Automatización de una Granja de Engorde de Pollos

TITULACIÓN: Ingeniería Técnica industrial especialidad Electrónica Industrial

AUTORES: Héctor Gayán Sánchez .
DIRECTORES: Alfonso José Romero Nevado .
Índice General

0. Índice General .................................................................................................................................2

Cápítulo I: Memoria Descriptiva

0. Índice de la Memoria Descriptiva ...............................................................................................8

1. Objetivo ...........................................................................................................................................10

2. Alcance ...........................................................................................................................................10

3. Antecedentes ..................................................................................................................................10

   3.1 Actividad ....................................................................................................................................10

   3.2 Características generales de la explotación avícola ...............................................................10

   3.3 Instalaciones básicas ...............................................................................................................11

   3.4 Emplazamiento .......................................................................................................................11

4. Normas y referencias ....................................................................................................................12

   4.1 Disposiciones legales y normas aplicadas ............................................................................12

   4.2 Bibliografía ............................................................................................................................12

      4.2.1 Libros consultados ..........................................................................................................12

      4.2.2 Recursos Web ..................................................................................................................12

   4.3 Programas de cálculo .............................................................................................................13

   4.4 Plan de gestión de la calidad aplicado durante la redacción del proyecto .................13

5. Definiciones y abreviaturas .........................................................................................................13

6. Requisito de diseño .......................................................................................................................13

   6.1 Emplazamiento .......................................................................................................................13

   6.2 Características de la automatización de la granja ...............................................................14

7. Análisis de soluciones ....................................................................................................................14

   7.1 Elección de sistemas de automatización para granjas .......................................................14

      7.1.0 Sistema de automatización de Chore-Times ....................................................................14

      7.1.1 Sistema de automatización VIPER de la empresa BIGDUTCHMAN .........................15

      7.1.2 Sistema de automatización mediante PLC .................................................................16

   7.2 Sistemas de comunicaciones ...................................................................................................18

      7.2.1 Lazo de corriente (4 a 20 mA) .........................................................................................18

      7.2.2 Lazo de corriente con protocolo HART ..........................................................................19

      7.2.3 Bus de campo ....................................................................................................................20

         7.2.3.1 Comunicación SERIAL-232 ......................................................................................21
Índice General

7.2.3.2 Modbus ...................................................................................................... 22
7.2.3.3 Comunicación Profibus ............................................................................ 24
7.2.3.4 Comunicación AS-i .................................................................................... 26

7.2.4 Comunicaciones inalámbricas ........................................................................ 29
  7.2.4.1 WI-FI .......................................................................................................... 29
  7.2.4.2 ZIGBEE ...................................................................................................... 30

7.3 Sensores para la automatización de la granja ............................................................. 32
  7.3.1 Sensores gas amoníaco .................................................................................. 32
    7.3.1.1 Sensor de amoniaco Sensotox 420 TOX ............................................ 33
    7.3.1.2 Sensor ST-IAM de Murco Gas Detección .......................................... 34
    7.3.1.3 Sensor amoníaco ADTX3 1120/25 ..................................................... 35
    7.3.1.4 CS 21 transmisor .................................................................................. 37
    7.3.1.5 Sensor amoníaco GDX-350 ................................................................. 39

  7.3.2 Sensores humedad relativa y sensores de temperatura ....................................... 40
    7.3.2.1 Sensores MELA ..................................................................................... 40
    7.3.2.2 Deltaohm HD9008TR ........................................................................... 41
    7.3.2.3 Humitron HTX72/73 Series ................................................................ 42

7.4 Soluciones finales ........................................................................................................... 44
  7.4.1 Organización de la automatización y comunicación de la explotación ................ 44
  7.4.2 Armarios de control .................................................................................... 44
  7.4.3 Colocación de los sensores .......................................................................... 45
  7.4.4 Conexionado de los motores ........................................................................... 45

8. Planificación ........................................................................................................................ 46

9. Orden de prioridades ........................................................................................................ 47

Cápitulo II: Memoria de los Cálculos

0. Índice de la Memoria de los Cálculos ...................................................................... 49

1. Documentación de partida ......................................................................................... 50

2. Calculo de los lazos de corriente ................................................................................. 50
   2.1 Calculo del voltaje de la fuente de alimentación para el lazo de corriente........ 50
   2.2 Calculo de la corriente que debe suministrar la fuente .................................... 51

3. Diseño del control de la automatización de la explotación avícola ............................ 52
   3.1 Organización del programa ............................................................................... 52
Índice General

3.1.0 Ventilación ............................................................................................................... 52
3.1.1 Climatización ........................................................................................................... 53
3.1.2 Control silos ............................................................................................................ 55
3.1.3 Iluminación y líneas de alimentación .................................................................... 56
3.1.4 Elevación de las líneas de alimentación ............................................................... 56

Cápitulo III: Planos

0. Índice de los Planos ........................................................................................................ 59
1 Situación ............................................................................................................................... 60
2 Emplazamiento .................................................................................................................... 61
3 Líneas de alimentación ....................................................................................................... 62
4 Instalaciones electricas y automatización ........................................................................ 63
5 Detalles ................................................................................................................................ 64
6 Esquemas de fuerza I ........................................................................................................... 65
7 Esquemas de fuerza II ......................................................................................................... 66
8 Esquemas de fuerza III ....................................................................................................... 67
9 Esquemas de maniobras I ................................................................................................. 68
10 Esquemas de maniobras II ............................................................................................... 69
11 Esquemas de maniobras III ............................................................................................. 70

Cápitulo IV: Mediciones y Presupuestos

0. Índice de Mediciones y Presupuestos ........................................................................ 72
1. Mediciones ....................................................................................................................... 743
   1.1 Capítulo 1: Centralita electrónica .............................................................................. 73
2. Presupuestos ...................................................................................................................... 74
   2.1 Precios unitarios ........................................................................................................... 74
   2.2.1 Centralita electrónica ............................................................................................ 75
   2.2.2 Descompuestos: Varios ....................................................................................... 77
   2.3.1 Presupuesto Instalacion automatismo ..................................................................... 78
Índice General

2.3.2 Presupuesto Instalación automatismo ................................................................. 78
2.4 Resumen de los presupuestos .................................................................................. 78

Cápitulo V: Pliego de Condiciones

0. Índice de Pliego de Condiciones .............................................................................. 80
1. Pliego de condiciones generales .............................................................................. 81
   1.1 Capítulo preliminar: Disposiciones Generales..................................................... 81
      1.1.1 Naturaleza y objeto del Pliego General ......................................................... 81
      1.1.2 Documentación del Contrato de Obra............................................................ 81
   1.2. Capítulo I: Condiciones Facultativas ................................................................. 81
      1.2.1 Epígrafe 1: Delimitación General de Funciones Técnicas................................ 81
      1.2.2 Epígrafe 2: De las obligaciones y derechos generales del Contratista ............. 83
      1.2.3 Epígrafe 3: Prescripciones generales relativas a los trabajos, los materiales y
                      los medios auxiliares .................................................................................... 86
      1.2.4 Epígrafe 4: de las recepciones de las obras e instalaciones .............................. 90
   1.3. Capítulo II: Condiciones Económicas ................................................................. 91
      1.3.1 Epígrafe 1: Principio general .......................................................................... 91
      1.3.2 Epígrafe 2: Fianzas ......................................................................................... 92
      1.3.3 Epígrafe 3: De los precios .............................................................................. 93
      1.3.4 Epígrafe 4: Obras por administración .............................................................. 95
      1.3.5 Epígrafe 5: De la valoración y abono de los trabajos ........................................ 98
      1.3.6 Epígrafe 6: De las indemnizaciones mutuas ................................................... 101
      1.3.7 Epígrafe 7: Varios ......................................................................................... 101

2. Pliego de Condiciones Particulares ........................................................................ 103
   2.1 Capítulo I: Instalación electrónica ....................................................................... 103

Cápitulo VI: Estudio de Seguridad e Higiene

0. Índice de Estudio de Seguridad e Higiene ............................................................... 117
1. Estudio básico de seguridad y salud en las obras .................................................. 118
   1.1 Principios generales aplicables durante la ejecución de la obra............................ 119
   1.2 Los principios de la acción preventiva establecidos en el artículo 15 de la Ley 31/95
       son los siguientes: ................................................................................................. 119
   1.3 Identificación de los riesgos ................................................................................ 120
Índice General

1.4 Trabajos previos........................................................................................................... 121
1.5 Instalaciones................................................................................................................. 121
1.6 Relación no exhaustiva de los trabajos que implican riesgos especiales (Anexo II del RD 1627/1997) ................................................................................................................... 122
1.7 Medidas de prevención y protección ........................................................................ 122
1.8 Medidas de protección colectiva................................................................................. 122
1.9 Medidas de protección individual............................................................................... 123
1.10 Medidas de protección a terceros............................................................................. 123
1.11 Primeros auxilios....................................................................................................... 124
1.12 Referencias de las normativas.................................................................................. 124
Automatización de una Granja de Engorde de Pollos

Memoria Descriptiva

TITULACIÓN: Ingeniería Técnica industrial especialidad Electrónica Industrial

AUTORES: Héctor Gayán Sánchez.
DIRECTORES: Alfonso José Romero Nevado.
I Memoria Descriptiva

0. Índice Memoria Descriptiva

1. Objetivo ........................................................................................................................................... 10
2. Alcance ........................................................................................................................................... 10
3. Antecedentes ................................................................................................................................... 10
   3.1 Actividad ................................................................................................................................... 10
   3.2 Características generales de la explotación avícola ................................................................. 10
   3.3 Instalaciones básicas ................................................................................................................. 11
   3.4 Emplazamiento ......................................................................................................................... 11
4. Normas y referencias ..................................................................................................................... 12
   4.1 Disposiciones legales y normas aplicadas .............................................................................. 12
   4.2 Bibliografía .............................................................................................................................. 12
      4.2.1 Libros consultados ............................................................................................................ 12
      4.2.2 Recursos Web .................................................................................................................. 12
   4.3 Programas de cálculo .............................................................................................................. 13
   4.4 Plan de gestión de la calidad aplicado durante la redacción del proyecto .................... 13
5. Definiciones y abreviaturas .......................................................................................................... 13
6. Requisito de diseño ......................................................................................................................... 13
   6.1 Emplazamiento ......................................................................................................................... 13
   6.2 Características de la automatización de la granja ................................................................. 14
7. Análisis de soluciones ..................................................................................................................... 14
   7.1 Elección de sistemas de automatización para granjas ............................................................ 14
      7.1.0 Sistema de automatización de Chore-Times ................................................................. 14
      7.1.1 Sistema de automatización VIPER de la empresa BIGDUTCHMAN .................. 15
      7.1.2 Sistema de automatización mediante PLC ............................................................... 16
   7.2 Sistemas de comunicaciones .................................................................................................... 18
      7.2.1 Lazo de corriente (4 a 20 mA) ...................................................................................... 18
      7.2.2 Lazo de corriente con protocolo HART ................................................................. 19
      7.2.3 Bus de campo .................................................................................................................. 20
         7.2.3.1 Comunicación SERIAL-232 ................................................................. 21
         7.2.3.2 Modbus ................................................................................................................. 22
         7.2.3.3 Comunicación Profibus ................................................................. 24
         7.2.3.4 Comunicación AS-i ....................................................................................... 26
I Memoria Descriptiva

7.2.4 Comunicaciones inalámbricas ................................................................. 29
7.2.4.1 WI-FI .................................................................................................. 29
7.2.4.2 ZIGBEE ............................................................................................ 30

