles

 Utilizaremos un fusible de 6 A de fusión lenta para esta rama ya que, en el momento de encender los ordenadores, se requiere una corriente mayor (mayor a los 4,2 A de corriente nominal) y no debemos dejar que las protecciones actúen en este caso.

- Fusible para las televisiones

 Emplearemos un fusible de fusión lenta de 6 A para proteger al circuito de las posibles corrientes de esta rama.

- Fusible para el alumbrado de emergencia

 Para el alumbrado de emergencia utilizaremos un fusible de 2 A, ya que la corriente que puede circular es menor a 1 A.
2.5.11 Protección del inversor en CC

Teniendo en cuenta la potencia máxima de uso de del inversor es de 5750 W a 24 V tenemos una corriente máxima de 240 A, que en la talla normalizada es de 400 A.

2.5.12 Protecciones y medidores del bus de corriente alterna

Las protecciones para el bus de corriente alterna serán las calculadas en el apartado 2.5.3.

De esta manera tendremos:

- Un Interruptor General Automático (IGA) de 25 A.
- Un Interruptor Diferencial (ID) de 40 A y sensibilidad de 30 mA.
- 6 Interruptores Magnetotérmicos (IM) de 16 A para las 6 ramas + uno de 40 A después del inversor.

2.5.13 Protecciones contra descargas atmosféricas

Se instalará un pararrayos alejado a 15 metros de la casa y a 10 metros del aerogenerador.

El modelo escogido es INGESCO PDC 6.3 con un radio de cobertura de 74 metros.

El mástil estará formado por la unión de 3 mástiles, de 6 metros, 6 metros y 3 metros, sin llegar a emplear los 15 metros de altura que podríamos conseguir. Estará arriostrado mediante 3 agrupaciones a distinta altura de vientos con fijación al suelo directamente.
2.6 El futuro de la instalación

Como hemos comentado al principio del proyecto, el trabajo consta de una vivienda unifamiliar que cuenta con placas fotovoltaicas y un aerogenerador para generar la demanda de electricidad. Lo novedoso no es solo esto, sino que se trabajará con un bus de corriente alterna y un bus de corriente continua.

En el siguiente apartado vamos a comentar cuál puede ser el futuro de nuestra instalación.

2.6.1 Cálculos justificativos de la viabilidad de los convertidores

A la hora de determinar la tensión del bus de corriente continua, se tuvieron que descartar tensiones elevadas puesto que, por temas de seguridad, eran inviables en una vivienda. Se optó por un bus de 48 V ya que las pérdidas por efecto Joule serían menores que con un bus de menor tensión pero, a medida que el proyecto iba avanzando, pudimos comprobar que en el mercado no existen electrodomésticos que funcionen a una tensión de 48 V cc, encontrando solo algunos a una tensión de 24 V cc (especialmente para autocaravanas), y, por necesidad, se tuvo que cambiar el bus de corriente continua y ser de 24 V cc.

Puesto que, como hemos comentado, en un bus de 48 V cc las pérdidas son menores, se pensó en utilizar un convertidor continua-continua de 48 V a 24 V, pero no existen actualmente en el mercado convertidores que presenten una eficiencia por encima del 80 %, haciendo que esta opción fuera inviable por las pérdidas que supondría hacer esta conversión.

Se hará un estudio y análisis de la instalación con los convertidores cc-cc que existen en los laboratorios y que próximamente tendremos en los mercados, ya que estos presentan un rendimiento de aproximadamente un 98 % y hacen viable la opción de colocar un convertidor de 48 V – 24 V.

En este apartado vamos a determinar cuánto de menores son las pérdidas en un convertidor cc-cc de un laboratorio frente a uno que se encuentra en el mercado.

La casa EPC [27], tiene en sus laboratorios unas placas en desarrollo que consiguen llegar a un 98 % de eficiencia, como se muestra en la imagen:
Para nuestro caso tenemos la EPC9018, una sola placa que contiene dos eGaN FET (EPC2015/23 y EPC2001/21) que son compuestas de nitruro de galio, que presentan mejores características al trabajar en mayores temperaturas, mayores tensiones, mayores corriente y con una frecuencia de conmutación 10 veces mayor que los convencionales mosfet de Silicio. Estarán conectados en una configuración de medio puente y que se puede conectar fácilmente a cualquier convertidor existente para un rendimiento mayor.

En la página web podemos descargar el manual de la EPC9018 con todos los datos y ayudas para la conexión.

Si queremos comprobar cuanto de mejor nos iría poder disponer de una de estas placas para aumentar la eficiencia de nuestra instalación, tenemos que:

\[P_i = R * I^2 \] \hspace{1cm} (16)

Donde

- \(P_i \) es la potencia de nuestra instalación en cualquier punto (W).
- \(R \) es la resistencia de la instalación en cualquier punto, que suponemos igual en los dos casos (Ω).
- \(I \) es la corriente de la instalación en cualquier punto (A).
De esta manera tenemos:

Con un bus de 48 V → $P_i = R \cdot \left(\frac{I}{2}\right)^2$

Con un bus de 24 V → $P_i = R \cdot I^2$

Puesto que la relación de intensidad del bus de 48 V respecto el de 24 V es $\frac{1}{2}$, obtendríamos menor corriente y menores pérdidas por efecto Joule con un bus de 48 V.

De esta manera, podemos comprobar rápidamente que, si dispusiéramos de un convertidor cc-cc de 48V a 24V con alta eficiencia (como la que nos da la placa EPC9018) nuestra instalación híbrida con un bus de cc sería mucho más eficiente y tendríamos menos pérdidas que trabajando con un bus de 24 V.

Lo óptimo, sin embargo, sería el poder trabajar con un bus de 48 V y alimentar cargas a 48 V, por lo que el futuro va encaminado al desarrollo de convertidores que presenten elevadas eficiencias y, para mayor eficiencia en nuestro caso, electrodomésticos que puedan funcionar a 48 V ya que tendríamos menos pérdidas en todo el circuito por trabajar con un bus de mayor tensión y por la no-necesidad de un convertidor.
Instalación eléctrica de una vivienda unifamiliar mediante un sistema híbrido de corriente continua y alterna

PLANOS

Autora: Imma Membrives Galea
Director: Ángel Cid Pastor
Fecha: Junio - 2015
Instalación eléctrica de una vivienda unifamiliar mediante un sistema híbrido de corriente continua y alterna

MEDICIONES

Autora: Imma Membrives Galea
Director: Ángel Cid Pastor
Fecha: Junio – 2015
4 Mediciones

4.1 Mediciones de los sistemas

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>Ud.</th>
<th>MEDICIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel Solar monocristalino marca ATERSA, modelo A-320M GS, con potencia nominal de salida de 320Wp y con 0/+5% de tolerancia en la potencia nominal de salida. Conectores multicontact MC4 integrados y grado de protección IP 65. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>12,00</td>
</tr>
<tr>
<td>Controlador de carga solar marca Xantrex, modelo XW-MPPT60-150, con seguimiento del punto de máxima potencia y soportando corrientes de 60 A y tensiones del campo FV de 140 V cc. Con método de regulación del cargador de dos o tres etapas y protección contra corrientes inversas. Peso de 4,8 Kg y dimensiones de 368x146x138 mm (altura x anchura x profundidad). Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>3,00</td>
</tr>
<tr>
<td>Bancada para fijación 4 paneles solares de 2000 x 1000 mm, de dimensiones siguientes: base de 4000 x 1500 mm, altura frontal 150mm y trasera 1.800 mm con mecanismo de regulación para proporcionar 4 niveles de altura a las placas por separado conformado con perfilería galvanizada normalizada. Incluye diseño, cálculos, totalmente instalado, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>3,00</td>
</tr>
<tr>
<td>Conductor 16 mm2 Cu desnudo, empotrado en pared o enterrado. Implicados en la evacuación de la energía y no propagadores de incendio y en la puesta a tierra de protección de la instalación. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>28,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>Conductor 25 mm2 Cu, Tecsun, XLPE unipolar, empotrados en pared en montaje superficial. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>6,00</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 80 A.de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>2,00</td>
</tr>
<tr>
<td>Electrodos de pica de acero cobreado para la disipación de descargas eléctricas a tierra de 2 metros, diámetro de 18 mm y peso 3,28 Kg marca INGESCO. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Unión metálica entre partes conductoras de una instalación y un electrodo enterrados en el suelo de la marca INGESCO y construcción para alojamiento.Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>Concentrado de sales minerales QUIBACSOL de la marca INGESCO, para favorecer la absorción y retención de agua aumentado la conductividad eléctrica del terreno. 10 Kg de producto. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>3,00</td>
</tr>
<tr>
<td>Protección tipo 2 ref 509362-B, de 600 V y capacidad de 50 kA, combina el modo de protección contra sobretensiones mediante un varistor que permite descargar a tierra y posteriormente conmutar con un fusible que al fundir separa el circuito de tierra. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>3,00</td>
</tr>
<tr>
<td>Electrodos de pica de acero cobreado para la disipación de descargas eléctricas a tierra de 2 metros, diámetro de 18 mm y peso 3,28 Kg marca INGESCO. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Unión metálica entre partes conductoras de una instalación y un electrodo enterrados en el suelo de la marca INGESCO y construcción para alojamiento. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>Interruptor- seccionador en caja moldeada para corriente continua de 63 A, poder de corte 4 kA, mando frontal Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>9,00</td>
</tr>
<tr>
<td>Interruptor- seccionador en caja moldeada para corriente continua de 630 A, poder de corte 4 kA, mando frontal Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>2,00</td>
</tr>
<tr>
<td>Interruptor- seccionador en caja moldeada para corriente continua de 32 A, poder de corte 4 kA, mando frontal Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Diodo de Bloqueo tipo Schottky, con tensión tensión umbral de entre 0,2-0,4V. Los modelos instalados son de VRRM = 100 V y IF = 20 amperios. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>5,00</td>
</tr>
<tr>
<td>Conductor 95 mm² Cu, Tecsun, XLPE unipolar, en montaje superficial. Implicados en la evacuación de la energía y no propagadores de incendio. Totalmente instalado, mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>48,00</td>
</tr>
</tbody>
</table>