7.3 Sensores para la automatización de la granja.......................................... 32
7.3.1 Sensores gas amoniaco ........................................................................... 32
7.3.1.1 Sensor de amoniaco Sensotox 420 TOX ............................................ 33
7.3.1.2 Sensor ST-IAM de Murco Gas Detección ........................................... 34
7.3.1.3 Sensor amoniaco ADTX3 1120/25 ..................................................... 35
7.3.1.4 CS 21 transmisor ............................................................................... 37
7.3.1.5 Sensor amoniaco GDX-350 .............................................................. 38

7.3.2 Sensores humedad relativa y sensores de temperatura ....................... 40
7.3.2.1 Sensores MELA ............................................................................... 40
7.3.2.2 Deltaohm HD9008TR ....................................................................... 41
7.3.2.3 Humitron HTX72/73 Series ............................................................... 42

7.4 Soluciones finales ......................................................................................... 44
7.4.1 Organización de la automatización y comunicación de la explotación ..... 44
7.4.2 Armarios de control .............................................................................. 44
7.4.3 Colocación de los sensores .................................................................... 45
7.4.4 Conexiónado de los motores ................................................................. 45

8. Planificación .................................................................................................. 46

9. Orden de prioridades ..................................................................................... 47
I Memoria Descriptiva

1. Objetivo

En este proyecto realizaremos una automatización de una granja avícola. Para este fin, se tomará como referencia, una granja construida y que ha estado funcionando hasta el momento. Para lograr nuestro objetivo, se tendrán que cumplir los siguientes requisitos:

1. Sistemas de alimentación totalmente automatizados. Para que el requisito se cumpla, se instalarán sensores en las tolvas y los silos. Una centralita electrónica controlará la evolución de sus capacidades durante su funcionamiento. Además se controlará la elevación de las líneas según el crecimiento de los pollos.

2. Control de ventilación. El control de la ventilación se realizará con la instalación de una red de sensores de gas amoníaco, con el fin de evitar que los pollos enfermen. La ventilación de las naves se realizarán mediante la abertura de las ventanas y la puesta en marcha de los extractores de las chimeneas.

3. Control climático de las naves. El sistema de climatización contará con una red de sensores de temperatura y de humedad, para que dependiendo de la época del año (invierno/verano), el control de la nave intentará mantenerla dentro de unos parámetros establecidos.

2. Alcance

El alcance de este proyecto comprende el diseño y el cálculo de las siguientes instalaciones:

- Automatización de la granja de crianza y engorde de pollos

3. Antecedentes

3.1 Actividad

La principal actividad del empresario es el cultivo de hortalizas pero por motivos empresariales, optó por invertir y probar con una explotación avícola, obteniendo buenos resultados.

3.2 Características generales de la explotación avícola

La estructura de la explotación avícola consta de tres naves con el mismo perfil (con la misma forma). Las dimensiones de las naves son de 100 m x 15 m. Obteniendo un espacio por cada nave de 1 500 metros cuadrados.
I Memoria Descriptiva

La ratio de población de pollos es de diez pollos por metro cuadrado, obteniendo una capacidad de quince mil pollos por nave. Sumando las capacidades de las tres naves, la explotación tiene una capacidad de cuarenta y cinco mil pollos.

3.3 Instalaciones básicas

La instalación de agua sanitaria para limpieza, alimentación y climatización:

Cada nave tiene tres tomas de agua, cada una separada a una distancia de 30 m para el mantenimiento de las instalaciones.

Para la climatización de verano y para humidificación ambiental, se utilizan tubos de plásticos reforzados con UV, con una bomba de alta presión de una potencia de 4 CV (2 944 W) con conexión trifásica.

Para la línea de alimentación se dispone de cuatro líneas de tetinas, conectadas directamente a un regulador de presión mecánico y éste a su vez conectado a la red general del agua

La instalación de gas para la climatización de la granja

Para la climatización en invierno se utilizan calefactores de infrarrojos alimentados mediante gas, de aproximadamente 1 m de longitud y colgados del techo, con un par de ventiladores que distribuyen homogéneamente el calor por el resto de la nave.

La instalación eléctrica para la iluminación y el funcionamiento de las bombas

La instalación eléctrica consta de cuatro líneas de quince luminarias de 20 W de 1,2 m de longitud, distribuidas uniformemente a lo largo de cada nave. Siendo la potencia total consumida de 1200 W en cada nave.

Instalaciones de alimentación y ventilación de la nave

Cada nave tiene diecinueve motores de 4 kW de potencia y diecinueve ventiladores de 1 kW, con una potencia total de 95 kW, sí se pusieran todos los motores a la vez.

La potencia contratada es de 50 kW en toda la explotación

3.4 Emplazamiento

La granja se emplaza a las afueras del pueblo de Riudoms aproximadamente a 10 km, entre las confluencias del camino dels Cerdans y de la carretera comarcal TV-3103.
I Memoria Descriptiva

4. Normas y referencias

4.1 Disposiciones legales y normas aplicadas

El presente proyecto recoge las características de los materiales, los cálculos que justifican su empleo y la forma de ejecución de las obras a realizar, dando con ello cumplimiento a las siguientes disposiciones:


4.2 Bibliografía

4.2.1 Libros consultados

Catalogo de automatización Omron
Manuales Omron
Catálogos Murco
Catálogos Deltaohm
Catálogos Sensotran
Catálogos Chore-Times
Catálogos Bigdutchman
Catálogos HART
Catálogos MSR-Electronics
Catálogos GIG
Catálogos Bacharach
Catálogos Galltec Mess
Catálogos Balluf
Catálogos Honeywell

4.2.2 Recursos Web

http://industrial.omron.es/
www.construmatica.com
www.swe.siemens.com/spain/web/es/industry/automatizacionesn
http://www.ni.com/
http://www.murcogasdetection.com/es/
http://www.deltaohm.com/
http://www.sensotran.com/
http://www.ctbinc.com/selector/
http://www.bigdutchman.de/es/avicultura/home.html
http://es.farnell.com/
http://es.rs-online.com/web/
http://www.profibus.com/community/regional-pi-associations/spain/
http://as-interface.net/
http://www.hartcomm.org/
http://www.msr-electronic.de/
http://www.balluff.com/
http://www.murata.com/
I Memoria Descriptiva

4.3 Programas de cálculo

**AutoCAD 2010:** Programa de dibujo asistido por ordenador
**Draftsight:** Programa de dibujo asistido por ordenador
**Microsoft Project 2010:** Programa de gestión de proyectos
**CX-ONE:** Programa de programación autómatas Omron
**CX-Supervisor:** Programa de programación SCADA Omron

4.4 Plan de gestión de la calidad aplicado durante la redacción del proyecto

Para la realización del siguiente proyecto se ha seguido lo indicado en la norma UNE 157001. Además, con la previsión de que se produzcan errores tipográficos, se procederá a la revisión de los datos más significativos para evitar errores de comprensión.

5. Definiciones y abreviaturas

- **R.E.B.T:** Reglamento electrotécnico para baja tensión
- **ITC:** Instrucciones técnicas complementarias
- **PLC:** Controlador lógico programable
- **FP:** Formación profesional
- **UNE:** Una norma española
- **CC:** Corriente continua
- **CA:** Corriente alterna
- **IP:** Índice de protección
- **RD:** Real decreto
- **BOE:** Boletín oficial del estado
- **O.:** Ley orgánica
- **PVC:** Policloruro de vinilo
- **XLPE:** Polietileno reticulado
- **PAC:** Controlador de automatización programable
- **PID:** Control Proporcional –Integral – Derivativo
- **psi:** Libras por pulgada cuadrada
- **HP:** Caballos de potencia
- **OSI:** Interconexión de sistema abierto
- **UPS:** Fuente de alimentación ininterrumpida

6. Requisito de diseño

6.1 Emplazamiento

La finca donde se ubica la explotación avícola en la que se desarrollará este proyecto se encuentra cerca del pueblo de Riudoms. Para acceder a la explotación se tomará como referencia dicho pueblo. Para ir a la explotación se debe de coger la comarcal TV-3103 dirección sur, hasta la rotonda. Desde ésta, se coge la segunda salida, con dirección al camino de tierra (“Camino dels Cerdans”). Se tira recto pasando por cuatro o cinco campos de cultivo, hasta llegar a una pista de tenis.
I Memoria Descriptiva

6.2 Características de la automatización de la granja

En este proyecto se buscará que la automatización sea la adecuada a la solución del problema. Por lo tanto, se intentará buscar un sistema automatizado que sea capaz de ser flexible según las exigencias del empresario. Para este fin, se realizará un estudio de los sistemas que hay en el mercado con el objetivo de averiguar, si existe alguno ya hecho o por lo contrario, habría que diseñarlo a partir de autómatas programables (PLC).

En cuanto a la flexibilidad, nos referimos a la posibilidad de que se tenga la facilidad de expandir sus módulos de control o de cambiar sus parámetros de configuración cuando lo desee el propietario. Además, de añadir un sistema de control remoto (vía internet) en el cual, el propietario podrá modificar los parámetros de configuración o monitorear la evolución de la granja

7. Análisis de soluciones

En este apartado, hablaremos de los elementos que necesitaremos para realizar el diseño de la automatización. Ahora iremos comentando los elementos necesarios que compondrán la instalación y que en este apartado estarán estructuradas en tres partes.

En la primera parte hablaremos de las centralitas de control, un elemento esencial para poder realizar el proyecto, ya que este elemento será el centro de control que controlará todos los mecanismos y sensores del proyecto.

La segunda parte explicaremos qué sistemas de comunicaciones son los más convenientes para la comunicación entre centralita y sensores de nuestro proyecto.

En el último apartado, comentaremos los sensores que instalaremos en nuestro proyecto. Los sensores que necesitaremos serán de tres tipos: sensores para detección del gas amoníaco, sensores de temperatura y de humedad

7.1 Elección de sistemas de automatización para granjas

7.1.0 Sistema de automatización de Chore-Times

Esta empresa americana tiene diversos sistemas de automatización, para las distintas funciones que puede haber en una granja de pollos. Estos sistemas van desde la alimentación hasta los sistemas de climatización.

En esta empresa, dependiendo de qué modelo de automatización se escoja, incluirán una serie de opciones. Con lo cual, habría que ir con mucho cuidado, con qué modelo de automatización cojamos, ya que nos arriesgamos a quedarnos demasiados cortos, o literalmente, a pasarnos en una serie de funciones que de momento no necesitamos.

Además, también se ha observado que determinados sistemas de control, como por ejemplo, los controles de temperaturas se venden en módulos de expansión para diversas centralitas. Con lo cual, volvemos a tener los posibles problemas anteriores.
I Memoria Descriptiva

Por otro lado, vemos que su software es bastante rígido. Por lo tanto, sí nosotros por alguna razón, en un futuro no muy lejano tuviéramos que cambiar algún componente del sistema como por ejemplo: añadir un detector de amoníaco. Tendríamos serias dificultades en modificar el software legalmente.

Vemos que este sistema de automatización no es muy flexible para nuestros propósitos con lo cual en un principio lo descartaremos.

![Figura 1: Centralita Chore-Times](image)

7.1.1 Sistema de automatización Viper de la empresa BIGDUTCHMAN

Esta empresa holandesa, comercializa un sistema de automatización para granjas de engorde y de ponedoras bastante completo. Además, esta empresa tiene cuatro o cinco versiones de la misma centralita con una cantidad amplia de entradas/salidas, tanto para señales analógicas, como digitales, dependiendo de sus necesidades.