TOTAL CAPITULO SOLAR
<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>Ud.</th>
<th>MEDICIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerogenerador de pequeña potencia de marca KESTREL, modelo e230i, con potencia nominal de salida de 800 W y una velocidad para inicio de funcionamiento de 2,5 m/s. Turbina según clase IEC tipo II, con un grado de protección IP 55, peso de 40 Kg y diámetro del rotor de 2,30m. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Controlador de carga eólico marca Kestrel, modelo 0102-01000-024, soportando corrientes de 40 A y para aerogeneradores de hasta 1000W. Grado de protección IP 35, dimensiones 230x290x132 (alturaxanchuraxprofundidad). Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Carga de dispersión para aerogeneradores, marca Missouri Wind and Solar, de 24 V cc. Calentador de agua sumergible de 0.1524 metros. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>2,00</td>
</tr>
<tr>
<td>Suministro e instalación de Poste tubular de 10 mts altura con bisagra y laterales de soporte bisagra de 4 metros de altura para aerogenerador marca Kestrel, soporte en punta peso de 50 kG y fuerza lateral de 600 kN, incluso trabajos de obra civil y hormigonado. Incluye diseño, cálculos, totalmente instalado, mano de obra y maquinaria incluidos</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Conductor 10 mm2 Cu electrolítico, Bupreno, EPR, unipolar, empotrados en pared en montaje superficial. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>16,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 50 A. de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>9,00</td>
</tr>
<tr>
<td>Pararrayos INGESCO PDC con dispositivo de cebado no electrónico, normalizado según normas UNE 21.186:2011 NFC17-102:2011 y NP4426:2013 montaje sobre poste de 14 mts arriostrado, incluye calculos y legalización, Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Kit para toma a tierra "Pata de Ganso" plegable de 3 metros y 8,30 Kg para instalaciones de pararrayos de la marca INGESCO. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Electrodos de pica de acero cobreado para la disipación de descargas eléctricas a tierra de 2 metros, diámetro de 18 mm y peso 3,28 Kg marca INGESCO. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Unión metálica entre partes conductoras de una instalación y un electrodo enterrados en el suelo de la marca INGESCO y construción para alojamiento. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>2,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>Mástil de 6 metros fabricado en acero galvanizado inoxidable para fijación y soporte sobre diversos tipos de captadores como pararrayos PDC, con un diámetro de 50 mm. Contiene dos tramos de 3 metros. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>2,00</td>
</tr>
<tr>
<td>Mástil de 3 metros fabricado en acero galvanizado inoxidable para fijación y soporte sobre diversos tipos de captadores como pararrayos PDC, con un diámetro de 50 mm. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Proteccion tipo 1 monofásicas, marca OBO-BETTERMANN ref 5096-86-3, descargador directo a tierra. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>2,00</td>
</tr>
<tr>
<td>Descargador enchufable tipo 2 de 75 V ref 509957-9 para protección por efectos atmosféricos y por sobretensiones del generador, específico para instalaciones eólicas, dispone de via de chispas y con capacidad de descarga hasta 25 kA, asimismo protección contra sobretensiones mediante varistor de óxido de zinc. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>2,00</td>
</tr>
<tr>
<td>Conductor 35 mm2 Cu electrolítico, Bupreno, EPR, unipolar, empotrados en pared en montaje superficial. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>24,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>Conductor 70 mm² Cu electrolítico, Bupreno, EPR, unipolar, enterrados bajo tubo. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>54,00</td>
</tr>
<tr>
<td>Conductor 95 mm² Cu desnudo, empotrados en pared o enterrados. Implicados en la evacuación de la energía y no propagadores de incendio y en la puesta a tierra de protección de la instalación. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>17,00</td>
</tr>
<tr>
<td>Conductor 95 mm² Cu desnudo, empotrados en pared o enterrados. Implicados en la evacuación de la energía y no propagadores de incendio y en la puesta a tierra de protección de la instalación. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>14,00</td>
</tr>
</tbody>
</table>

TOTAL CAPÍTULO AEROGENERADOR
<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>Ud.</th>
<th>MEDICIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baterías de plomo-calcio estacionarias marca Victron, modelo OPzS Solar 1830 transparente, con almacenaje de 1830 Ah. Conjunto de 6 baterías de 2V con vida útil de 20 años a 20°C. Fabricada según EIC 896-1 y aguantando hasta 1500 ciclos al 80 %. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>12,00</td>
</tr>
<tr>
<td>Conductor 16 mm² Cu electrolítico, Bupreno, EPR, unipolar en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>100,00</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 450 A. de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Alumbrado de emergencia para el cuarto de instrumentos de 20 W, IP 55. Mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>2,00</td>
</tr>
<tr>
<td>Conductor 10 mm² Cu electrolítico, Bupreno, EPR, unipolar en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>240,00</td>
</tr>
<tr>
<td>Conductor 120 mm² Cu electrolítico, Bupreno, EPR, unipolar, en montaje superficial. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>8,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusible de corriente nominal de 20 A de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 10 A de fusión lenta de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 6 A de fusión lenta de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>2,00</td>
</tr>
<tr>
<td>Interruptor-seccionador para la instalación de corriente continua. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>5,00</td>
</tr>
<tr>
<td>Armario de protección de la instalación continua con carril DIN, IP 65, de dos filas para 12 módulos de 18 mm por fila. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Medidores de corriente (amperímetro) digital para montaje sobre carril DIN hasta 250 A Fondo escala, incluye Shunt Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Medidores de tensión, voltímetro de CC hasta 100V para montaje sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>Interruptor- seccionador en caja moldeada para corriente continua de 400 A, poder de corte 15 kA con capacidad de conexión hasta 150 mm², mando frontal Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 4 A de 1000V de tensión nominal y 10 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Bombillas LED de 24 V y con una potencia de 6 W. Pack de 10 bombillas LED en un pedido. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>2,00</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 20 A de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Interruptor para corriente continua de 20 A, poder de corte 4 kA, mando frontal. Totalmente instalado, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>5,00</td>
</tr>
<tr>
<td>Conductor 6 mm² Cu electrolítico, Bupreno, EPR, unipolar en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>25,00</td>
</tr>
</tbody>
</table>

TOTAL CAPITULO SISTEMAS CC Y BAT
<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>Ud.</th>
<th>MEDICIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor 2,5 mm2 Cu 450/750 V, PVC unipolar, en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>90,00</td>
</tr>
<tr>
<td>Conductor 4 mm2 Cu 450/750 V, PVC unipolar, en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>80,00</td>
</tr>
<tr>
<td>Conductor 50 mm2 Cu desnudo, empotrados en pared o enterrados. Implicados en la evacuación de la energía y no propagadores de incendio y en la puesta a tierra de protección de la instalación. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>m</td>
<td>28,00</td>
</tr>
<tr>
<td>Conductor 120 mm2 Cu electrolítico, Bupreno, EPR, unipolar, empotrados en pared en montaje superficial. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>8,00</td>
</tr>
<tr>
<td>Conductor 50 mm2 Cu desnudo, empotrados en pared o enterrados. Implicados en la evacuación de la energía y no propagadores de incendio y en la puesta a tierra de protección de la instalación. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>m</td>
<td>8,00</td>
</tr>
<tr>
<td>Inversor de conexión a red, marca Victron, modelo Phoenix 24 V 5000 W, con potencia nominal de salida de 5.000 W nominal y eficiencia del 95%. Con protección contra cortocircuito, sobrecarga, tensión de batería excesiva, tensión de la batería muy baja, tensión de ondulación de entrada excesiva, temperatura demasiado alta y 230 Vca en salida del inversor. Grado de protección IP 21. Peso de 30 Kg. Mano de obra y maquinaria incluido. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>Armario de protección de la instalación alterna con carril DIN, IP 65, de una fila para 12 módulos de 18 mm que albergará interruptores magnetotérmicos, interruptores generales automáticos e interruptores diferenciales. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Interruptor general automático de 25 A de intensidad nominal, bipolar con interruptor térmico regulable de 25 A. Potencia de Corte de 15 kA y curvas B,C,D. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Interruptor diferencial de 40 A de corriente nominal y sensibilidad de 30 mA. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Interruptor magnetotérmico de 16 A de corriente nominal, con potencia de corte de 4,5 kA y curvas B,C. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>6,00</td>
</tr>
<tr>
<td>Conductor 6 mm2 Cu 450/750 V, PVC unipolar, en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>25,00</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 400 A, de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18 mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
</tr>
</tbody>
</table>
Concepto | Unidad | Medición
--- | --- | ---
Contador monofásico de energía eléctrica de hasta 65 A. Dispone de display LCD (7 dígitos) con sistema de pantallas rotativas. Dispone de un puerto óptico de comunicaciones lateral (Sistema OSC) para colocar el módulo de comunicaciones (CEM-M). Dispone también de 2 botones (1 precintable) para visualizar toda la información medida. Mano de obra y maquinaria incluido. Totalmente instalado según planos, mano de obra y maquinaria incluido | ud. | 1,00

Interruptor Seccionador en carga de 40 A de tres posiciones 1-0-2 bipolar con poder de corte de 15 kA, con capacidad de conexión hasta 35 mm², mando frontal. Totalmente instalado según planos, mano de obra y maquinaria incluido | ud. | 1,00

Multímetro multifunción CVM-C5 para panel en 96x96 mm con registro de energías compacto y con medida en 4 cuadrantes. Adecuado para instalaciones de Baja Tensión, tanto en circuitos trifásicos a 3 o 4 hilos, 2 fases con o sin neutro o sistemas monofásicos. Totalmente instalado según planos, mano de obra y maquinaria incluido | ud. | 1,00

Protección tipo 2 ref 509465-0, que combina el modo de protección contra sobretensiones mediante un varistor que permite descargar a tierra y posteriormente comutar con un fusible que al fundir separa el circuito de tierra y evita que quede cortocircuitado. Dispone de capacidad de descarga hasta 40 kA y protege de sobretensiones superiores a 230 V. Totalmente instalado según planos, mano de obra y maquinaria incluido | ud. | 1,00

Interruptor magnetotérmico de 10 A de corriente nominal, con potencia de corte de 4,5 kA y curvas B,C. Mano de obra y maquinaria incluido. Totalmente instalado según planos, mano de obra y maquinaria incluido. | ud. | 1,00
<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>Ud.</th>
<th>MEDICIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extintor de polvo seco para tipo poli ABC. Cantidad Agente de 1 Kg. Peso total cargado: 2,15 Kg. Altura 353 mm y diámetro 80 mm. Agente propulsor: N2. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Interruptor magnetotérmico de 16 A de corriente nominal, con potencia de corte de 4,5 kA y curvas B,C. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Electrodos de pica de acero cobreado para la disipación de descargas eléctricas a tierra de 2 metros, diámetro de 18 mm y peso 3,28 Kg marca INGESCO. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Unión metálica entre partes conductoras de una instalación y un electrodo enterrados en el suelo de la marca INGESCO y construcción para alojamiento. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
</tr>
<tr>
<td>Embarrado bifasico conformado con pletina de cobre de 400 x 50 x 10 mm y de longitud 900 mm sobre aisladores y soportes para corriente de cortocircuto de 30 kA y dentro de envolvente de doble aislamiento, con prensaesopa para entradas/salidas de cables de potencia ce CC. Totalmente instalado, mano de obra y maquinaria incluido</td>
<td>m</td>
<td>1,00</td>
</tr>
</tbody>
</table>

TOTAL CAPITULO INVERSOR Y SISTEMAS CA
Instalación eléctrica de una vivienda unifamiliar mediante un sistema híbrido de corriente continua y alterna

PRESUPUESTO

Autora: Imma Membrives Galea
Director: Ángel Cid Pastor
Fecha: Junio – 2015
5 Presupuesto

5.1 Cuadro de precios

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>Ud.</th>
<th>PRECIO UNIT. (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel Solar monocristalino marca ATERSA, modelo A-320M GS, con potencia nominal de salida de 320Wp y con 0/+5% de tolerancia en la potencia nominal de salida. Conectores multicontact MC4 integrados y grado de protección IP 65. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>18,00</td>
</tr>
<tr>
<td>Controlador de carga solar marca Xantrex, modelo XW-MPPT60-150, con seguimiento del punto de máxima potencia y soportando corrientes de 60 A y tensiones del campo FV de 140 V cc. Con método de regulación del cargador de dos o tres etapas y protección contra corrientes inversas. Peso de 4,8 Kg y dimensiones de 368x146x138 mm (altura x anchura x profundidad). Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>7,20</td>
</tr>
<tr>
<td>Bancada para fijación 4 paneles solares de 2000 x 1000 mm, de dimensiones siguientes: base de 4000 x 1500 mm, altura frontal 150mm y trasera 1.800 mm con mecanismo de regulación para proporcionar 4 niveles de altura a las placas por separado conformado con perfilería galvanizada normalizada. Incluye diseño, cálculos, totalmente instalado, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>27,00</td>
</tr>
<tr>
<td>Conductor 16 mm2 Cu desnudo, empotrados en pared o enterrados. Implicados en la evacuación de la energía y no propagadores de incendio y en la puesta a tierra de protección de la instalación. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>12,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>PRECIO UNIT. (€)</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>Conductor 25 mm2 Cu, Tecsun, XLPE unipolar, empotrados en pared en montaje superficial. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>14,40</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 80 A. de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18 mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>61,20</td>
</tr>
<tr>
<td>Electrods de pica de acero cobreado para la disipación de descargas eléctricas a tierra de 2 metros, diámetro de 18 mm y peso 3,28 Kg marca INGESCO. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>4,20</td>
</tr>
<tr>
<td>Unión metálica entre partes conductoras de una instalación y un electrodo enterrados en el suelo de la marca INGESCO y construcción para alojamiento. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>10,80</td>
</tr>
<tr>
<td>Concentrado de sales minerales QUIBACSOL de la marca INGESCO, para favorecer la absorción y retención de agua aumentado la conductividad eléctrica del terreno. 10 Kg de producto. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>5,40</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>PRECIO UNIT. (£)</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>Protección tipo 2 ref 509362-B, de 600 V y capacidad de 50 kA, combina el modo de protección contra sobretensiones mediante un varistor que permite descargar a tierra y posteriormente conmutar con un fusible que al fundir separa el circuito de tierra. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>10,80</td>
</tr>
<tr>
<td>Electrodos de pica de acero cubreado para la disipación de descargas eléctricas a tierra de 2 metros, diámetro de 18 mm y peso 3,28 Kg marca INGESCO. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>67,32</td>
</tr>
<tr>
<td>Unión metálica entre partes conductoras de una instalación y un electrodo enterrados en el suelo de la marca INGESCO y construcción para alojamiento. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>67,32</td>
</tr>
<tr>
<td>Interruptor- seccionador en caja moldeada para corriente continua de 32 A, poder de corte 4 kA, mando frontal Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>64,11</td>
</tr>
<tr>
<td>Interruptor- seccionador en caja moldeada para corriente continua de 63 A, poder de corte 4 kA, mando frontal Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>210,00</td>
</tr>
<tr>
<td>Interruptor- seccionador en caja moldeada para corriente continua de 630 A, poder de corte 4 kA, mando frontal Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>84,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>PRECIO UNIT. (€)</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>Diodo de Bloqueo tipo Schottky, con tensión tensión umbral de entre 0,2-0,4V. Los modelos instalados son de VRRM = 100 V y IF = 20 amperios. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>153,00</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>39,00</td>
</tr>
<tr>
<td>TOTAL CAPITULO CAMPO SOLAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>PRECIO UNIT. (£)</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td>Aerogenerador de pequeña potencia de marca KESTREL, modelo e230i, con potencia nominal de salida de 800 W y una velocidad para inicio de funcionamiento de 2,5 m/s. Turbina según clase IEC tipo II, con un grado de protección IP 55, peso de 40 Kg y diámetro del rotor de 2,30m. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>192,00</td>
</tr>
<tr>
<td>Controlador de carga eólica marca Kestrel, modelo 0102-01000-024, soportando corrientes de 40 A y para aerogeneradores de hasta 1000W. Grado de protección IP 35, dimensiones 230x290x132 (altura x anchura x profundidad). Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>301,29</td>
</tr>
<tr>
<td>Carga de dispersión para aerogeneradores, marca Missouri Wind and Solar, de 24 V cc. Calentador de agua sumergible de 0.1524 metros. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1.287,60</td>
</tr>
<tr>
<td>Suministro e instalación de Poste tubular de 10 mts altura con bisagra y laterales de soporte bisagra de 4 metros de altura para aerogenerador marca Kestrel, soporte en punta peso de 50 Kg y fuerza lateral de 600 kN, incluso trabajos de obra civil y hormigonado. Incluye diseño, cálculos, totalmente instalado, mano de obra y maquinaria incluidos</td>
<td>ud.</td>
<td>1.524,00</td>
</tr>
<tr>
<td>Conductor 10 mm2 Cu electrolítico, Bupreno, EPR, unipolar, empotrados en pared en montaje superficial. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>10,80</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>PRECIO UNIT. (€)</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 50 A. de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18 mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>42,00</td>
</tr>
<tr>
<td>Kit para toma a tierra "Pata de Ganso" plegable de 3 metros y 8,30 Kg para instalaciones de pararrayos de la marca INGESCO. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>234,00</td>
</tr>
<tr>
<td>Electrodos de pica de acero cobreado para la disipación de descargas eléctricas a tierra de 2 metros, diámetro de 18 mm y peso 3,28 Kg marca INGESCO. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>43,20</td>
</tr>
<tr>
<td>Unión metálica entre partes conductoras de una instalación y un electrodo enterrados en el suelo de la marca INGESCO y construcción para alojamiento. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>75,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>PRECIO UNIT. (€)</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>Mástil de 6 metros fabricado en acero galvanizado inoxidable para fijación y soporte sobre diversos tipos de captadores como pararrayos PDC, con un diámetro de 50 mm. Contiene dos tramos de 3 metros. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>27,60</td>
</tr>
<tr>
<td>Mástil de 3 metros fabricado en acero galvanizado inoxidable para fijación y soporte sobre diversos tipos de captadores como pararrayos PDC, con un diámetro de 50 mm. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>26,40</td>
</tr>
<tr>
<td>Proteccion tipo 1 monofásicas, marca OBO-BETTERMANN ref 5096-86-3, descargador directo a tierra. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>33,00</td>
</tr>
<tr>
<td>Descargador enchufable tipo 2 de 75 V ref 509957-9 para protección por efectos atmosféricos y por sobretensiones del generador, específico para instalaciones eólicas, dispone de via de chispas y con capacidad de descarga hasta 25 kA, asimismo protección contra sobretensiones mediante varistor de óxido de zinc. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>210,00</td>
</tr>
<tr>
<td>Conductor 35 mm2 Cu electrolítico, Bupreno, EPR, unipolar, empotrados en pared en montaje superficial. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>16,80</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>PRECIO UNIT. (€)</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>Conductor 70 mm² Cu electrolítico, Bupreno, EPR, unipolar, enterrados bajo tubo. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>36,00</td>
</tr>
<tr>
<td>Conductor 95 mm² Cu desnudo, empotrados en pared o enterrados. Implicados en la evacuación de la energía y no propagadores de incendio y en la puesta a tierra de protección de la instalación. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>39,00</td>
</tr>
<tr>
<td>Conductor 95 mm² Cu desnudo, empotrados en pared o enterrados. Implicados en la evacuación de la energía y no propagadores de incendio y en la puesta a tierra de protección de la instalación. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>39,00</td>
</tr>
<tr>
<td>TOTAL CAPITULO AEROGENERADOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>PRECIO UNIT. (€)</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>Baterías de plomo-calcio estacionarias marca Victron, modelo OPzS Solar 1830 transparente, con almacenaje de 1830 Ah. Conjunto de 6 baterías de 2V con vida útil de 20 años a 20°C. Fabricada según EIC 896-1 y aguantando hasta 1500 ciclos al 80%. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>720,00</td>
</tr>
<tr>
<td>Conductor 16 mm2 Cu electrolítico, Bupreno, EPR, unipolar en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>12,00</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 450 A. de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>192,00</td>
</tr>
<tr>
<td>Alumbrado de emergencia para el cuarto de instrumentos de 20 W, IP 55. Mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>33,00</td>
</tr>
<tr>
<td>Conductor 10 mm2 Cu electrolítico, Bupreno, EPR, unipolar en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>10,80</td>
</tr>
<tr>
<td>Conductor 120 mm2 Cu electrolítico, Bupreno, EPR, unipolar, en montaje superficial. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>42,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>PRECIO UNIT. (€)</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 20 A de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>30,00</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 10 A de fusión lenta de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>24,00</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 6 A de fusión lenta de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>15,00</td>
</tr>
<tr>
<td>Interruptor-seccionador para la instalación de corriente continua. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>30,90</td>
</tr>
<tr>
<td>Armario de protección de la instalación continua con carril DIN, IP 65, de dos filas para 12 módulos de 18 mm por fila. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>414,00</td>
</tr>
<tr>
<td>Medidores de corriente (amperímetro) digital para montaje sobre carril DIN hasta 250 A Fondo escala, incluye Shunt Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>38,93</td>
</tr>
<tr>
<td>Medidores de tensión, voltímetro de CC hasta 100V para montaje sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>21,59</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>PRECIO UNIT. (€)</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td>Interruptor- seccionador en caja moldeada para corriente continua de 400 A, poder de corte 15 kA con capacidad de conexión hasta 150 mm2, mando frontal Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>10,80</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 4 A de 1000V de tensión nominal y 10 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>12,00</td>
</tr>
<tr>
<td>Bombillas LED de 24 V y con una potencia de 6 W. Pack de 10 bombillas LED en un pedido. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>30,90</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 20 A de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>30,00</td>
</tr>
<tr>
<td>Interruptor para corriente continua de 20 A, poder de corte 4 kA, mando frontal. Totalmente instalado, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>33,00</td>
</tr>
<tr>
<td>Conductor 6 mm2 Cu electrolítico, Bupreno, EPR, unipolar en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>9,60</td>
</tr>
</tbody>
</table>