Otra de las cosas que nos han sorprendido en esta empresa es que prácticamente ha pensado en todos los sistemas de automatización. Concretamente, han añadido la posibilidad de conectar cualquier tipo de sensor, desde los sensores para detectar diferentes tipos de gases, como sensores para controlar la temperatura y la humedad de la granja.

La principal desventaja que vemos en este sistema es que tiene un número limitado de entradas dedicadas a los sensores, con lo cual nos restringe bastante la instalación distribuida de los sensores en nuestro proyecto de control.
I Memoria Descriptiva

El software utilizado en este sistema es del tipo propietario, con lo cual tendríamos serias dificultades. Sí en un futuro decidiéramos modificar el programa, estaríamos obligados a pedir la autorización a BIGDUTCHMAN y que esta estuviese dispuesta, a darnos el permiso y a dejarnos sus fuentes.

7.1.2 Sistema de automatización mediante PLC

En el mercado existe muchos tipos de autómatas del tipo PLC distribuidos por las grandes compañías como Siemens, Omron, Mitsubishi, etc. Este tipo de tecnología es muy flexible, a la hora de realizar cualquier tipo de automatización: desde el control de una simple caldera hasta el control de una cadena de producción.

Esto es gracias a la gran disponibilidad de módulos que se pueden configurar con una simple CPU. Los principales problemas que hay en los PLC, son que sus lenguajes de programación, son incompatibles entre las diferentes empresas. Es decir, si se tiene el software de programación de Siemens, solamente se podrán programar los que pertenezcan a esa compañía.
I Memoria Descriptiva

Solución adoptada

Finalmente, decidimos que la centralita que controlaría la explotación avícola, sería una unidad de PLC. El principal motivo es que es un sistema algo más abierto, en comparación con las unidades que ofrecían las otras empresas, haciendo que un futuro fuese posible añadirle nuevos módulos, conservando la misma centralita.

La empresa escogida será Omron, debido principalmente, a la gran capacidad de entradas y salidas que tiene sus unidades expansoras. Además esta empresa, ofrece una documentación con ejemplos gráficos bien explicados, que enseñan de una forma sencilla las principales características del entorno de programación.
I Memoria Descriptiva

7.2 Sistemas de comunicaciones

En este apartado estará estructurado de la siguiente forma:

En la primera parte, explicaremos las características principales de los lazos de corriente.
La segunda parte, explicaremos las características principales de los buses de campo empleados en la industria. Y en la última parte, hablaremos de los sistemas inalámbricos más empleados en la industria.

7.2.1 Lazos de corriente (4 a 20 mA)

Introducción

El sistema 4-20mA, está basado en un antiguo sistema de control que utilizaba el aire comprimido para accionar determinados mecanismos, que permitían controlar distintas funciones de una planta

Este sistema utilizaba un rango de medida de 3 a 15 libras por pulgada cuadrada, siendo 3 psi considerado como un cero lógico y 15 psi para un uno lógico. Cualquier presión por debajo de 3 psi, se considera que la conexión neumática está averiada.

Durante la década de los cincuenta, cuando surgieron los primeros controles eléctricos y electrónicos apareció el 4 a 20mA. El nuevo sistema de medición industrial con un rango de escala de 4 a 20mA, emulaba la señal neumática de 3 a 15 psi. Este sistema de medición se convirtió rápidamente en el método preferido, debido a que los cables eran más fáciles de instalar y de mantener que las líneas neumáticas. Estas eran difíciles de mantener por las perdidas de presión causadas por utilizar líneas neumáticas demasiadas largas o por no tener un compresor con la potencia adecuada.

Bases del lazo de corriente

El lazo de corriente de 4 a 20 mA es un sistema de comunicación muy robusto, para adquirir datos de los transductores. Estos son ideales para la transmisión de datos, debido a su inmunidad al ruido eléctrico.

En una corriente de lazo de 4 a 20 mA, toda la corriente fluirá a través de todos los componentes del circuito. Lógicamente, siguiendo la ley de Ohm, en cada componente habrá una caída de tensión, y la suma de todas esas caídas de tensión en el lazo de corriente serán iguales a la fuente que generó la corriente.
I Memoria Descriptiva

7.2.2 Lazos de corriente con protocolo HART

Origen del protocolo HART

Los orígenes del protocolo HART, se remontan a mediados de la década de los ochenta. Este protocolo fue desarrollado por la compañía Rosemount con el objetivo de integrarlo en su nueva línea de instrumentación. Actualmente, el protocolo HART es de licencia abierta.

¿Qué es HART?

Hart es un protocolo usado por muchas empresas en el mundo para monitorizar los procesos industriales de sus plantas. Este protocolo, permite la comunicación bidireccional entre la red de sensores y la centralita de control. La información transmitida, tanto desde los sensores como de la centralita, es digital y es enviada a través de una red analógica de lazos de corriente.

¿Cómo funciona?

Como ya dijimos anteriormente, el protocolo HART utiliza el lazo de corriente como forma de transmitir la información entre las centralitas y los sensores. Pero a diferencia de los clásicos sistemas de lazo de corrientes 4 a 20mA, la información es digital y se modula en FSK (Frequency Shifted Keying), con el fin de facilitar la transmisión por la red analógica.

La modulación consiste en convertir la información, compuesta por unos “1” y “0” lógicos, en dos frecuencias que representan los estados lógicos digitales a partir de una frecuencia portadora. Una vez modulada, es enviada a la centralita, la cual demodula consiguiendo la información del sensor muestreado.
I Memoria Descriptiva

7.2.3.1.0 Bus de campo

Un bus de campo es un sistema de transmisión de información (datos) que simplifica enormemente las instalaciones, las operaciones con las máquinas y equipamientos industriales utilizados en los procesos de producción. El objetivo de un bus de campo es sustituir las conexiones punto a punto entre los elementos de campo y el equipo de control, montados con el tradicional bucle de corriente de 4 a 20 mA.

Típicamente son redes digitales, bidireccionales y multipunto, montadas sobre un bus serie que conectan dispositivos de campo como PLC/PAC, transductores, actuadores y sensores. Cada dispositivo de campo incorpora cierta capacidad de proceso, que lo convierte en un dispositivo inteligente. Cada uno de estos elementos será capaz de ejecutar funciones simples de diagnóstico, control o mantenimiento, así como establecer comunicaciones bidireccionalmente a través del bus.

En el siguiente apartado explicaremos los sistemas series más empleados para la implementación de los buses de campo.
I Memoria Descriptiva

7.2.3.1.1 Comunicación SERIAL-232

El desarrollo del puerto serie RS-232 tuvo como objetivo, la reducción del tamaño y el número de cables empleados por los puertos paralelos. Consiguiendo tener una forma más barata de comunicación entre sistemas electrónicos, que no requerían un gran volumen de datos a transmitir ni una gran velocidad de transmisión.

El ejemplo más común sería la transmisión de una información almacenada en un dispositivo (Osciloscopio, datalogger, etc.) a un ordenador para más tarde analizarlo. Otra aplicación bastante usada es utilizarla para el mantenimiento de los aparatos industriales como el cambio determinados parámetros o del firmware que solamente son accesibles desde el puerto serie.

En los siguientes apartados explicaremos el funcionamiento de la comunicación serie para cada una de las opciones de transmisión (asíncrona y síncrona) y de los sistemas de canal (simplex, half-dúplex y full-dúplex) que se puede elegir.

Para iniciar la transmisión asíncrona, se necesita enviar un bit de inicio al receptor. Cuando éste la reciba, a su vez, devolverá un bit que iniciará la transmisión de la trama de bits hasta que el emisor transmita el bit de stop. En esta configuración es importante que la velocidad de transmisión tanto del emisor como del receptor sea la misma, ya que de lo contrario el mensaje transmitido quedará corrompido.

En la transmisión síncrona, la inicialización de la transmisión del mensaje, se realiza cuando el reloj del emisor y del receptor se sincroniza, ahorrándose la transmisión de los bits de inicio y parada. En ese momento, se empiezan a transmitir los bits al receptor a cada flanco de reloj.

El RS-232 tiene varias opciones para escoger el canal de transmisión.

La primera modalidad se denomina el simplex, que consiste que físicamente solamente existe un sentido de transmisión de datos.

La otra modalidad llamado half-dúplex, consiste en la posibilidad de transmitir la información en ambos sentidos, pero no al mismo tiempo.

La última es el full-dúplex, que básicamente hace lo mismo, que la anterior modalidad, pero con la posibilidad de transmitir la información, en ambas direcciones al mismo tiempo.
7.2.3.1.2 Comunicación RS-422-A

Para ciertas aplicaciones, en las que la distancia entre los terminales son menores a 15 m y que estos no estén sujetos a interferencias electromagnéticas, la comunicación serie RS-232 sería suficiente. Pero no siempre se cumplen estas condiciones en los ambientes industriales causando que la transmisión de los datos pierda eficiencia.

Para solucionar esta situación, la EIA (Asociación de Industrias Electrónicas) desarrolló una variante de la comunicación RS.232 que solucionaba algunos de estos problemas. El RS-422 aumentaba la eficacia de la transmisión utilizando pares balanceados, sustituyendo el único cable de datos para cada sentido que había en la versión original.

Este cambio permitió aumentar la distancia de transmisión. Empleando un cable trenzado apantallado, es posible alcanzar distancias de 1200 metros y mantener velocidades de transmisión cercanas a 1 mega-bit por segundo (1 Mbps).

7.2.3.1.3 Comunicación SERIAL-485

La variante RS-485, fue desarrollado para soportar ciertas características, que no fueron previstas en su antecesor RS-422. El RS-485 mantiene las ventajas de su antecesor, como la velocidad de transmisión cercana a 1 Mbps por segundo o su distancia de transmisión de 1.200 metros.

Las nuevas características, permiten expandir la distancia de transmisión a otros 1.200 metros agregándole un repetidor. Otra de sus características más importante y útil, empleado para los entornos industriales, es que nos da la posibilidad de formar cualquier tipo de estructura de red, con una capacidad de soportar hasta 32 nodos entre emisores y receptores.

7.2.3.2 Modbus

Modbus es un protocolo de comunicaciones situado en el nivel 7 del Modelo OSI, basado en la arquitectura maestro/esclavo o cliente/servidor, diseñado en 1979 por Modicon para su gama de controladores lógicos programables (PLC).

Convertido en un protocolo de comunicaciones estándar, en la industria es el que goza de mayor disponibilidad para la conexión de dispositivos electrónicos industriales. Las razones por las cuales, el uso de Modbus es superior a otros protocolos de comunicaciones son:

- Es abierto
- Su implementación es fácil y requiere poco desarrollo
- Maneja bloques de datos sin suponer restricciones
I Memoria Descriptiva

Modbus permite el control de una red de dispositivos. Por ejemplo un sistema de medida de temperatura y humedad, transmitiendo los resultados a un ordenador. Modbus también se usa para la conexión de un ordenador de supervisión con una unidad remota (RTU) en sistemas de supervisión adquisición de datos (SCADA).

Existen dos variantes, con diferentes representaciones numéricas de los datos y detalles del protocolo ligeramente desiguales. Modbus RTU es una representación binaria compacta de los datos. Modbus ASCII es una representación legible del protocolo pero menos eficiente. Ambas implementaciones del protocolo son serie.

El formato RTU finaliza la trama con una suma de control de redundancia cíclica (CRC), mientras que el formato ASCII utiliza una suma de control de redundancia longitudinal (LRC). La versión Modbus/TCP es muy semejante al formato RTU, pero estableciendo la transmisión mediante paquetes TCP/IP.