TOTAL CAPITULO SISTEMAS CC Y BAT
<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>Ud.</th>
<th>PRECIO UNIT. (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor 2,5 mm2 Cu 450/750 V, PVC unipolar, en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>5,40</td>
</tr>
<tr>
<td>Conductor 4 mm2 Cu 450/750 V, PVC unipolar, en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>7,20</td>
</tr>
<tr>
<td>Conductor 50 mm2 Cu desnudo, empotrados en pared o enterrados. Implicados en la evacuación de la energía y no propagadores de incendio y en la puesta a tierra de protección de la instalación. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>m</td>
<td>34,20</td>
</tr>
<tr>
<td>Conductor 120 mm2 Cu electrolítico, Bupreno, EPR, unipolar, empotrados en pared en montaje superficial. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>42,00</td>
</tr>
<tr>
<td>Conductor 50 mm2 Cu desnudo, empotrados en pared o enterrados. Implicados en la evacuación de la energía y no propagadores de incendio y en la puesta a tierra de protección de la instalación. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>m</td>
<td>34,20</td>
</tr>
<tr>
<td>Inversor de conexión a red, marca Victron, modelo Phoenix 24 V 5000 W, con potencia nominal de salida de 5,000 W nominal y eficiencia del 95%. Con protección contra cortocircuito, sobrecarga, tensión de batería excesiva, tensión de la batería muy baja, tensión de ondulación de entrada excesiva, temperatura demasiado alta y 230 Vca en salida del inversor. Grado de protección IP 21. Peso de 30 Kg. Mano de obra y maquinaria incluido. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>33,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>PRECIO UNIT. (€)</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>Armario de protección de la instalación alterna con carril DIN, IP 65, de una fila para 12 módulos de 18 mm que albergará interruptores magnetotérmicos, interruptores generales automáticos e interruptores diferenciales. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>164,91</td>
</tr>
<tr>
<td>Interruptor general automático de 25 A de intensidad nominal, bipolar con interruptor térmico regulable de 25 A. Potencia de Corte de 15 kA y curvas B,C,D. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>48,35</td>
</tr>
<tr>
<td>Interruptor diferencial de 40 A de corriente nominal y sensibilidad de 30 mA. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>113,40</td>
</tr>
<tr>
<td>Interruptor magnetotérmico de 16 A de corriente nominal, con potencia de corte de 4,5 kA y curvas B,C. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>86,40</td>
</tr>
<tr>
<td>Conductor 6 mm2 Cu 450/750 V, PVC unipolar, en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>9,60</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 400 A de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>210,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>PRECIO UNIT. (€)</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>Contador monofásico de energía eléctrica de hasta 65 A. Dispone de display LCD (7 dígitos) con sistema de pantallas rotativas. Dispone de un puerto óptico de comunicaciones lateral (Sistema OSC) para colocar el módulo de comunicaciones (CEM-M). Dispone también de 2 botones (1 precintable) para visualizar toda la información medida. Mano de obra y maquinaria incluido. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>41,73</td>
</tr>
<tr>
<td>Interruptor Seccionador en carga de 40 A de tres posiciones 1-0-2 bipolar con poder de corte de 15 kA, con capacidad de conexión hasta 35 mm2, mando frontal. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>72,00</td>
</tr>
<tr>
<td>Multímetro multifunción CVM-C5 para panel en 96x96 mm con registro de energías compacto y con medida en 4 cuadrantes. Adecuado para instalaciones de Baja Tensión, tanto en circuitos trifásicos a 3 o 4 hilos, 2 fases con o sin neutro o sistemas monofásicos. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>48,00</td>
</tr>
<tr>
<td>Protección tipo 2 ref 509465-0, que combina el modo de protección contra sobretensiones mediante un varistor que permite descargar a tierra y posteriormente conmutar con un fusible que al fundir separa el circuito de tierra y evita que quede cortocircuitado. Dispone de capacidad de descarga hasta 40 kA y protege de sobretensiones superiores a 230 V. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>222,51</td>
</tr>
<tr>
<td>Interruptor magnetotérmico de 10 A de corriente nominal, con potencia de corte de 4,5 kA y curvas B.C. Mano de obra y maquinaria incluido. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>42,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>PRECIO UNIT. (€)</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>Extintor de polvo seco para tipo poli ABC.</td>
<td>ud.</td>
<td>14,73</td>
</tr>
<tr>
<td>Cantidad Agente de 1 Kg. Peso total cargado: 2,15 Kg. Altura 353 mm y diámetro 80 mm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agente propulsor: N2. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interruptor magnetotérmico de 16 A de corriente nominal, con potencia de corte de 4,5 kA y curvas B,C. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>3,00</td>
</tr>
<tr>
<td>Electrodos de pica de acero cobreado para la disipación de descargas eléctricas a tierra de 2 metros, diámetro de 18 mm y peso 3,28 Kg marca INGESCO. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>42,00</td>
</tr>
<tr>
<td>Unión metálica entre partes conductoras de una instalación y un electrodo enterrados en el suelo de la marca INGESCO y construcción para alojamiento. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>41,73</td>
</tr>
<tr>
<td>Embarrado bifasico conformado con pletina de cobre de 400 x 50 x 10 mm y de longitud 900 mm sobre aisladores y soportes para corriente de cortocircuito de 30 kA y dentro de envolvente de doble aislamiento, con prensaesopa para entradas/salidas de cables de potencia ce CC. Totalmente instalado, mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>684,00</td>
</tr>
</tbody>
</table>

TOTAL CAPITULO INVERSOR Y SISTEMAS CA
5.2 Presupuesto

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>Ud.</th>
<th>MEDICIÓN</th>
<th>PRECIO UNIT. (€)</th>
<th>PRECIO TOT. (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel Solar monocristalino marca ATERSA, modelo A-320M GS,</td>
<td></td>
<td>12,00</td>
<td>18,00</td>
<td>216,00</td>
</tr>
<tr>
<td>con potencia nominal de salida de 320Wp y con 0/+5% de tolerancia en</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>la potencia nominal de salida. Conectores multicontact MC4 integrados y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grado de protección IP 65. Totalmente instalado según planos, mano de</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>obra y maquinaria incluido.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlador de carga solar marca Xantrex,</td>
<td></td>
<td>3,00</td>
<td>7,20</td>
<td>21,60</td>
</tr>
<tr>
<td>modelo XW-MPPT60-150, con seguimiento del punto de máxima potencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y soportando corrientes de 60 A y tensiones del campo FV de 140 V cc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Con método de regulación del cargador de dos o tres etapas y protección</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>contra corrientes inversas. Peso de 4,8 Kg y dimensiones de 368x146x138</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm (altura x anchura x profundidad). Totalmente instalado según</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>planos, mano de obra y maquinaria incluido.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bancada para fijación 4 paneles solares de 2000 x 1000 mm,</td>
<td></td>
<td>3,00</td>
<td>27,00</td>
<td>81,00</td>
</tr>
<tr>
<td>de dimensiones siguientes: base de 4000 x 1500 mm, altura frontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150mm y trasera 1.800 mm con mecanismo de regulación para proporcionar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 niveles de altura a las placas por separado conformado con perfilería</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>galvanizada normalizada. Incluye diseño, cálculos, totalmente instalado,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mano de obra y maquinaria incluido.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductor 16 mm2 Cu desnudo, empotrados en pared o enterrados.</td>
<td></td>
<td>28,00</td>
<td>12,00</td>
<td>336,00</td>
</tr>
<tr>
<td>Implicados en la evacuación de la energía y no propagadores de</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>incendio y en la puesta a tierra de protección de la instalación.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
<td>PRECIO UNIT. (€)</td>
<td>PRECIO TOT. (€)</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Conductor 25 mm2 Cu, Tecsun, XLPE unipolar, empotrados en pared en montaje superficial. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>6,00</td>
<td>14,40</td>
<td>86,40</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 80 A.de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>2,00</td>
<td>61,20</td>
<td>122,40</td>
</tr>
<tr>
<td>Electrodes de pica de acero cobreado para la disipación de descargas eléctricas a tierra de 2 metros, diámetro de 18 mm y peso 3,28 Kg marca INGESCO. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>4,20</td>
<td>4,20</td>
</tr>
<tr>
<td>Unión metálica entre partes conductoras de una instalación y un electrodo enterrados en el suelo de la marca INGESCO y construcción para alojamiento. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>10,80</td>
<td>10,80</td>
</tr>
<tr>
<td>Concentrado de sales minerales QUIBACSOL de la marca INGESCO, para favorecer la absorción y retención de agua aumentado la conductividad eléctrica del terreno. 10 Kg de producto. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>3,00</td>
<td>5,40</td>
<td>16,20</td>
</tr>
<tr>
<td>Protección tipo 2 ref 509362-B, de 600 V y capacidad de 50 kA, combina el modo de protección contra sobretensiones mediante un varistor que permite descargar a tierra y posteriormente conmutar con un fusible que al fundir separa el circuito de tierra. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>3,00</td>
<td>10,80</td>
<td>32,40</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
<td>PRECIO UNIT. (€)</td>
<td>PRECIO TOT. (€)</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Electrodos de pica de acero cobreado para la disipación de descargas eléctricas a tierra de 2 metros, diámetro de 18 mm y peso 3,28 Kg marca INGESCO. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>67,32</td>
<td>67,32</td>
</tr>
<tr>
<td>Unión metálica entre partes conductoras de una instalación y un electrodo enterrados en el suelo de la marca INGESCO y construcción para alojamiento. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>67,32</td>
<td>67,32</td>
</tr>
<tr>
<td>Interruptor- seccionador en caja moldeada para corriente continua de 63 A, poder de corte 4 kA, mando frontal Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>9,00</td>
<td>210,00</td>
<td>1.890,00</td>
</tr>
<tr>
<td>Interruptor- seccionador en caja moldeada para corriente continua de 630 A, poder de corte 4 kA, mando frontal Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>2,00</td>
<td>84,00</td>
<td>168,00</td>
</tr>
<tr>
<td>Interruptor- seccionador en caja moldeada para corriente continua de 32 A, poder de corte 4 kA, mando frontal Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>64,11</td>
<td>64,11</td>
</tr>
<tr>
<td>Diodo de Bloqueo tipo Schottky, con tensión tensión umbral de entre 0,2-0,4V. Los modelos instalados son de VRRM = 100 V y IF = 20 amperios. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>5,00</td>
<td>153,00</td>
<td>765,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
<td>PRECIO UNIT. (€)</td>
<td>PRECIO TOT. (€)</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Conductor 95 mm2 Cu, Tecsun, XLPE unipolar, en montaje superficial. Implicados en la evacuación de la energía y no propagadores de incendio. Totalmente instalado, mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>48,00</td>
<td>39,00</td>
<td>1.872,00</td>
</tr>
</tbody>
</table>