**Modbus Plus (Modbus+ o MB+),** es una versión extendida del protocolo y privada de Modicon.

Dada la naturaleza de la red precisa un coprocesador dedicado para el control de la misma. Con una velocidad de 1 Mbit/s en un par trenzado sus especificaciones son muy semejantes al estándar EIA/RS-485 aunque no guarda compatibilidad con este.

Cada dispositivo de la red Modbus posee una dirección única. Cualquier dispositivo puede enviar órdenes Modbus, aunque lo habitual es permitirlo solamente a un dispositivo maestro. Cada comando Modbus contiene la dirección del dispositivo destinatario de la orden.

Todos los dispositivos reciben la trama pero sólo el destinatario la ejecuta (salvo un modo especial denominado "Broadcast"). Cada uno de los mensajes incluye información redundante que asegura su integridad en la recepción. Los comandos básicos Modbus permiten controlar un dispositivo RTU para modificar el valor de alguno de sus registros o bien solicitar el contenido de dichos registros.

**Variaciones**

Todas las implementaciones presentan variaciones respecto al estándar oficial. Algunas de las variaciones más habituales son:

- Tipos de Datos
- Coma Flotante IEEE
- Entero 32 bits
- Datos 8 bits
- Tipos de datos mixtos
I Memoria Descriptiva

-Campos de bits en enteros

-Multiplicadores para cambio de datos a/de entero. 10, 100, 1000, 256...

-Extensiones del Protocolo direcciones de esclavo de 16 bits

-Tamaño de datos de 32 bits (1 dirección = 32 bits de datos devueltos.)

7.2.3.3 Comunicación Profibus

Profibus se creó a partir de un proyecto liderado por 21 empresas e institutos de investigación alemanes en el año 1987. En el año 1999, fue líder de los sistemas basados en buses de campo en Europa y gozaba de una aceptación mundial (20% del mercado en el año 1999).

Profibus es un protocolo, que tiene como objetivo crear una red de controladores o sistemas de control conectados, a varios dispositivos de campo descentralizados (sensores y actuadores) mediante un solo cable. Además, ofrece la posibilidad de intercambiar información, entre los niveles de superiores de comunicación. Esto quiere decir, que un sensor(nivel de campo) puede comunicarse directamente con un controlador (nivel “Enterprise”) o internet (nivel “internet”)

![Diagrama Profibus](image.png)

Figura 6: Diferentes niveles de automatización de la red Profibus
I Memoria Descriptiva

Descripción protocolo

Este protocolo utiliza las capas 1, 2 y 7:

En la capa 1 describe el medio donde se transmitirá la información, este protocolo ofrece la posibilidad de trabajar con varios medios.

RS-485: es simple y rentable. Utilizada para tareas que requieren altas velocidades de transmisión.

MBP(Manchester Coded, Bus Powered): Es una tecnología de transmisión que implementa en un solo cable, la línea de alimentación y la señal de comunicación de los dispositivos de campo. Este tiene la ventaja de reducir los costes de instalación además de mantener todas las características propias del RS-485.

Fibra óptica: Utilizado en determinadas ocasiones, donde la cantidad de interferencias electromagnéticas, hace inviable la instalación de otras tecnologías de comunicación.

En la capa 2 o nivel de enlace de datos, se define el procedimiento maestro-esclavo y el procedimiento de transmisión de tokens para la coordinación de varios maestros en el bus. Las tareas de nivel 2 también incluyen funciones tales como la seguridad de los datos y el manejo de las tramas de datos.

En la capa Nivel 7, se constituye la interfaz con el programa de aplicación, ahora veremos el funcionamiento del protocolo:

PROFIBUS DP (Periferia Descentralizado): Es un protocolo de comunicaciones que nos permite coordinar los dispositivos maestros con los esclavos. Para que el maestro controle a los dispositivos esclavos, éste tiene que estar activado, con lo cual empezará a muestrear los sensores de la red. Una vez que el esclavo haya sido muestreado, reenviará al maestro la información que ha obtenido.

Este protocolo contiene tres niveles:

DP-V0: En este nivel nos proporciona las funciones básicas del protocolo de comunicación, como la comunicación cíclica con los sensores, diagnostico, etc.

DP-V1 En este nivel expande las funciones de su nivel anterior, con funciones de comunicación acíclicas, tales como manipulación de las alarmas, parametrizaciones, operaciones y monitorizaciones

DP-V2: En este nivel expande las funciones de su antecesor, particularmente las funciones requeridas para controlar las comunicaciones, como serían los accesos entre dispositivos esclavos, el tiempo de sincronización.
I Memoria Descriptiva

7.2.3.4 Comunicación AS-i

Introducción

El sistema AS-i fue creado por once empresas dedicadas al desarrollo y fabricación de sensores y actuadores. Las especificaciones técnicas de este sistema, se ofrecen gratuitamente a las empresas interesadas. Puesto que, AS-i es un estándar abierto e independiente de cualquier fabricante.

Figura 7: Ejemplo de red de automatización AS-i

En los siguientes apartados describiremos los módulos y las características principales, que constituye el sistema de comunicación AS-i. La primera parte, hablaremos de las unidades maestras y esclavas, describiendo su funcionamiento en la red, para más tarde explicar las diferencias entre los módulos activos y los pasivos. Acabando por explicar las características especiales del cable utilizado.

Maestros AS-i

El funcionamiento del sistema AS-Interface/AS-i reúne las siguientes características:

Método de acceso maestro-esclavo
I Memoria Descriptiva

AS-Interface es un "sistema Single Master", que significa que por cada red AS-i, sólo existe un maestro, que controla el intercambio de datos. Este maestro llama consecutivamente a todos los esclavos AS-i y espera su respuesta.

Ajuste electrónico de direcciones

La dirección del esclavo AS-i es su identificación. Solamente existe una vez dentro de una red AS-Interface. Los ajustes se podrán efectuar con un direccionador especial o a través de un maestro AS-i. La dirección se almacenará siempre en una memoria eeprom en el esclavo AS-i.

Seguridad de funcionamiento y flexibilidad

El método de transmisión utilizado garantiza un alto grado de seguridad durante su funcionamiento. El maestro supervisará la tensión en la línea así como los datos transmitidos. Además, detectará los errores de transmisión al igual que los fallos que se produzcan en los dispositivos esclavos y en la comunicación con el PLC (SPS). Otra característica importante es que, durante el funcionamiento normal, el cambio o la incorporación de esclavos AS-i no perturba la comunicación con los demás esclavos AS-i.

Esclavos AS-i

Los módulos de entrada y salida

Los actuadores/sensores se conectan a través de conectores M12. El conexionado de estos conectores se ajusta a la norma DIN IEC 947 5-2. Los módulos, de un tamaño aproximado de 45 x 45 x 80 mm, se instalan directamente en la máquina. Estarán conectados a través del cable AS-i y contarán con un grado de protección IP67.

Módulos activos y pasivos

Los módulos activos con chips integrados pueden conectar sensores y actuadores convencionales. Todo actuador o sensor "normal" se puede interconectar en una red a través del AS-Interface.

Los módulos pasivos no contienen electrónica integrada y permiten la conexión de sensores y actuadores AS-i con chip AS-i integrado.

Cable AS-i

El cable del sistema AS-i se desarrolló para facilitar el montaje y el mantenimiento de las instalaciones industriales. Este cable está compuesto por dos cables de 1,5 milímetros cuadrados, recubiertos de un material engomado flexible que los protege de las agresiones físicas.

El material engomado está pensado para trabajar y aguantar en entornos agresivos que utilicen productos químicos como detergentes industriales, disolventes o cualquier producto corrosivo en la que una goma normal no aguantaría.
I Memoria Descriptiva

El cable fue diseñado para adaptarse a las superficies lisas de las instalaciones con la finalidad de facilitar el agarre y la sujeción. La conexión con los módulos de control es bastante sencilla y pensada para reducir el tiempo de montaje y mantenimiento de las instalaciones.

Este sistema ahorra tener que realizar las fases de preparación de los cables (cortar el cable, pelarlo y peinarlo). Además, elimina los clásicos problemas producidos por las malas conexiones de los cables como serían los falsos contactos y los cortocircuitos debido a los pelillos de cobre que no entran bien en los bornes.

El primer paso para conectar el cable es abrir el módulo y colocar el cable en su ranura correspondiente y al cerrarlo, los colmillos atravesarán el aislante de goma y pincharán los conductores del cable estableciendo así la conexión. Si por alguna razón, se tuviese que retirar o desplazar el módulo, no haría falta sellar los agujeros del aislante con cinta adhesiva ya que el propio aislante de goma se autocicatriza cuando los colmillos son retirados.

Figura 8: Modulo de distribución de sensores de la red de automatización AS-i
7.2.4 Comunicaciones inalámbricas
7.2.4.1 WI-FI

Wi-Fi es una tecnología popular que permite el intercambio de datos entre dispositivos a través de una red informática. Por lo tanto, un dispositivo que puede utilizar WiFi (como un ordenador personal, consola de videojuegos, Smartphone, tableta o un reproductor de audio digital) puede conectarse a un recurso de red, como Internet, a través de un punto de acceso de red inalámbrica.

Los orígenes de la tecnología 802.11 se remontan al principio de la década de los noventa, cuando la empresa AT & T diseño su precursor para ser usado en los cajeros automáticos de los principales bancos americanos. Pero no fue hasta finales de 1999 cuando la empresa Americana, le dio el término comercial de WIFI.

**Ventajas**

La principal ventaja, es que es un sistema que abarata las instalaciones de redes locales(LAN) debido a que reduce el tiempo de diseño de la instalación y la cantidad de cableado necesario. Además, también permite realizar instalaciones en espacios donde
I Memoria Descriptiva

antes los cables no se podían instalar, como serían los lugares al aire libre o como los edificios históricos.

Desventajas

Las redes WiFi tienen un alcance limitado. El máximo alcance que puede tener este sistema de comunicación inalámbrico utilizando el estándar 802.11b o 802.11g es de 32 m en interiores, y de unos 95 m al aire libre.

Existen versiones de routers que utilizan el estándar 802.11a y 802.11n, cuya banda de frecuencias es de 5 GHz, provocando que su alcance sea menor que el de la banda de frecuencias de 2,4 GHz.

Otra desventaja, es que tanto el estándar 802.11b como el 802.11g usan los mismos puntos de acceso por defecto. El problema viene, cuando se concentran en un área pequeña una gran cantidad de usuarios tienen configurado un punto acceso por defecto.

Pongamos por ejemplo, un edificio que alberga oficinas de distintas empresas y que, por alguna razón, se va la corriente del edificio durante algunas horas. Al volver la corriente, automáticamente los routers se volverán a encender, reiniciando su conexión, provocando que todos los routers accedan al mismo punto de acceso a la vez. Interfiriendo con otros dispositivos WIFI que tengan un punto de acceso distinto al acceso por defecto.

7.2.4.2 Zig-bee

ZigBee es un conjunto de protocolos de alto nivel que utilizan ondas de radio de baja potencia basadas en el estándar IEEE 802 usadas para redes locales e internet. Estos dispositivos (ZigBee) se utilizan muy a menudo, para formar una red de malla, con el objetivo de transmitir la información a distancias más lejanas. Permite realizar redes descentralizadas sin un control centralizado o con un transmisor/receptor de alta potencia capaz de alcanzar todos los dispositivos. La velocidad de transmisión es de 250 kbit/s, adecuados para la transferencia de datos periódicos o para realizar una transmisión individual de un sensor o de una entrada.