TOTAL CAPITULO CAMPO SOLAR 5.820,75
<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>Ud.</th>
<th>MEDICIÓN</th>
<th>PRECIO UNIT. (€)</th>
<th>PRECIO TOT. (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerogenerador de pequeña potencia de marca KESTREL, modelo e230i, con potencia nominal de salida de 800 W y una velocidad para inicio de funcionamiento de 2,5 m/s. Turbina según clase IEC tipo II, con un grado de protección IP 55, peso de 40 Kg y diámetro del rotor de 2,30m. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
<td>192,00</td>
<td>192,00</td>
</tr>
<tr>
<td>Controlador de carga eólico marca Kestrel, modelo 0102-01000-024, soportando corrientes de 40 A y para aerogeneradores de hasta 1000W. Grado de protección IP 35, dimensiones 230x290x132 (altura x anchura x profundidad). Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
<td>301,29</td>
<td>301,29</td>
</tr>
<tr>
<td>Carga de dispersión para aerogeneradores, marca Missouri Wind and Solar, de 24 V cc. Calentador de agua sumergible de 0,1524 metros. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>2,00</td>
<td>1.287,60</td>
<td>2.575,20</td>
</tr>
<tr>
<td>Suministro e instalación de Poste tubular de 10 mts altura con bisagra y laterales de soporte bisagra de 4 metros de altura para aerogenerador marca Kestrel, soporte en punta peso de 50 Kg y fuerza lateral de 600 kN, incluso trabajos de obra civil y hormigonado. Incluye diseño, cálculos, totalmente instalado, mano de obra y maquinaria incluidos</td>
<td>ud.</td>
<td>1,00</td>
<td>1.524,00</td>
<td>1.524,00</td>
</tr>
<tr>
<td>Conductor 10 mm2 Cu electrolítico, Bupreno, EPR, unipolar, empotrados en pared en montaje superficial. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>16,00</td>
<td>10,80</td>
<td>172,80</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
<td>PRECIO UNIT. (€)</td>
<td>PRECIO TOT. (€)</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 50 A. de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>9,00</td>
<td>42,00</td>
<td>378,00</td>
</tr>
<tr>
<td>Pararrayos INGESCO PDC con dispositivo de cebado no electrónico, normalizado según normas UNE 21.186:2011 NFC17-102:2011 y NP4426:2013 montaje sobre poste de 14 mts arriostrado, incluye calculos y legalización, Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>1.260,00</td>
<td>1.260,00</td>
</tr>
<tr>
<td>Kit para toma a tierra "Pata de Ganso" plegable de 3 metros y 8,30 Kg para instalaciones de pararrayos de la marca INGESCO. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>234,00</td>
<td>234,00</td>
</tr>
<tr>
<td>Electrodomos de pica de acero cobreado para la disipación de descargas eléctricas a tierra de 2 metros, diámetro de 18 mm y peso 3,28 Kg marca INGESCO. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>43,20</td>
<td>43,20</td>
</tr>
<tr>
<td>Unión metálica entre partes conductoras de una instalación y un electrodo enterrados en el suelo de la marca INGESCO y construcción para alojamiento. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>2,00</td>
<td>75,00</td>
<td>150,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
<td>PRECIO UNIT. (€)</td>
<td>PRECIO TOT. (€)</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>----------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Mástil de 6 metros fabricado en acero galvanizado inoxidable para fijación y soporte sobre diversos tipos de captadores como pararrayos PDC, con un diámetro de 50 mm. Contiene dos tramos de 3 metros. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>2,00</td>
<td>27,60</td>
<td>55,20</td>
</tr>
<tr>
<td>Mástil de 3 metros fabricado en acero galvanizado inoxidable para fijación y soporte sobre diversos tipos de captadores como pararrayos PDC, con un diámetro de 50 mm. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>26,40</td>
<td>26,40</td>
</tr>
<tr>
<td>Proteccion tipo 1 monofásicas, marca OBO-BETTERMANN ref 5096-86-3, descargador directo a tierra. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>2,00</td>
<td>33,00</td>
<td>66,00</td>
</tr>
<tr>
<td>Descargador enchufable tipo 2 de 75 V ref 509957-9 para protección por efectos atmosféricos y por sobretensiones del generador, específico para instalaciones eólicas, dispone de vía de chispas y con capacidad de descarga hasta 25 kA, asimismo protección contra sobretensiones mediante varistor de óxido de zinc. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>2,00</td>
<td>210,00</td>
<td>420,00</td>
</tr>
<tr>
<td>Conductor 35 mm2 Cu electrolítico, Bupreno, EPR, unipolar, empotrados en pared en montaje superficial. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>24,00</td>
<td>16,80</td>
<td>403,20</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
<td>PRECIO UNIT. (€)</td>
<td>PRECIO TOT. (€)</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Conductor 70 mm2 Cu electrolítico, Bupreno, EPR, unipolar, enterrados bajo tubo. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluído.</td>
<td>m</td>
<td>54,00</td>
<td>36,00</td>
<td>1.944,00</td>
</tr>
<tr>
<td>Conductor 95 mm2 Cu desnudo, empotrados en pared o enterrados. Implicados en la evacuación de la energía y no propagadores de incendio y en la puesta a tierra de protección de la instalación. Totalmente instalado según planos, mano de obra y maquinaria incluído</td>
<td>m</td>
<td>17,00</td>
<td>39,00</td>
<td>663,00</td>
</tr>
<tr>
<td>Conductor 95 mm2 Cu desnudo, empotrados en pared o enterrados. Implicados en la evacuación de la energía y no propagadores de incendio y en la puesta a tierra de protección de la instalación. Totalmente instalado según planos, mano de obra y maquinaria incluído</td>
<td>m</td>
<td>14,00</td>
<td>39,00</td>
<td>546,00</td>
</tr>
</tbody>
</table>

TOTAL CAPITULO AEROGENERADOR 10.954,29
<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>Ud.</th>
<th>MEDICIÓN</th>
<th>PRECIO UNIT. (€)</th>
<th>PRECIO TOT. (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baterías de plomo-calcio estacionarias marca Victron, modelo OPzS Solar 1830 transparente, con almacenaje de 1830 Ah. Conjunto de 6 baterías de 2V con vida útil de 20 años a 20°C. Fabricada según EIC 896-1 y aguantando hasta 1500 ciclos al 80 %. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>12,00</td>
<td>720,00</td>
<td>8.640,00</td>
</tr>
<tr>
<td>Conductor 16 mm2 Cu electrolítico, Bupreno, EPR, unipolar en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>100,00</td>
<td>12,00</td>
<td>1.200,00</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 450 A. de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>192,00</td>
<td>192,00</td>
</tr>
<tr>
<td>Alumbrado de emergencia para el cuarto de instrumentos de 20 W, IP 55. Mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>2,00</td>
<td>33,00</td>
<td>66,00</td>
</tr>
<tr>
<td>Conductor 10 mm2 Cu electrolítico, Bupreno, EPR, unipolar en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>240,00</td>
<td>10,80</td>
<td>2.592,00</td>
</tr>
<tr>
<td>Conductor 120 mm2 Cu electrolítico, Bupreno, EPR, unipolar, en montaje superficial. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>8,00</td>
<td>42,00</td>
<td>336,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
<td>PRECIO UNIT. (€)</td>
<td>PRECIO TOT. (€)</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 20 A de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
<td>30,00</td>
<td>30,00</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 10 A de fusión lenta de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
<td>24,00</td>
<td>24,00</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 6 A de fusión lenta de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>2,00</td>
<td>15,00</td>
<td>30,00</td>
</tr>
<tr>
<td>Interruptor-seccionador para la instalación de corriente continua. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>5,00</td>
<td>30,90</td>
<td>154,50</td>
</tr>
<tr>
<td>Armario de protección de la instalación continua con carril DIN, IP 65, de dos filas para 12 módulos de 18 mm por fila. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
<td>414,00</td>
<td>414,00</td>
</tr>
<tr>
<td>Medidores de corriente (amperímetro) digital para montaje sobre carril DIN hasta 250 A Fondo escala, incluye Shunt Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>38,93</td>
<td>38,93</td>
</tr>
<tr>
<td>Medidores de tensión, voltímetro de CC hasta 100V para montaje sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>21,59</td>
<td>21,59</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
<td>PRECIO UNIT. (€)</td>
<td>PRECIO TOT. (€)</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Interruptor- seccionador en caja moldeada para corriente continua de 400 A, poder de corte 15 kA con capacidad de conexión hasta 150 mm², mando frontal Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>10,80</td>
<td>10,80</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 4 A de 1000V de tensión nominal y 10 kA de poder de corte, incluyendo base portafusibles modular de 18 mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>12,00</td>
<td>12,00</td>
</tr>
<tr>
<td>Bombillas LED de 24 V y con una potencia de 6 W. Pack de 10 bombillas LED en un pedido. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>2,00</td>
<td>30,90</td>
<td>61,80</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 20 A de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18 mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>30,00</td>
<td>30,00</td>
</tr>
<tr>
<td>Interruptor para corriente continua de 20 A, poder de corte 4 kA, mando frontal. Totalmente instalado, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>5,00</td>
<td>33,00</td>
<td>165,00</td>
</tr>
<tr>
<td>Conductor 6 mm² Cu electrolítico, Bupreno, EPR, unipolar en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>25,00</td>
<td>9,60</td>
<td>240,00</td>
</tr>
</tbody>
</table>