Las aplicaciones más habituales desarrolladas con la tecnología ZigBee van desde el desarrollo de interruptores inalámbricos, hasta el empleo como sistema de comunicación para entornos domóticos e industriales

Nodos y topología de red

Los dispositivos ZigBee pueden ser configurados de tres formas para qué cumplan una determinada función dentro de la red:

Coordinador ZigBee (ZC): En esta configuración, el coordinador inicia las conexiones de la red además de poder realizar la función de puente (bridge) con otras redes. Hay exactamente un coordinador por cada red debido a que éste inicializa la red original. El coordinador almacena la información de la red actuando como un centro de validación y un depósito de claves de seguridad.
I Memoria Descriptiva

ZigBee Router (ZR): Esta configuración actúa como un router intermedio, que permite pasar la información a otros dispositivos, siempre y cuando la aplicación, se esté ejecutando.

ZigBee End (ZED): En esta configuración, tiene la capacidad suficiente para hablar con el nodo principal (ya sea el coordinador o un router), pero no puede transmitir datos desde otros dispositivos. Esta relación permite que el nodo esté dormido durante un tiempo significativo, haciendo que la batería dure más.

Solución adoptada

En este apartado justificaremos los motivos por el que ciertas tecnologías de comunicación entre centralitas y sensores, no son convenientes para nuestro proyecto de automatización.

Los protocolos Modbus, Profibus y AS-i están orientados a proyectos industriales donde son necesarios los despliegues de grandes redes de sensores y actuadores para controlar las plantas.

Normalmente, en los protocolos Modbus y Profibus el medio de transmisión de datos se realiza a través de los sistemas de comunicaciones serie RS-422 y RS-485 que utilizan líneas balanceadas, pudiendo alcanzar distancias de transmisión de hasta 1200 metros con una gran robustez frente al ruido.

El problema de este sistema de comunicación es que es bastante caro, debido a que se necesita emplear más cableado para realizar el balanceado de las líneas, además de necesitar un equipo caro para balancear las líneas y rechazar el ruido de las líneas.

En nuestro caso, el proyecto de la granja avícola no necesitaría una gran cantidad de sensores, con lo cual no haría falta desplegar una gran red de bus de campo, ya que supondría una elevación del coste de la instalación.

El siguiente sistema que vamos a comentar es el sistema HART, esta tecnología es una variante de la tecnología de los lazos de corriente 4-20mA. Pero la diferencia está, en que la información transmitida utiliza la modulación digital en frecuencia. Gracias a la modulación digital, el sistema HART puede llegar a alcanzar hasta los 3 km, doblando la distancia del clásico 4 a 20 mA.

A parte de estas características, nos comporta un aumento de los costes por la implementación de los módem HART en los módulos de comunicación y en los sensores. A consecuencia de esto, los costes de la instalación aumentarían bastante en comparación con el clásico 4 a 20 mA.

Los principales problemas que nos encontramos al emplear las tecnologías inalámbricas, es que son tecnologías que hace pocos años que están en el mercado, aunque el precio de
I Memoria Descriptiva

estas, han bajado bastante desde que salieron, no ha sido suficiente para poder competir con los precios de los sistemas tradicionales por cable.

Otro problema que podría afectar gravemente, el funcionamiento de las comunicaciones de los sensores con la centralita. Es que sí, el diseño o la instalación no se realizasen adecuadamente, provocaría el aumento de los costes de mantenimiento. Los problemas típicos serían las zonas oscuras (donde no llega la señal o es muy baja) provocadas por pilares o vigas, o la mala elección de la potencia de las antenas.

Por lo tanto, los principales problemas que vemos en las tecnologías inalámbricas, serían que son aún demasiados caros en comparación con los sistemas de comunicación cableadas. Además, de la dificultad de diseñar los sistemas de comunicaciones en una nave, donde no sabes que aparato te puede interferir con la señal inalámbrica. O no saber dónde están localizadas las zonas oscuras que podrían provocar una reducción de la calidad de la señal.

Finalmente decidimos escoger la tecnología de los lazos de corriente 4 a 20 mA, ya que es una tecnología sencilla y barata, fácil de instalar y teniendo los costes de los materiales a un precio menor en comparación con los otros sistemas de comunicación. Además de ser una tecnología muy robusta contra las interferencias electromagnéticas.

7.3 Sensores para la automatización de la granja

En este apartado hablaremos de los sensores que necesitaremos para realizar la automatización de la granja y estará estructurado de la siguiente forma:

En la primera parte, explicaremos los diferentes sistemas para detectar el gas amoníaco que hay en el mercado y luego compararemos los sensores de las distintas empresas. La segunda parte, compararemos los distintos sensores de temperatura y humedad de las distintas empresas.

7.3.1 Sensores gas amoníaco

En el primer apartado explicaremos un poco los principios de funcionamiento de las distintas tecnologías de detectores de gases con el fin de poder justificar, la razón de la elección de un determinado sistema. Después de esta introducción empezaremos a describir los sistemas que podrían ser utilizados en el diseño de la explotación.

**Principio de detección de los sensores electroquímicos**

El sensor electroquímico consiste en una cámara con dos o tres electrodos y un electrolito. Una membrana compuesta por una hoja porosa de PTFE, evita que el electrolito se salga del recinto, pero deja pasar el gas a través de la membrana y alcanzar a los electrodos. Estos generalmente están hechos de platino o de oro que al entrar en contacto con el gas, provoca una reacción electro-química. Los electrones son liberados y dispersados contra el electrodo produciendo una corriente que se dispersa desde un electrodo al otro, donde la corriente producida es proporcional a la concentración del gas.
I Memoria Descriptiva

Principio de detección termoquimica absorción (chemosorption)(CS)

Consiste en un semiconductor que calienta el gas a medir hasta una temperatura de 300 ºC, permitiendo que los vapores del gas reaccionen con el elemento sensor, haciendo que éste varíe su resistencia dependiendo de la concentración de gas presente. La esperanza de vida de este sensor es aproximadamente de cinco años.

Principio de detección de portadores de carga de inyección (CI)

El CI-sensor consiste en un material sensible a los gases especiales que tiene la capacidad de concentrar el amoníaco. Una vez absorbidas las moléculas de los "portadores de carga" del amoníaco, estos son inyectados de nuevo al material del sensor (inyección).

Este sensor es más preciso y tiene una mayor velocidad de respuesta a la detección de los gases, en comparación con los sensores semiconductores y electroquímicos. Su esperanza de vida es de aproximadamente de 2 años, independientemente en qué ambiente trabaje.

Principio de detección de gases por infrarrojos (IR)

El principio de medición por infrarrojos utiliza las características de los gases, para absorber la luz en algunas longitudes de onda (bandas). Los gases heteroatómicos tales como C02, CH4, N02, y C2H2 puede medirse con estos sensores.

El funcionamiento del detector de gases por infrarrojos consiste en calentar un filamento de alambre que provocará que empiece a emitir ondas infrarrojas. Parte de estas longitudes de onda serán absorbidas por el gas a medir. Durante la absorción de las longitudes de ondas se miden tanto las absorbidas como no las absorbidas.

Las longitudes de ondas absorbidas nos proporcionarán la concentración del gas y las no absorbidas, nos proporcionará un valor de referencia que se compara con la otra para darnos el valor exacto del gas medido.

El método de infrarrojos se puede utilizar en presencia de venenos catalíticos, por ejemplo, silicona, compuestos de azufre, freón, halógeno, y combinaciones de plomo.

Otras ventajas:

• Alta selectividad
• Mediciones extremadamente precisas tanto en bajas concentraciones como en altas
• Alta resistencia a los venenos catalíticos
• Buena estabilidad a largo plazo
• Larga vida aproximadamente 3-5 años

7.3.1.1 Sensor de amoniaco Sensotox 420 TOX:
I Memoria Descriptiva

Características generales

El Detector/transmisor de gases tóxicos SENSOTOX 420 consta de un sensor electroquímico sensible al gas a detectar. La célula está montada, mediante unos pines de conexión, a un circuito amplificador que proporciona una salida de 4-20 mA.

El conjunto está montado en una caja que contendrá las bornas de conexión y el prensaestopas para el cable. Con el detector se suministra una cámara de ajuste y calibración para controles periódicos y calibración con gas patrón.

Aparte de estas comprobaciones periódicas, el detector no tiene mantenimiento y deberá proporcionar una vida sin fallos. El usuario elegirá cuándo se deberá remplazar el sensor al final de la vida media especificada o cuando el sensor pierda sensibilidad.

- Detectores altamente específicos al gas a medir, siendo mínimo el efecto de interferencia con otros gases.
- Detectores fiables, estables y de diseño robusto.
- Sensores de tipo electroquímico, diseñados para:
  - No tener que hacer mantenimiento durante largos periodos de tiempo
  - Proporcionar una buena estabilidad térmica y larga vida al sensor

![Figura 11: Sensotox 420 TOX](image)
I Memoria Descriptiva

7.3.1.2 Sensor ST-IAM de Murco Gas Detección

El ST-IAM es un transmisor autónomo. La unidad integra el sensor y el monitor en una sola caja. En la cual se podrán conectar hasta 99 sensores ST-IAM al panel ST-MON. Esto permite construir grandes sistemas de detección de gases y sistemas de supervisión integrados.

Los sensores ST-IAM proporcionan salidas universales de 0-5V, 0-10V, 4-20mA, RS-485 y 2 relés, todos ellos presentes permanentemente y disponibles para uso en cualquier combinación.

Murco fabrica estas unidades en varias versiones diferentes. Gracias a la tecnología de semiconductor, catalítica, electroquímica e infrarroja del sensor de gas, el ST-IAM se puede utilizar para detectar la mayoría de los gases:

- Refrigerantes, incluidos amoníaco, halocarburos, hidrocarburos y dióxido de carbono
- Gases combustibles, incluidos metano, GLP, propano, butano e hidrógeno.
- Gases tóxicos y gases COV, incluidos monóxido de carbono, dióxido de carbono, sulfuro de hidrógeno, acetona, benceno, etanol y muchos más.
- Otra ventaja de su diseño radica en que, solamente hace falta cambiar la placa del sensor si se desea cambiar el gas a medir (práctico y rentable).

El ST-IAM es la solución idónea para:

- Aplicaciones que requieren supervisión continua del gas y salidas lineales.
- Sistemas de control existentes a fin de ampliar sus capacidades con las funciones de detección y supervisión de gas.
- La construcción de grandes instalaciones con la conexión de hasta 99 ST-IAM en serie al panel de ST-MON.

Figura 12: ST-IAM Murco gas
I Memoria Descriptiva

7.3.1.3 Sensor amoníaco ADTX3 1120/25

DESCRIPCIÓN

El transmisor, incluye un procesador para la medición digital y un control de compensación de temperatura para una continua monitorización, con el fin de detectar las concentraciones de amoniaco. Tiene un potenciómetro integrado en el transmisor que nos permitirá calibrar el sensor fácil y cómodamente.

El ADT-03 tiene disponibles diversas interfaces tanto analógicas como digitales: 4 a 20 mA o 2 a 10 V DC, y un puerto RS-485. También tiene dos relés con conmutación ajustable que son opcionales.