TOTAL CAPITULO SISTEMAS CC Y BAT 14.258,62
<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>Ud.</th>
<th>MEDICIÓN</th>
<th>PRECIO UNIT. (€)</th>
<th>PRECIO TOT. (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor 2,5 mm² Cu 450/750 V, PVC unipolar, en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>90,00</td>
<td>5,40</td>
<td>486,00</td>
</tr>
<tr>
<td>Conductor 4 mm² Cu 450/750 V, PVC unipolar, en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>80,00</td>
<td>7,20</td>
<td>576,00</td>
</tr>
<tr>
<td>Conductor 50 mm² Cu desnudo, empotrados en pared o enterrados. Implicados en la evacuación de la energía y no propagadores de incendio y en la puesta a tierra de protección de la instalación. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>m</td>
<td>28,00</td>
<td>34,20</td>
<td>957,60</td>
</tr>
<tr>
<td>Conductor 120 mm² Cu electrolítico, Bupreno, EPR, unipolar, empotrados en pared en montaje superficial. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>8,00</td>
<td>42,00</td>
<td>336,00</td>
</tr>
<tr>
<td>Conductor 50 mm² Cu desnudo, empotrados en pared o enterrados. Implicados en la evacuación de la energía y no propagadores de incendio y en la puesta a tierra de protección de la instalación. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>8,00</td>
<td>34,20</td>
<td>273,60</td>
</tr>
<tr>
<td>Inversor de conexión a red, marca Victron, modelo Phoenix 24 V 5000 W, con potencia nominal de salida de 5.000 W nominal y eficiencia del 95%. Con protección contra cortocircuito, sobrecarga, tensión de batería excesiva, tensión de la batería muy baja, tensión de ondulación de entrada excesiva, temperatura demasiado alta y 230 Vca en salida del inversor. Grado de protección IP 21. Peso de 30 Kg. Mano de obra y maquinaria incluido. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
<td>33,00</td>
<td>33,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
<td>PRECIO UNIT. (€)</td>
<td>PRECIO TOT. (€)</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>----------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Armario de protección de la instalación alterna con carril DIN, IP 65, de una fila para 12 módulos de 18 mm que albergará interruptores magnetotérmicos, interruptores generales automáticos e interruptores diferenciales. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
<td>164,91</td>
<td>164,91</td>
</tr>
<tr>
<td>Interruptor general automático de 25 A de intensidad nominal, bipolar con interruptor térmico regulable de 25 A. Potencia de Corte de 15 kA y curvas B,C,D. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
<td>48,35</td>
<td>48,35</td>
</tr>
<tr>
<td>Interruptor diferencial de 40 A de corriente nominal y sensibilidad de 30 mA. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
<td>113,40</td>
<td>113,40</td>
</tr>
<tr>
<td>Interruptor magnetotérmico de 16 A de corriente nominal, con potencia de corte de 4,5 kA y curvas B,C. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>6,00</td>
<td>86,40</td>
<td>518,40</td>
</tr>
<tr>
<td>Conductor 6 mm² Cu 450/750 V, PVC unipolar, en hueco de construcción. Implicados en la evacuación de la energía y no propagadores de incendio. Mano de obra y maquinaria incluido.</td>
<td>m</td>
<td>25,00</td>
<td>9,60</td>
<td>240,00</td>
</tr>
<tr>
<td>Fusible de corriente nominal de 400 A de 1000V de tensión nominal y 30 kA de poder de corte, incluyendo base portafusibles modular de 18mm de anchura instalada sobre carril DIN. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>210,00</td>
<td>210,00</td>
</tr>
<tr>
<td>CONCEPTO</td>
<td>Ud.</td>
<td>MEDICIÓN</td>
<td>PRECIO UNIT. (€)</td>
<td>PRECIO TOT. (€)</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Contador monofásico de energía eléctrica de hasta 65 A. Dispone de display LCD (7 dígitos) con sistema de pantallas rotativas. Dispone de un puerto óptico de comunicaciones lateral (Sistema OSC) para colocar el módulo de comunicaciones (CEM-M). Dispone también de 2 botones (1 precintable) para visualizar toda la información medida. Mano de obra y maquinaria incluido. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>41,73</td>
<td>41,73</td>
</tr>
<tr>
<td>Interruptor Seccionador en carga de 40 A de tres posiciones 1-0-2 bipolar con poder de corte de 15 kA, con capacidad de conexión hasta 35 mm2, mando frontal. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>72,00</td>
<td>72,00</td>
</tr>
<tr>
<td>Multímetro multifunción CVM-C5 para panel en 96x96 mm con registro de energías compacto y con medida en 4 cuadrantes. Adecuado para instalaciones de Baja Tensión, tanto en circuitos trifásicos a 3 o 4 hilos, 2 fases con o sin neutro o sistemas monofásicos. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>48,00</td>
<td>48,00</td>
</tr>
<tr>
<td>Protección tipo 2 ref 509465-0, que combina el modo de protección contra sobretensiones mediante un varistor que permite descargar a tierra y posteriormente conmutar con un fusible que al fundir separa el circuito de tierra y evita que quede cortocircuitado. Dispone de capacidad de descarga hasta 40 kA y protege de sobretensiones superiores a 230 V. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>222,51</td>
<td>222,51</td>
</tr>
</tbody>
</table>
Presupuesto

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>Ud.</th>
<th>MEDICIÓN</th>
<th>PRECIO UNIT. (€)</th>
<th>PRECIO TOT. (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interruptor magnetotérmico de 10 A de corriente nominal, con potencia de corte de 4,5 kA y curvas B.C. Mano de obra y maquinaria incluido. Totalmente instalado según planos, mano de obra y maquinaria incluido.</td>
<td>ud.</td>
<td>1,00</td>
<td>42,00</td>
<td>42,00</td>
</tr>
<tr>
<td>Extintor de polvo seco para tipo poli ABC. Cantidad Agente de 1 Kg. Peso total cargado: 2,15 Kg. Altura 353 mm y diámetro 80 mm. Agente propulsor: N2. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>14,73</td>
<td>14,73</td>
</tr>
<tr>
<td>Interruptor magnetotérmico de 16 A de corriente nominal, con potencia de corte de 4,5 kA y curvas B.C. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>3,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Electrodes de pica de acero cobreado para la disipación de descargas eléctricas a tierra de 2 metros, diámetro de 18 mm y peso 3,28 Kg marca INGESCO. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>42,00</td>
<td>42,00</td>
</tr>
<tr>
<td>Unión metálica entre partes conductoras de una instalación y un electrodo enterrados en el suelo de la marca INGESCO y construcción para alojamiento. Totalmente instalado según planos, mano de obra y maquinaria incluido</td>
<td>ud.</td>
<td>1,00</td>
<td>41,73</td>
<td>41,73</td>
</tr>
<tr>
<td>Embarrado bifasico conformado con pletina de cobre de 400 x 50 x 10 mm y de longitud 900 mm sobre aisladores y soportes para corriente de cortocircuito de 30 kA y dentro de envolvente de doble aislamiento, con prensaesosa para entradas/salidas de cables de potencia ce CC. Totalmente instalado, mano de obra y maquinaria incluido</td>
<td>m</td>
<td>1,00</td>
<td>684,00</td>
<td>684,00</td>
</tr>
</tbody>
</table>

TOTAL CAPÍTULO INVERSOR Y SISTEMAS CA

5.168,96

217
Resumen del presupuesto

RESUMEN DEL PRESUPUESTO

<table>
<thead>
<tr>
<th>CAPÍTULO</th>
<th>IMPORTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo solar</td>
<td>5.820.75 €</td>
</tr>
<tr>
<td>Aerogenerador</td>
<td>10.954,29 €</td>
</tr>
<tr>
<td>Sistemas de CC y baterías</td>
<td>14.258,62 €</td>
</tr>
<tr>
<td>Inversor y sistemas de CA</td>
<td>5.168,96 €</td>
</tr>
<tr>
<td>TOTAL P.E.M.</td>
<td>36,202,62 €</td>
</tr>
</tbody>
</table>

PRESUPUESTO DE EJECUCIÓN MATERIAL (P.E.M.)

<table>
<thead>
<tr>
<th>DETALLE</th>
<th>IMPORTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GASTOS GENERALES (7%)</td>
<td>2.534,18 €</td>
</tr>
<tr>
<td>BENEFICIO INDUSTRIAL (10%)</td>
<td>3.620,26 €</td>
</tr>
<tr>
<td>PRESUPUESTO DE INVERSIÓN</td>
<td>42.357,06 €</td>
</tr>
<tr>
<td>I.V.A. (21%)</td>
<td>8.894,98 €</td>
</tr>
<tr>
<td>TOTAL PRESUPUESTO</td>
<td>51.252,04 €</td>
</tr>
</tbody>
</table>

El presupuesto asciende a un total de **CINCUENTA Y UN MIL DOSCIENTOS CINCUENTA Y DOS CON CUATRO CENTIMOS**
Instalación eléctrica de una vivienda unifamiliar mediante un sistema híbrido de corriente continua y alterna

PLIEGO DE CONDICIONES

Autora: Imma Membrives Galea
Director: Ángel Cid Pastor

Fecha: Junio – 2015
6 Pliego de Condiciones

6.1 Objetos

Este Pliego de Condiciones tiene por objeto definir las disposiciones necesarias para la correcta ejecución de las instalaciones fotovoltaicas conectadas a red interior, cuyas características técnicas están especificadas en la memoria y planos del proyecto. Sirve de guía para instaladores y fabricantes de equipos, definiendo las especificaciones mínimas que debe cumplir la instalación para asegurar su calidad, en beneficio del usuario y del propio desarrollo de la tecnología.

El ámbito de aplicación de este Pliego de Condiciones Técnicas (en lo que sigue, PCT) se extiende a todos los sistemas mecánicos, eléctricos y electrónicos que forman parte de las instalaciones.

6.2 Generalidades

Este Pliego es de aplicación en su integridad a todas las instalaciones solares fotovoltaicas interconectadas destinadas a la producción de electricidad.

6.3 Normativa de aplicación

En todo caso es de aplicación toda la normativa que afecte a instalaciones solares fotovoltaicas:

- Ley 54/1997 de 27 de noviembre del Sector Eléctrico.
- Real Decreto 1955/2000 de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica.
- Real Decreto 1699/2011, de 18 de noviembre, por el que se regula la conexión a red de instalaciones de producción de energía eléctrica de pequeña potencia.
- Real Decreto 661/2007, de 25 de mayo, por el que se regula la actividad de producción de energía eléctrica de régimen especial.
- Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento unificado de puntos de medida del sistema eléctrico.
- Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación.
6.4 Diseño

6.4.1 Diseño del generador fotovoltaico

Todos los módulos que integren la instalación serán del mismo modelo, o en el caso de modelos distintos, el diseño debe garantizar totalmente la compatibilidad entre ellos y la ausencia de efectos negativos en la instalación por dicha causa.

En aquellos casos excepcionales en que se utilicen módulos no cualificados, deberá justificarse debidamente y aportar documentación sobre las pruebas y ensayos a los que han sido sometidos. En cualquier caso, todo producto que no cumpla alguna de las especificaciones anteriores deberá contar con la aprobación expresa del organismo competente. En todos los casos han de cumplirse las normas vigentes de obligado cumplimiento.

En particular, la instalación está diseñada para no recibir ninguna sombra exterior y para que la sombra que producen los paneles entre ellos mismos sea la mínima posible. Por otra parte la orientación e inclinación ha sido diseñada como las óptimas dentro de las condiciones dadas.

6.4.2 Diseño del sistema de monitorización

El sistema de monitorización proporcionará medidas, como mínimo, de las siguientes variables:
• Voltaje y corriente CC a la entrada del inversor.
• Voltaje de fase/s en la red, potencia total de salida del inversor
• Radiación solar en el plano de los módulos, medida con un módulo o una célula de tecnología equivalente.

6.5 Componentes y materiales

Como principio general se ha de asegurar, como mínimo, un grado de aislamiento eléctrico de tipo básico clase I en lo que afecta tanto a equipos (módulos e inversores), como a materiales (conductores, cajas y armarios de conexión), exceptuando el cableado de continua, que será de doble aislamiento.

La instalación incorporará todos los elementos y características necesarios para garantizar en todo momento la calidad del suministro eléctrico.

El funcionamiento de las instalaciones fotovoltaicas no deberá provocar en la red averías, disminuciones de las condiciones de seguridad, ni alteraciones superiores a las admitidas por la normativa que resulte aplicable.

Asimismo, el funcionamiento de estas instalaciones no podrá dar origen a condiciones peligrosas de trabajo para el personal de mantenimiento y explotación de la red de distribución.

Los materiales situados en intemperie se protegerán contra los agentes ambientales, en particular contra el efecto de la radiación solar y la humedad.

Se incluirán todos los elementos necesarios de seguridad y protecciones propias de las personas y de la instalación fotovoltaica, asegurando la protección frente a contactos directos e indirectos, cortocircuitos, sobrecargas, así como otros elementos y protecciones que resulten de la aplicación de la legislación vigente.

Por motivos de seguridad y operación de los equipos, los indicadores, etiquetas, etc. de los mismos estarán en alguna de las lenguas españolas oficiales del lugar de la instalación.

6.5.1 Sistemas generadores fotovoltaicos

Los módulos fotovoltaicos deberán incorporar el marcado CE, según la Directiva 2006/95/CE del Parlamento Europeo y del Consejo, de 12 de diciembre de 2006, relativa a la aproximación de las legislaciones de los Estados miembros sobre el material eléctrico destinado a utilizarse con determinados límites de tensión.

Además, deberán cumplir la norma UNE-EN 61730, armonizada para la Directiva 2006/95/CE, sobre cualificación de la seguridad de módulos fotovoltaicos, y la norma UNE-EN 50380, sobre informaciones de las hojas de datos y de las placas de características para los módulos fotovoltaicos. Adicionalmente, en función de la tecnología del módulo, éste deberá satisfacer las siguientes normas:
- UNE-EN 61215: Módulos fotovoltaicos (FV) de silicio cristalino para uso terrestre. Cualificación del diseño y homologación.

- UNE-EN 61646: Módulos fotovoltaicos (FV) de lámina delgada para aplicaciones terrestres. Cualificación del diseño y aprobación de tipo.

Aquellos módulos que no puedan ser ensayados según estas normas citadas, deberán acreditar el cumplimiento de los requisitos mínimos establecidos en las mismas por otros medios, y con carácter previo a su inscripción definitiva en el registro de régimen especial dependiente del órgano competente.

Será necesario justificar la imposibilidad de ser ensayados, así como la acreditación del cumplimiento de dichos requisitos, lo que deberá ser comunicado por escrito a la Dirección General de Política Energética y Minas, quien resolverá sobre la conformidad o no de la justificación y acreditación presentadas.

El módulo fotovoltaico llevará de forma claramente visible e indeleble el modelo y nombre o logotipo del fabricante, así como una identificación individual o número de serie trazable a la fecha de fabricación.

Los módulos deberán llevar los diodos de derivación para evitar las posibles averías de las células y sus circuitos por sombreados parciales y tendrán un grado de protección IP65.

Los marcos laterales, si existen, serán de aluminio o acero inoxidable.

Para que un módulo resulte aceptable, su potencia máxima y corriente de cortocircuito reales referidas a condiciones estándar deberán estar comprendidas en el margen del ±3% de los correspondientes valores nominales de catálogo.

Será rechazado cualquier módulo que presente defectos de fabricación como roturas o manchas en cualquiera de sus elementos así como falta de alineación en las células o burbujas en el encapsulante.

La estructura del generador se conectará a tierra.

Por motivos de seguridad y para facilitar el mantenimiento y reparación del generador, se instalarán los elementos necesarios (fusibles, interruptores, etc.) para la desconexión, de forma independiente y en ambos terminales, de cada una de las ramas del resto del generador.

Los módulos fotovoltaicos estarán garantizados por el fabricante durante un periodo mínimo de 10 años y contarán con una garantía de rendimiento durante 25 años.
6.5.2 Estructura soporte

Las estructura soporte de módulos ha de resistir, con los módulos instalados, las sobrecargas del viento y nieve, de acuerdo con lo indicado en el Código Técnico de la Edificación y demás normativa de aplicación.

El diseño y la construcción de la estructura y el sistema de fijación de módulos, permitirá las necesarias dilataciones térmicas, sin transmitir cargas que puedan afectar a la integridad de los módulos, siguiendo las indicaciones del fabricante.

Los puntos de sujeción para el módulo fotovoltaico serán suficientes en número, teniendo en cuenta el área de apoyo y posición relativa, de forma que no se produzcan flexiones en los módulos superiores a las permitidas por el fabricante y los métodos homologados para el modelo de módulo.

El diseño de la estructura se realizará para la orientación y el ángulo de inclinación especificado para el generador fotovoltaico, teniendo en cuenta la facilidad de montaje y desmontaje, y la posible necesidad de sustituciones de elementos.

La estructura se protegerá superficialmente contra la acción de los agentes ambientales. La realización de taladros en la estructura se llevará a cabo antes de proceder, en su caso, al galvanizado o protección de la estructura.

La tornillería será realizada en acero inoxidable, cumpliendo la norma MV-106. En el caso de ser la estructura galvanizada se admitirán tornillos galvanizados, exceptuando la sujeción de los módulos a la misma, que serán de acero inoxidable.

Los topes de sujeción de módulos y la propia estructura no arrojarán sombras sobre los módulos.

La estructura soporte será calculada según la normativa vigente para soportar cargas extremas debidas a factores climatológicos adversos, tales como viento, nieve, etc.

Si está construida con perfiles de acero laminado conformado en frío, cumplirán las normas UNE-EN 10219-1 y UNE-EN 10219-2 para garantizar todas sus características mecánicas y de composición química.

Si es del tipo galvanizada en caliente, cumplirá las normas UNE-EN ISO 14713 (partes 1, 2 y 3) y UNE-EN ISO 10684 y los espesores cumplirán con los mínimos exigibles en la norma UNE-EN ISO 1461.

6.5.3 Inversores

El inversor utilizado será utilizado de acuerdo a las normas del fabricante, para evitar posibles accidentes.

Serán del tipo adecuado para la conexión a la red eléctrica, con una potencia de entrada variable para que sean capaces de extraer en todo momento la máxima potencia que el generador fotovoltaico puede proporcionar a lo largo de cada día.

Las características básicas de los inversores serán las siguientes:
Pliego de Condiciones

- Principio de funcionamiento: fuente de corriente
- Autoconmutados
- Seguimiento automático del punto de máxima potencia del generador
- No funcionarán en isla o modo aislado

La caracterización de los inversores deberá hacerse según las normas siguientes:

- UNE-EN 62093: Componentes de acumulación, conversión y gestión de energía de sistemas fotovoltaicos. Cualificación del diseño y ensayos ambientales.
- IEC 62116. Testing procedure of islanding prevention measures for utility interactive photovoltaic inverters.

Los inversores cumplirán con las directivas comunitarias de Seguridad Eléctrica y Compatibilidad Electromagnética (ambas serán certificadas por el fabricante), incorporando protecciones frente a:

- Cortocircuitos en alterna
- Tensión de red fuera de rango
- Frecuencia de red fuera de rango
- Sobretensiones, mediante varistores o similares
- Perturbaciones presentes en la red como microcortes, pulsos, defectos de ciclos, ausencia y retorno de la red, etc.

Adicionalmente, han de cumplir con la Directiva 2004/108/CE del Parlamento Europeo y del Consejo, de 15 de diciembre de 2004, relativa a la aproximación de las legislaciones de los Estados miembros en materia de compatibilidad electromagnética.

Cada inversor dispondrá de las señalizaciones necesarias para su correcta operación, e incorporará los controles automáticos imprescindibles que aseguren su adecuada supervisión y manejo.

Cada inversor incorporará, al menos, los controles manuales siguientes:

- Encendido y apagado general del inversor
- Conexión y desconexión del inversor a la interfaz CA. Podrá ser externo al inversor

Las características eléctricas de los inversores serán las siguientes:
El inversor seguirá entregando potencia a la red de forma continuada en condiciones de irradiancia solar un 10% superior a las CEM. Además soportará picos de magnitud un 30% superior a las CEM durante períodos de hasta 10 segundos.

El rendimiento de potencia del inversor (cociente entre la potencia activa de salida y la potencia activa de entrada), para una potencia de salida en corriente alterna igual al 50 % y al 100% de la potencia nominal, será como mínimo del 92% y del 94% respectivamente. El cálculo del rendimiento se realizará de acuerdo con la norma UNE-EN 6168: Sistemas fotovoltaicos. Acondicionadores de potencia. Procedimiento para la medida del rendimiento.

El autoconsumo de los equipos (pérdidas en “vacío”) en “stand-by” o modo nocturno deberá ser inferior al 2 % de su potencia nominal de salida.

El factor de potencia de la potencia generada deberá ser superior a 0,95, entre el 25% y el 100% de la potencia nominal.

A partir de potencias mayores del 10% de su potencia nominal, el inversor deberá inyectar en red.

Los inversores tendrán un grado de protección mínima IP 20 para inversores en el interior de edificios y lugares inaccesibles, IP 30 para inversores en el interior de edificios y lugares accesibles, y de IP 65 para inversores instalados a la intemperie. En cualquier caso, se cumplirá la legislación vigente.

Los inversores estarán garantizados para operación en las siguientes condiciones ambientales: entre 0 °C y 40 °C de temperatura y entre 0 % y 85 % de humedad relativa.

Los inversores para instalaciones fotovoltaicas estarán garantizados por el fabricante durante un período mínimo de 5 años.

6.5.4 Cableado y canalizaciones

Los positivos y negativos de cada grupo de módulos se conducirán separados y protegidos de acuerdo a la normativa vigente.

Los conductores serán de cobre y tendrán la sección adecuada para evitar caídas de tensión y calentamientos. Concretamente, para cualquier condición de trabajo, los conductores deberán tener la sección suficiente para que la caída de tensión sea inferior del 1,5%. Las secciones utilizadas serán las determinadas en el apartado de cálculos justificativos que se incluyen en este Proyecto.

El cable deberá tener la longitud necesaria para no generar esfuerzos en los diversos elementos ni posibilidad de enganche por el tránsito normal de personas.
Todo el cableado de continua será de doble aislamiento y adecuado para su uso en intemperie, al aire o enterrado, de acuerdo con la norma UNE 21123.

Todo el cableado de corriente alterna cumplirá con el Reglamento Electrotécnico de Baja Tensión.

El cableado de protección será de cobre y presentará el mismo aislamiento que los conductores activos. Se instalarán por la misma canalización que éstos.

La sección mínima de estos conductores de protección será igual a la fijada en la tabla II de la Instrucción Complementaria MLBT-ICT 019, en función de la sección de los conductores activos (fases) de la instalación.

Los conductores de la instalación se identificarán por los colores de su aislamiento de la forma siguiente:

- Azul claro: Conductores de neutro
- Amarillo - verde: Conductores de tierra
- Marrón, negro y gris: Conductores de fases activas

El cableado estará protegido por tubos protectores de PVC o metálicos, normalizados.

Los diámetros interiores nominales mínimos, en milímetros, irán en función del número, clase y sección de los conductores que deban alojar, según se indica en las Tablas I, II y III de la Instrucción MLBT-ICT 021.

La sección interior del tubo será, como mínimo, igual a tres veces la sección total ocupada por los conductores. Los tubos deberán soportar, sin deformación alguna, las siguientes temperaturas:

- 60°C Los tubos construidos en PVC o polietileno.
- 70°C Los tubos metálicos

6.5.5 Cajas de conexión

Las cajas de registro para efectuar el conexionado del generador fotovoltaico serán del material aislante de clase A, con un grado de protección mínimo de tipo IP 65, según UNE 20324.

Deberán ser las adecuadas para cada tipo de canalizaciones y tubos protectores que se empleen en la instalación.

Cuando se emplea tubo de acero las cajas deberán ser metálicas con piezas de acoplamiento para el tubo tipo practic o roscado y con tapa atornillada.