CARACTERÍSTICAS

• Procesador de medición digital, incluido compensación de temperatura
• Monitorización continua
• Baja deriva del punto de cero
• Buena estabilidad a la intoxicación
• Larga vida útil del sensor
• Tecnología modular Plug-In
• Fácil mantenimiento
• Cómoda calibración con acceso libre al selector
• Protegido contra la inversión de polaridad, sobrecarga y cortocircuitos 4 a 20 mA / 2 a 10 V señal de salida analógico seleccionable (opcional)
• Interfaz serie RS-485
• Grado de protección IP 65
• Calibración manual mediante potenciómetro (opcional)
• Direccionamiento manual para el modo RS-485 (opcional)
• 4 a 20 mA de entrada analógica de un transmisor externo (opcional)
• La salida de relé (opcional)
I Memoria Descriptiva

- Timbre integrado (opcional)
- Pantalla LCD (opcional)
- Calefacción (opcional)
- Conducto montado (opcional)

7.3.1.4 CS 21 transmisor

Para gases tóxicos e inflamables y vapores

El CS21 transmisor utiliza el principio de la absorción química para la detección de gases tóxicos, combustibles y vapores. El tiempo de respuesta del transmisor es muy corto, el cual permite al usuario tomar las medidas rápidamente para evitar daños a las personas y a la planta industrial. La larga vida del sensor hace que la CS21 sea una alternativa económica.

El sensor puede ser a menudo usado continuamente durante 5 años, antes de que se requiera remplazarlo. Una amplia gama de temperaturas, desde -40°C a +60°C, hace que el CS21 sea útil para una variedad de aplicaciones, especialmente para la protección de las plantas de refrigeración.

Figura 13: ADTX 1120/25
I Memoria Descriptiva

La distancia entre el transmisor CS21 y el controlador puede ser más de 500 metros. Una carcasa resistente de aluminio protege el sensor y los componentes electrónicos contra impactos, salpicaduras de agua y suciedad.

El CS21 no está certificado, por lo que no puede ser utilizado directamente en las áreas que contienen gases altamente inflamables.

Ventajas

• Económico
• Fácil de usar
• Larga vida útil del sensor
• Bajo coste de propiedad
• Tiempo de respuesta rápido y de alta sensibilidad
• No usar en áreas altamente inflamables

Figura 14: CS21 Transmitter
I Memoria Descriptiva

7.3.1.5 Sensor amoniaco GDX-350

Bacharach GDX-350 son transmisores de baja temperatura con tecnología B-Smart ® que proporcionan una detección precisa del amoniaco (NH₃) y dióxido de carbono (CO₂). Estas tienen todas las características de los transmisores, que están diseñados para operar en condiciones extremas de temperatura, que se encuentran en los abatidores (congeladores rápidos) y congeladores profundos.

El diseño único GDX-350 incluye calentadores programables tanto para el sensor como la electrónica, que se activan automáticamente cuando las temperaturas caen por debajo de las temperaturas seleccionadas por el usuario. La colocación de los sensores dentro de estos entornos agresivos permite una rápida detección y respuesta a las pequeñas fugas, la protección de la vida humana, así como de productos y maquinaria.

**Funcionamiento autónomo**

El GDX-350 tiene una gran pantalla LCD que muestra las concentraciones de gas y las unidades de ingeniería, así como la flexibilidad para mostrar los datos históricos de los últimos 30 minutos. Utilizando la visualización gráfica, los usuarios pueden navegar a través de su menú utilizando el teclado para cambiar los puntos de consigna de la alarma, las configuraciones del instrumento, o entrar en modo de mantenimiento para la calibración no invasiva. Para mayor seguridad, el menú del GDX-350 de seguridad permite la entrada de un código de autorización para fijar los parámetros críticos.

Junto con la pantalla LCD son estándar los LED indicadores de alarma que indican cuando la alarma de alta y de baja condición se cumple. Una placa de relés opcional, que está disponible para proporcionar tres relés de 5 A que pueden ser utilizados para activar alarmas sonoras / visuales o activar los ventiladores de escape.

![Figura 15: GDX-350](image-url)
I Memoria Descriptiva

Soluciones adoptadas

Al final decidimos coger el modelo GDX-350, debido a que incorpora una serie de funciones como las pantallas lcd y la botoneras que permite configurarlo en el lugar del emplazamiento, además elegimos el sensor electroquímico ya que este tiene una duración de aproximadamente 2 años y en proporción los recambios son más baratos, en comparación con las otras tecnologías.

7.3.2 Sensores humedad relativa y sensores de temperatura

En este apartado describiremos las principales características de los modelos de sensores de cada fabricante con el fin de encontrar el que mejor se adapte a nuestro proyecto.

7.3.2.1 Sensores MELA

La empresa Galltec Mess nos ofrece una serie de sensores de humedad y de temperatura empacados ambos en una varilla enroscable.

El encapsulado que contiene ambos sensores, ofrece una protección contra casi todo tipo de ataques físicos, como por ejemplo: el amoniaco, el gas sulfúrico, etc. Esta empresa nos ofrece varias opciones para configurar la forma de transmitir los datos, capturados por los sensores:

El modelo que utiliza la transmisión de datos por tensión, está constituido por seis cables: un par de cables para la alimentación a 24 V, tanto para DC como AC para los sensores y los otros dos pares de cables son utilizados para transportar la tensión de entre (0 V a 10 V).

La principal ventaja que se puede observar en este tipo de sensores es que van montados en único empaquetado (montado y ajustado), facilitando el montaje en cualquier tipo de instalación debido a su cajetín. Además, esta empresa añade la posibilidad de poder configurar los sensores, dándonos la oportunidad elegir el tipo de sensor de temperatura o el modo de configuración de transmisión de datos.
I Memoria Descriptiva

Figura 16: Sensor humedad MELA

7.3.2.2 Deltaohm HD9008TR

La empresa Deltaohm nos ofrece los sensores HD9008TR y HD9009TR, esta es una unidad transmisora pasiva que tiene como sistema de comunicación el 4 a 20 mA. Los sensores de temperatura (Pt100) y de humedad van montados al extremo de un tubo de material plástico, el cual irá enroscado a la unidad.

La temperatura estándar de este modelo está disponible para el rango -40 a 80 °C, pero el usuario la podrá variar mediante un simulador de Pt100 o con resistores de valor fijo. Se podrá elegir el rango de detección que se deseó siempre y cuando este dentro del rango estándar. Además dispone de dos leds de alarma que indicarán si hubo algún error al configurar la salida del rango de temperatura o si alguno de los sensores está averiado.
7.3.2.3 *Humiton* HTX72/73 Series

*Control climático de Temperatura y Humedad del transmisor*

La serie HUMITRON ® HTX72/73 es un modelo económico para el control general de temperatura y hace que sea posible medir exactamente la temperatura y la humedad. Además, la serie HTX73 se puede mantener durante mucho tiempo en lugares donde hay una gran cantidad de polvo y un flujo de aire constante gracias a la aplicación de un filtro con malla de acero inoxidable. Por otra parte, ofrece la posibilidad de elegir el soporte de instalación para pared o para techo.

*Estanqueidad y Estructura Independiente*

- Minimiza las influencias externas en un sitio con alta humedad
- Eliminación del error de autocalentamiento mediante un fino disipador aislante en la parte del circuito

*Elección del filtro de malla metálica*

- Excelente en la protección de los sensores y alta velocidad de respuesta
- Estructura desmontable para una fácil instalación y mantenimiento

*Operacional con baja tensión (6 voltios) y en lazo de corriente*
I Memoria Descriptiva

• Transmisión superior a larga distancia

• Utilizable en alta impedancia

Básico para medir la humedad y opcional para la medición de temperatura

• Coste de ahorro efectivo

• Miniaturizado

Solución adoptada

La empresa MELA ofrece un rango de precisión para la humedad relativa del 2% para la zona de los 40 a 80% de humedad para una temperatura de 23 ºC. Para la medición de la temperatura nos ofrece una gran variedad de sensores tanto resistivos NTC, PTC, KTY como semiconductores LM35, AD595, etc. Pero por defecto, está configurada con la PT100 clase B con un rango de medición de -30 a 80 ºC y una precisión para la opción, de los lazos de corriente (4 a 20 mA) de 0,1 ºC.

Los sensores de la empresa delta ohm de la serie HD9008TR ofrecen un rango de precisión para los sensores de humedad del 2% para zona de medición de 10 a 90 HR con una temperatura de trabajo de entre -20 a 80 ºC. El sensor de temperatura, es un resistor Pt100 con un rango de -40 a 80º C con una precisión del 0,3 ºC.

Los sensores HTX72 de la empresa Humitron con la opción de los lazos de corriente (4 a 20mA) nos ofrece un rango de precisión de un 2 % para el sensor de humedad. Para el sensor de temperatura utilizan una PT100 clase A para los rangos de -30 a 70 ºC, -20 a 80º C y -10 a 60 ºC con una precisión de más o menos 0,3 ºC.
I Memoria Descriptiva

Por lo tanto, el sensor de temperatura y humedad escogidos para la automatización de la explotación avícola, será el sensor de la empresa Humitron de la serie HTX72 con la configuración para el sensor de temperatura para el rango de -10 a 60 ºC, ya que el rango de medición, se acerca bastante a los valores normales de la explotación avícola.

En los sensores de humedad prácticamente, no hay diferencias entre las distintas empresas

7.4 Soluciones finales

En este apartado, se tratará de dar las explicaciones más detalladas, con el fin de resolver las dudas que puedan surgir durante la instalación, de los diversos componentes y elementos que contiene el proyecto.

7.4.1 Organización de la automatización y comunicación de la explotación

En esta sección hablaremos de cómo está organizado la automatización y las comunicaciones de la granja. La organización de la automatización será un control distribuido, haciendo que cada nave funcione de manera autónoma e independiente con tal de evitar en un futuro que una avería afecte a las tres naves a la vez.

Cada nave estará comunicada con la casa del propietario situada a 30 metros de distancia de la explotación, mediante la utilización de la tecnología WIFI. Con la finalidad de poder monitorizar la evolución de cada nave.

Sí se diese el caso, en qué la señal inalámbrica no tuviese suficiente potencia para garantizar un funcionamiento adecuado (dentro del armario o la propia estructura de la nave) se tendrá que colocar una antena, en el tejado de la nave afectada y mediante un cable coaxial especial para alta frecuencia conectarlo al router.

Todos los orificios, que se realicen tanto en la nave como al armario de control, con el propósito de hacer pasar el cable coaxial, deberán de ser sellados mediante un prensaestopas, con tal de evitar que el polvo y el agua entren.

7.4.2 Armarios de control

Los armarios de control sustituirán a los antiguos cuadros eléctricos (los antiguos aparatos serán colocados en una sección del armario). Estos irán situados en la esquina izquierda de la cara norte de las naves. La entrada de la corriente que viene de la calle se tomará por debajo del armario. Las salidas de comunicación y alimentación saldrán por la parte superior. Con el fin, de evitar la entrada de polvo y agua, se pondrán prensaestopas según el calibre del tubo.

Sí por alguna razón, se tuviera que agrandar o realizar un nuevo agujero en el armario, en el momento de realizarlo, se tendrá especial cuidado en, no abollar la chapa y de limpiar o limar las virutas metálicas, que quedasen al borde del agujero, para evitar posibles accidentes laborales o averías.
I Memoria Descriptiva

7.4.3 Colocación de los sensores

**Sensores de gas amoníaco**

Estos sensores irán montados sobre las vigas de las naves e irán debidamente sujetos con bridas.

**Sensores de humedad y temperatura**

Estos sensores irán montados sobre las vigas de las naves e irán debidamente sujetos con bridas.

**Sensores de apertura de ventanas**

Estos sensores son pequeños interruptores que irán colocados cerca del marco de la ventana, de forma que la hoja de la ventana presione la palanca que portan. Estos interruptores irán atornillados a la pared de cada grupo de ventanas motorizadas.

**Sensores capacitivos**

Para la colocación de estos sensores se tendrán que realizar agujeros en las tolvas y en las máquinas de distribución para evitar accidentes laborales se deberán limpiar de virutas metálicas los bordes de los agujeros.

7.4.4 Conexiónado de los motores

En esta sección aclararemos las posibles dudas que puedan surgir durante la fase de conexión de los relés de los motores. Estos están divididos en 3 partes:

**Líneas de alimentación y alimentación tolvas**

En los planos de fuerza, solamente aparece representado un motor. La razón simple, es que de haber puesto cuatro motores, hubiese podido resultar difícil de entender el diagrama debido a la cantidad de cableado representado.

Por lo tanto, los cuatro motores que alimentan los comederos de los pollos van conectados en paralelo utilizando los mismos contactores. En el diagrama de maniobras representa el antiguo control de los motores, añadiéndole unas cuantas modificaciones para permitir el uso del accionamiento manual, como del accionamiento del PLC. Para el caso de los motores de las tolvas (cuatro motores) se actúa de la misma forma.

**Abertura de ventanas**

Las ventanas están formadas en grupo de tres, de tal manera que cuando el motor se pone en marcha mueve las tres a la vez. Por lo tanto, cabe recordar que cada nave contiene treinta ventanas, sí se agrupan de tres en tres, habrá diez grupos de ventanas.

Recurriendo a la táctica del anterior párrafo, en los planos solamente, se puso un diagrama
I Memoria Descriptiva

de fuerza y otro de maniobra. A consecuencia de esto, habrá diez diagramas de fuerza y de maniobra. Para ser más claros solamente habrá un botón de activación (que dejará alimentado a los diez grupos) y uno de parada de emergencia.

Control de los ventiladores

En este caso tenemos dos secciones: el de la parte de climatización y el de la ventilación.

En la parte de la ventilación está formado por quince ventiladores pertenecientes a las chimeneas de ventilación, éstas como las ventanas, están agrupadas de tres en tres, teniendo un total de cinco grupos de chimenea, cada una con tres ventiladores.

Por lo tanto, cada grupo tendrá tres ventiladores conectados en paralelo. Además cada grupo tendrá su propio diagrama (fuerza y maniobra) independiente de los otros. Cabe recordar que solamente habrá un pulsador de activación de la línea y otro de parada de emergencia. Para el caso de la climatización, el método empleado es el mismo que el de la ventilación.

8. Planificación

La planificación de la obra, la realizaremos utilizando el diagrama de Gantt, en el que se mostrarán las actividades y la duración de cada una de ellas. Semanalmente se trabajarán 40 horas, sin tener en cuenta los fines de semana. Una vez asignadas las tareas analizaremos las relaciones que hay entre ellas y se realizará el gráfico de “tiempo-actividad” en el cual se obtendrá la previsión de la duración de la obra, que será de dieciocho días laborables

<table>
<thead>
<tr>
<th>Id</th>
<th>Nombre de tarea</th>
<th>Duración</th>
<th>Comienzo</th>
<th>Fin</th>
<th>Predecesoras</th>
<th>Acumulación de costos fijos previstos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Colocación tubos</td>
<td>2 días</td>
<td>vie 01/11/13</td>
<td>sáb 02/11/13</td>
<td></td>
<td>Prorrato</td>
</tr>
<tr>
<td>2</td>
<td>Colocación sensores</td>
<td>2 días</td>
<td>mar 05/11/13</td>
<td>mié 06/11/13</td>
<td>1</td>
<td>Prorrato</td>
</tr>
<tr>
<td>3</td>
<td>Cambio de armario eléctrico y puesta del de control</td>
<td>2 días</td>
<td>jue 07/11/13</td>
<td>vie 08/11/13</td>
<td>2</td>
<td>Prorrato</td>
</tr>
<tr>
<td>4</td>
<td>Colocación centralita</td>
<td>2 días</td>
<td>vie 08/11/13</td>
<td>sáb 09/11/13</td>
<td>3</td>
<td>Prorrato</td>
</tr>
<tr>
<td>5</td>
<td>Cableado de los sensores</td>
<td>2 días</td>
<td>mar 12/11/13</td>
<td>mié 13/11/13</td>
<td>4</td>
<td>Prorrato</td>
</tr>
<tr>
<td>6</td>
<td>Configuración de los sensores</td>
<td>2 días</td>
<td>jue 14/11/13</td>
<td>vie 15/11/13</td>
<td>5</td>
<td>Prorrato</td>
</tr>
<tr>
<td>7</td>
<td>Configuración centralitas</td>
<td>3 días</td>
<td>sáb 16/11/13</td>
<td>mar 18/11/13</td>
<td>6</td>
<td>Prorrato</td>
</tr>
<tr>
<td>8</td>
<td>Puesta en marcha</td>
<td>4 días</td>
<td>mié 20/11/13</td>
<td>sáb 23/11/13</td>
<td>7</td>
<td>Prorrato</td>
</tr>
</tbody>
</table>

Figura 19: Tareas programadas
9. Orden de prioridades

En caso de haber discrepancias, a la hora de elegir el orden de las prioridades entre los diversos documentos básicos que contiene el proyecto técnico se le asignará el siguiente orden:

1. Planos
2. Memoria
3. Pliego de condiciones
4. Presupuestos y mediciones
Automatización de una Granja de Engorde de Pollos

Memoria de los Cálculos

TITULACIÓN: Ingeniería Técnica industrial especialidad Electrónica Industrial

AUTORES: Héctor Gayán Sánchez .
DIRECTORES: Alfonso José Romero Nevado .
Fechas: Septiembre del 2013.
Índice Memoria de los Cálculos

1. Documentación de partida ........................................................................................................ 50

2. Calculo de los lazos de corriente .......................................................................................... 50
   2.1 Calculo del voltaje de la fuente de alimentación para el lazo de corriente ............... 50
   2.2 Calculo de la corriente que debe suministrar la fuente .................................................. 51

3. Diseño del control de la automatización de la explotación avícola .............................. 52
   3.1 Organización del programa ............................................................................................. 52
   3.1.0 Ventilación .................................................................................................................. 52
   3.1.1 Climatización .............................................................................................................. 53
   3.1.2 Control silos ................................................................................................................. 55
   3.1.3 Iluminación y líneas de alimentación ............................................................................ 56
   3.1.4 Elevación de las líneas de alimentación ................................................................. 56
II Memoria de los Cálculos

1. Documentación de partida

En este apartado del proyecto se pretenderá justificar las instalaciones de automatización realizadas en la granja. Para tal propósito se solicitó al propietario de la explotación el proyecto técnico de edificación de la granja.

2. Calculo de los lazos de corriente

2.1 Calculo del voltaje de la fuente de alimentación para el lazo de corriente

Descubrir cuál es la fuente de alimentación, que mejor se adapta a nuestras necesidades es bastante sencillo. En un lazo de corriente, la fuente de alimentación debe entregar voltaje igual o mayor que todas las caídas de tensión en el sistema.

Normalmente, los sensores utilizan una resistencia Shunt de precisión para medir la corriente. Para eso, necesitaremos calcular la caída de tensión en la resistencia. Los valores típicos para este tipo de resistencias Shunt, son de 250 Ω. Abajo se muestran los cálculos básicos:

\[ V = R \times I \]  
\[ V = 4 \, mA \times 250 \, \Omega = 1 \, V \]  
\[ V = 20 \, mA \times 250 \, \Omega = 5 \, V \]

Con la resistencia Shunt de 250 Ω, se puede medir la corriente, en un rango de 1 a 5 V permitiendo la lectura de los datos de la adquisición. El sensor requiere un voltaje mínimo de 12 V con un máximo de 30 V. Añadiendo la caída de la tensión en la resistencia de precisión Shunt obtenemos:

\[ 12 \, V + 5 \, V = 17 \, V \]
II Memoria de los Cálculos

Esto sugiere que con 17 V tiene suficiente voltaje de alimentación. Sin embargo, la resistencia interna del cable del lazo actual, crea una carga adicional en la fuente de alimentación.

En aplicaciones, donde el sensor está muy lejos de los instrumentos de medición, se debe factorizar la resistencia del cable en los cálculos de potencia de bucle.

Los cables de cobre tienen una resistencia de corriente continua que es directamente proporcional a sus longitudes y diámetros. Con el transductor de temperatura de ejemplo, es necesario calcular la distancia de 200 m para las necesidades de alimentación. Con el cable del calibre AWG 24, su resistencia interna es 2,62 Ω/30,5 m. Este cálculo de la resistencia se convierte en:

\[ R = 200 \text{ m} \times (2,62 \, \Omega/30,5 \text{ m}) = 17,18 \, \Omega \]  
\[ V = 17,18 \, \Omega \times 20 \text{ mA} = 0,344 \, V \]

Y obtenemos la tensión total:

\[ 12 \, V + 5 \, V + 0,344 \, V = 17,334 \, V \]

Por lo tanto, podemos llegar a la conclusión de que solamente necesitaremos una fuente de alimentación de 24 Vdc.

2.2 Cálculo de la corriente que debe suministrar la fuente

Ahora veremos, cuál es la corriente necesaria para poder conectar, todos los sensores del lazo de corriente en paralelo, utilizando una única fuente. Sabemos que cada sensor solamente puede consumir un mínimo de 4 mA y un máximo de 20 mA. Teniendo en cuenta que habrá en la nave veintiocho sensores, obtendremos esto:

\[ A = 28 \text{ sensores} \times 20 \text{ mA} = 0,56 \, A \]

Debido a que no se ha podido encontrar una fuente de alimentación de 24 Vdc con 0,56 A, tuvimos que coger una fuente de 24 Vdc con 1,75 A.
3. Diseño del control de la automatización de la explotación avícola

La filosofía de este apartado, es intentar explicar de una forma sencilla y esquemática, el funcionamiento del controlador (PLC) de la explotación. Los esquemas serán bastante abstractos, no entrando en los aspectos más detallados. La programación se realizará con el sistema de programación de Omron (CX-ONE).

3.1 Organización del programa

El programa que controla la explotación constará de 13 SFC (Sequential Function Chart) o Grafcet: Estos se llamarán Ventilación (3 SFC), Climatización (1 SFC), control silos (5 SFC), líneas de alimentación (1 SFC), elevación líneas alimentación (1 SFC) e iluminación (1 SFC).

3.1.0 Ventilación

El sistema de ventilación está dividido en tres secciones, que corresponde aproximadamente a un tercio de la longitud total de la nave. Por lo tanto, cada sección le corresponderá un SFC (Grafcet). Cada uno de estos tendrá el mismo esquema lógico y funcionarán de manera independiente y cíclicamente.

La lógica del programa consiste en que cuando detecte una determinada concentración de gas amoníaco en esa zona, abra la mariposa de la chimenea y encienda el extractor de la chimenea. Si sigue teniendo la misma concentración o haya aumentado, este empezará abrir las ventanas de la zona hasta que salte la alarma. En caso de que baje la concentración de gas, este cerrará las ventanas de la sección que estén abiertas y volverá al principio.
3.1.1 Climatización

En esta parte del proyecto se tratará de gestionar la temperatura y la humedad de la nave, teniendo en cuenta la época del año. Este solamente tiene un SFC que se ejecutará de forma independiente y cíclicamente.