En todos los casos las dimensiones de las cajas de registro y empalme deberán permitir alojar holgadamente todos los conductores que deban contener. Su profundidad equivaldrá, cuanto menos, al diámetro del tubo mayor más un 50 por cien del mismo, con un mínimo de 40 mm de profundidad y 80 mm de diámetro o lado menor.
Para el diseño en instalación de los equipos eléctricos se deberá cumplir con lo establecido en la ITC-BT-30 para locales húmedos.

6.5.6 Conexión a red interior

Todas las instalaciones cumplirán con lo dispuesto en el Real Decreto 1699/2011 sobre conexión de instalaciones fotovoltaicas conectadas a la red interior de baja tensión.

6.5.7 Medidas

Todas las instalaciones cumplirán con el Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento Unificado de puntos de medida del sistema eléctrico.

6.5.8 Protecciones

Todas las instalaciones cumplirán con lo dispuesto en el Real Decreto 1699/2011 (artículo 14) sobre protecciones en instalaciones conectadas a la red interior de baja tensión.

En conexiones a la red trifásicas las protecciones para la interconexión de máxima y mínima frecuencia (51 y 49 Hz respectivamente) y de máxima y mínima tensión (1.1 Um y 0.85 Um respectivamente) serán para cada fase.

Los aparatos de protección serán disyuntores eléctricos, fusibles o interruptores diferenciales. Los disyuntores serán del tipo magnetotérmico de accionamiento manual y deberán poder cortar la corriente máxima del circuito en el que están colocados sin dar lugar a la formación de arcos permanentes, abriendo y cerrando los circuitos, sin posibilidad de tomar una posición intermedia.

Su capacidad de corte, para la protección del cortocircuito, deberá estar de acuerdo con la intensidad de cortocircuito que pueda presentarse en un punto de la instalación y para la protección contra el calentamiento de las líneas se regulará para una temperatura inferior a los 60ºC.

Llevarán marcadas la intensidad y tensión nominal de funcionamiento, así como el signo indicador de su desconexión.

Tanto los disyuntores como los diferenciales que se hallen situados en un punto de la instalación en el que no puedan soportar las corrientes de cortocircuito que se puedan presentar en dicho punto, deberán llevar asociados cortacircuitos fusibles calibrados.

Los fusibles empleados para proteger los circuitos secundarios serán calibrados a la intensidad del circuito que se protegen. Se dispondrán sobre material aislante e incombustible y estarán construidos de forma que no puedan proyectar metal al fundirse. Se podrán cambiar en tensión sin peligro alguno y llevarán marcada la intensidad y tensión de servicio.

6.5.9 Puesta a tierra de las instalaciones fotovoltaicas

La puesta a tierra cumplirá con lo dispuesto en el Real Decreto 1699/2011 (artículo 15) sobre las condiciones de puesta a tierra de instalaciones.
Todas las masas de la instalación fotovoltaica, tanto de la sección continua como de la alterna, estarán conectados a una única tierra. Esta tierra será independiente de la del neutro de la empresa distribuidora, de acuerdo con el Reglamento de Baja Tensión.

6.5.10 **Armónicos y compatibilidad electromagnética**

Todas las instalaciones cumplirán con lo dispuesto en el Real Decreto 1699/2011 (artículo 16) sobre armónicos y compatibilidad electromagnética.

6.5.11 **Aparatos de mando y maniobra**

Son los interruptores y conmutadores que serán capaces de cortar la corriente máxima del circuito en que están colocados, sin dar lugar a la formación de arcos permanentes, abriendo y cerrando los circuitos sin posibilidad de tomar una posición intermedia. Serán del tipo cerrado y material aislante.

Las dimensiones de las pinzas de contacto serán tales que la temperatura nunca pueda exceder de 65°C, en cualquiera de sus partes.

Su construcción será tal que permita realizar un número de maniobras de apertura y cierre, del orden de 10.000 con su carga nominal a la tensión de trabajo.

Llevarán marcadas su intensidad y tensiones nominales y estarán probados a una tensión de 500 a 1000 V.

6.6 **Ejecución de las instalaciones**

Todas las normas de instalación se ajustarán, en todo caso, a los planos, mediciones y calidades que se expresan, así como a las directrices que la Dirección Facultativa estime oportunas. Además del cumplimiento de lo expuesto, las instalaciones se ajustarán a las normativas que pudieran afectar, emanadas de organismos oficiales y en particular de la compañía suministradora de electricidad.

El contratista, salvo aprobación por escrito del Director de Obra, no podrá hacer ninguna alteración o modificación de cualquier naturaleza tanto en la ejecución de la obra en relación con el proyecto como en las condiciones técnicas especificadas, sin perjuicio de lo que en cada momento pueda ordenarse por el Director de Obra.

El cableado de paneles fotovoltaicos implica riesgo eléctrico por las tensiones de generación, hasta 664,4 voltios en los extremos de las ramas de continua de conexión de módulos. Dado que en dicho proceso el sistema está desprovisto de protección a personas, se seguirán en todo momento las siguientes normas:

1. El personal deberá utilizar en todo momento guantes aislantes que presenten un aislamiento adecuado a dichas tensiones de generación.
2. En el proceso de cableado se seguirá la siguiente secuencia:
• Formación de bloques de un máximo de 3 paneles en serie (30,2 V/panel). Esto evitará que aparezcan tensiones superiores a 900 voltios.

• Una vez instalada la red general de corriente continua con la protección por pérdida de aislamiento operativa, se permitirá el cableado entre los distintos bloques anteriormente formados.

• La conexión de bloques se realizará desde los extremos positivos de la rama hacia el negativo.

El conexionado entre los dispositivos de protección de los cuadros de protección y distribución se realizará ordenadamente, disponiendo regletas de conexión para los conductores activos y para el conductor de protección.

Se fijará sobre los cuadros un letrero de material metálico, con el nombre del instalador y la fecha de ejecución de la instalación.

La ejecución de las canalizaciones, efectuadas bajo tubos protectores, seguirá preferentemente líneas paralelas a las horizontales y verticales que limitan el local de la instalación.

Será fácil la introducción y retirada de los conductores en los tubos, una vez colocados éstos y sus accesorios. Se dispondrán los registros que se consideren necesarios.

Los conductores se alojarán en los tubos después de colocados éstos. La unión entre conductores, como empalmes o derivaciones no se realizará por simple retorcimiento de los cables entre sí, sino que se realizará empleando, siempre, regletas de conexión o bornes, pudiéndose utilizar bridas de conexión.

No se permitirán más de tres conductores en los bornes de conexión.

La conexión de los interruptores se realizará siempre sobre el conductor de fase.

No se utilizará un mismo conductor de neutro para varios circuitos.

Todo conductor deberá poder seccionarse en cualquier punto de la instalación en que se derive.

Todos los conductores que entren o salgan de cualquier cuadro llevarán su identificación, tanto en el terno o conjunto de cables que forman una línea, como unipolarmente. Igualmente se señalizarán en todos aquellos puntos en que haya cambio de dirección o conexión de diversos conductos o bandejas portacables.

La señalización se realizará con placas de poliamida, cajetines portaetiquetas de policarbonato, o manguitos y señalizadores de PVC.

La conexión de los interruptores se realizará siempre en los conductores de fase.
Los circuitos eléctricos derivados deberán protegerse contra sobreintensidades, formada por cortocircuitos fusibles, cuando se varíe la sección, que se instalará sobre el conductor de fase.

Las instalaciones eléctricas deberán presentar una resistencia de aislamiento por lo menos igual a 1.000 Voltios x U ohmios, siendo U la tensión máxima de servicio, expresada en voltios, con un mínimo de 250.000 ohmios.

El aislamiento de la instalación eléctrica se medirá con relación a tierra y entre conductores, mediante la aplicación de una tensión continua suministrada por un generador que proporcione en vacío una tensión comprendida entre 500 y 1.000 voltios, y como mínimo 250 voltios con una carga externa de 100.000 ohmios.

Se dispondrá de un punto de puesta a tierra señalizado y de fácil acceso, para poder efectuar la medición del valor de la tierra en cualquier momento.

6.7 Pliego de condiciones facultativas

Será responsabilidad del Contratista el llevar a cabo un estudio detallado de todos los planos que comprende el Proyecto, en base al cual, presentar a la Dirección de Obra una lista de material y equipos necesarios para la realización de las instalaciones.

La Dirección de Obra aportará dicha lista, introduciendo los cambios pertinentes si fuera necesario. Apoyándose en esto y con los Planos del Proyecto, el Contratista realizará los Planos de Montaje y Fabricación necesarios para el correcto montaje y mantenimiento posterior de la instalación. Estos Planos estarán coordinados con los de Obra Civil, Fontanería, Saneamiento, etc., y estarán bajo la supervisión de la Dirección de Obra que será quien resuelva cualquier circunstancia que se pudiera dar con los distintos contratistas.

El Contratista debe emplear los materiales que cumplan las condiciones exigidas en las especificaciones del proyecto y realizará todos y cada uno de los trabajos contratados de acuerdo con lo especificado también en dicho documento. Por ello y hasta que tenga lugar la recepción definitiva el Contratista es el único responsable de la ejecución de los trabajos que ha contratado y de la falta de defectos que en estos puedan existir, por su mala ejecución o por la deficiente calidad de los materiales empleados o aparatos colocados sin que pueda servirle de excusa ni le otorgue derecho alguno la circunstancia de que la Dirección Facultativa no le haya llamado la atención sobre el particular.

La Dirección Facultativa podrá reemplazar los materiales y aparatos que no se ajusten a la calidad requerida o no estén perfectamente preparados, por otros que la misma considere adecuados.

Será obligación y responsabilidad del Contratista la adopción de las prescripciones y cumplimiento de las Normas de la Legislación Vigente para la Seguridad en el Trabajo, evitar accidentes, etc., siendo el único responsable de las omisiones sobre estos particulares.
6.8 Certificados y documentaciones

El titular debe disponer para realizar la instalación solar fotovoltaica la contestación de la compañía suministradora sobre el punto de conexión a utilizar y los requisitos que se deben cumplir.

Previamenent a la iniciación de los trabajos de instalación eléctrica a que se refiere el presente Proyecto o durante el período de montaje, la Dirección de Obra podrá solicitar certificados de homologación de los materiales que intervienen en la instalación eléctrica así como documentación y catálogos en los que se indiquen las características principales.

Se proporcionará al titular una copia de cuantos certificados y documentos hayan sido precisos confeccionar, para los Organismos Oficiales, relativos a la legalización de la instalación objeto del presente Proyecto.

Una vez finalizada la obra se firmarán los contratos de compra de energía por parte de la compañía suministradora y se realizará el certificado de industria para instalaciones industriales de baja tensión.

Finalmente la instalación se inscribe definitivamente en Industria y queda totalmente legalizada.

6.9 Conclusión

Con el presente estudio, queda, a juicio del que suscribe, suficientemente justificado el pliego de condiciones técnicas de la actividad industrial e instalaciones proyectadas, elevándolo al Organismo Competente de la Administración para su aprobación definitiva.