Como se puede ver, la lógica del programa es bastante sencilla. Este funciona de la siguiente forma, hay un temporizador que se encargará de seleccionar el tipo de climatización según la época del año. Este a su vez dependiendo de la temperatura ambiental entrará dentro de una de las ramas o de la otra. Ahora hablaremos de estas ramas con más detalles:
La rama de invierno: *(cambiar humedad)*

Cuando detecta que la temperatura está por debajo de la consigna (temperatura de producción) y a la vez coincida con los meses de invierno (Noviembre - Marzo), entonces encenderá la calefacción y los ventiladores, cuando este llegue a su temperatura apagará el calefactor de gas.

Ahora habría dos opciones, si la temperatura baja, éste vuelve al inicio. La otra opción, sólo entrará si la temperatura es alta y además la humedad relativa es baja, entonces abrirá las ventanas de las zonas afectadas y cuando este baje, cerrará las ventanas y apagará las chimeneas.

**En la rama de verano**

La lógica de esta rama, es muy parecida a la otra, cuando este detecta la época del año correcta y el sensor de temperatura es alta, este activará el nebulizador y cuando la temperatura baje, este se desconectará y volverá al principio.

![Diagrama Grafcet climatización](image_url)
3.1.2 Control silos

En esta parte del programa, hablaremos del control de los silos. Este tiene 5 SFC que funcionan independientemente y cíclicamente. El funcionamiento es bastante sencillo y prácticamente igual que los silos y las tolvas. En el caso de los silos tiene dos sensores capacitivos, encargados de medir el nivel del alimento que contiene.

Cuando esté baja, da una señal de alarma que será enviado mediante el wifi al correo del propietario. Una vez que este, vuelva a llenar el silo, la alarma se apagará y volverá al inicio.

En el caso de la tolva, cuando ésta detecte que el nivel está por debajo del nivel mínimo, activará los motores de los silos y abrirá la mariposa correspondiente a la tolva vacía y cuando este detecte, que ha llegado al nivel máximo, cerrará la mariposa y apagará los motores.

Figura 25: Grafcet líneas de alimentación
3.1.3 Iluminación y líneas de alimentación

La lógica de esta sección del programa es la siguiente: A medida que los pollos van creciendo se necesitará que las líneas de alimentación vayan subiendo adaptándose a su altura. Para esto, ya existe una serie datos que establecen más o menos, cuales son los tiempos para elevar la línea.

En nuestro caso, hemos hecho cinco fechas para elevar la línea. Cada vez que llega el día, el motor se activa durante unos segundos, (que previamente se han realizado varias pruebas con varios tipos de llenados de tolvas, para averiguar el tiempo y la altura) después mediante un temporizador, este se desconectará hasta que llegue otra vez la nueva fecha.

Figura 26: Grafcet de iluminación

3.1.4 Elevación de las líneas de alimentación
Figura 27: Grafcet elevación líneas de alimentación
Automatización de una Granja de Engorde de Pollos

Planos

TITULACIÓN: Ingeniería Técnica industrial especialidad Electrónica Industrial

AUTORES: Héctor Gayán Sánchez .
DIRECTORES: Alfonso José Romero Nevado .
Fechas: Septiembre del 2013.
<table>
<thead>
<tr>
<th>Índice Planos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Situación ........................................................................................................</td>
</tr>
<tr>
<td>2 Emplazamiento .................................................................................................</td>
</tr>
<tr>
<td>3 Líneas de alimentación ...................................................................................</td>
</tr>
<tr>
<td>4 Instalaciones eléctricas y automatización ...................................................</td>
</tr>
<tr>
<td>5 Detalles .............................................................................................................</td>
</tr>
<tr>
<td>6 Esquemas de fuerza I .......................................................................................</td>
</tr>
<tr>
<td>7 Esquemas de fuerza II .....................................................................................</td>
</tr>
<tr>
<td>8 Esquemas de fuerza III ...................................................................................</td>
</tr>
<tr>
<td>9 Esquemas de maniobras I ..................................................................................</td>
</tr>
<tr>
<td>10 Esquemas de maniobras II .............................................................................</td>
</tr>
<tr>
<td>11 Esquemas de maniobras III ..........................................................................</td>
</tr>
</tbody>
</table>
Planos
Esquema de maniobras para ventiladores
Esquema de Maniobras III

Motores de Maniobras Para
Automatización de una Granja de Engorde de Pollos

Mediciones y Presupuestos

TITULACIÓN: Ingeniería Técnica industrial especialidad Electrónica Industrial

AUTORES: Héctor Gayán Sánchez .
DIRECTORES: Alfonso José Romero Nevado .
Fechas: Septiembre del 2013.
Índice de Mediciones y Presupuestos

1. Mediciones ........................................................................................................................................743
   1.1 Capítulo 1: Centralita electrónica ............................................................................................73

2. Presupuestos .......................................................................................................................................74
   2.1 Precios unitarios ...........................................................................................................................74
   2.2.1 Centralita electrónica .............................................................................................................75
   2.2.2 Descompuestos: Varios ...........................................................................................................77
   2.3.1 Presupuesto Instalación automatismo ...................................................................................78
   2.3.2 Presupuesto Instalación automatismo ...................................................................................78
   2.4 Resumen de los presupuestos ....................................................................................................78
# V Mediciones y Presupuestos

## 1 Mediciones

### 1.1 Capítulo 1: Centralita electrónica

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Unidades(Ad.)</th>
<th>Longitud(L)</th>
<th>Ancho(A)</th>
<th>Altura(H)</th>
<th>Partidas</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM245210</td>
<td>Unidad Módulo CPU-211 Ns Omron</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BM245211</td>
<td>Unidad Módulo Expansión 32 Salidas NPN CP1W-32ET Omron</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BM245212</td>
<td>Unidad Módulo Expansión 4 Entradas Analógicas 12 bits CP1W-AD041 Omron</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BM245213</td>
<td>Unidad WD-30 WLAN Omron</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BM245214</td>
<td>Unidad MULTICOM-T HR23H-6 DC24V - RELE', PCB, SPCR, 24VDC</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BM245215</td>
<td>Unidad SCHNEIDER ELECTRIC / TELEMECANIQUE - UC1099V7 - CONTACTOR, 4KW, 400VCA</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>BM245216</td>
<td>Unidad ABB CONTROL - 1SF43100884811 - CONTACTOR, 45KW, 96A, 400V</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>BM245217</td>
<td>Unidad IMOS PRECISION CONTROLS - MB32S-10230 - CONTACTOR, 13A, 240VCA</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BM245218</td>
<td>Unidad SCHNEIDER ELECTRIC / SAREL - ENEB3664 - ARMARIO, IP66, 1,200x800x300</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BM245219</td>
<td>Unidad SCHNEIDER ELECTRIC - 9001ER8RH6 - BOTÓN, KR8RH6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>BM245220</td>
<td>Unidad SCHNEIDER ELECTRIC - 9001ER818 - BOTÓN, K818</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>BM245221</td>
<td>Unidad STEP-PS/1AC 240V/1.75</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>BM245222</td>
<td>Unidad MULTIPLEXOR 16/8 entradas 0-4/20mA</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>BM245223</td>
<td>Unidad fuente alimentación Omron</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Unidades(Ad.)</th>
<th>Longitud(L)</th>
<th>Ancho(A)</th>
<th>Altura(H)</th>
<th>Partidas</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM139066</td>
<td>Instalación de tubos de automatismo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM139067</td>
<td>Ud. Parte proporcional de accesorios de interconexión</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM139068</td>
<td>Líneas pared 1</td>
<td>3</td>
<td>1.5</td>
<td>1.5</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM139069</td>
<td>Líneas intermedia 1</td>
<td>3</td>
<td>1.5</td>
<td>1.5</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM139070</td>
<td>Líneas intermedia 2</td>
<td>3</td>
<td>1.5</td>
<td>1.5</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM139071</td>
<td>Líneas intermedia 3</td>
<td>3</td>
<td>1.5</td>
<td>1.5</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM139072</td>
<td>Líneas pared 2</td>
<td>3</td>
<td>1.5</td>
<td>1.5</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Unidades(Ad.)</th>
<th>Longitud(L)</th>
<th>Ancho(A)</th>
<th>Altura(H)</th>
<th>Partidas</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM139065</td>
<td>Instalación cajetines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM139066</td>
<td>Ud. Caja de derivación rectangular de plástico, de 75x100 mm, con grado de</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>BM139067</td>
<td>protección IP-65 y para montar superficialmente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Unidades(Ad.)</th>
<th>Longitud(L)</th>
<th>Ancho(A)</th>
<th>Altura(H)</th>
<th>Partidas</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM134965</td>
<td>Instalación par trenzado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM134966</td>
<td>UE.LAPP KABEL - 0035160 - GUÍA, DATOS, 2 PARIS, 0,25 mm, 50 M</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>BM134967</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
</tbody>
</table>
### 1.2 Capítulo 2: Varios

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Unidades(id)</th>
<th>Longitud(m)</th>
<th>Anchura(A)</th>
<th>Altura(H)</th>
<th>Parciales</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF215213</td>
<td>Ud. Estudio de seguridad y salud preventivas, señalización, equipos de protección individual</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>EF215215</td>
<td>Ud. Puesta en marcha del proyecto</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

### 2. Presupuestos

#### 2.1 Precios unitarios

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Unidades(id)</th>
<th>Precios</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG425210</td>
<td>Ud. PLC Medidores CSM-CPU 11.2 Omron</td>
<td>1</td>
<td>549.84</td>
</tr>
<tr>
<td>BG42111</td>
<td>Ud. Plc Módulo Expansión 12 Salidas I/O Plc 5.21ET Omron</td>
<td>1</td>
<td>32.16</td>
</tr>
<tr>
<td>BG42112</td>
<td>Ud. Plc Módulo Expansión 2 Entradas Analogicas 32 bits C72W AD041 Omron</td>
<td>1</td>
<td>134.54</td>
</tr>
<tr>
<td>BG42113</td>
<td>Ud. WD 30 V630 Omron</td>
<td>1</td>
<td>78.54</td>
</tr>
<tr>
<td>BG42114</td>
<td>Ud. MULTICOMP - HX55-5 DC24V - 2500V FCA, FSEL, PCB, SPDC, 24VDC</td>
<td>1</td>
<td>1.31</td>
</tr>
<tr>
<td>BG42115</td>
<td>Ud. SCHNEIDER ELECRIC / TELEMECANIQUE - LD100NY7 - CONTACTOR, 4 WA, 40 A</td>
<td>1</td>
<td>29.77</td>
</tr>
<tr>
<td>BG42116</td>
<td>Ud. ABB CONTROL - SRL-4S100DRBRBL1 - CONTACTOR, 48 V, 60 A</td>
<td>1</td>
<td>196.39</td>
</tr>
<tr>
<td>BG42117</td>
<td>Ud. DOM PERSIÓN CONTROLES - HNBSL 30-2200 CONTACTORS, 12A, 230VCA</td>
<td>1</td>
<td>16.74</td>
</tr>
<tr>
<td>BG42118</td>
<td>Ud. SCHNEIDER ELECTRIC - F566 - EMINX3664 - ARMADO, SP6, 20 x 20 x 300 mm</td>
<td>1</td>
<td>135.34</td>
</tr>
<tr>
<td>BG42119</td>
<td>Ud. SCHNEIDER ELECTRIC - 3001KR87B - CONTACTOR, 410V</td>
<td>1</td>
<td>34.69</td>
</tr>
<tr>
<td>BG42120</td>
<td>Ud. SCHNEIDER ELECTRIC - 3001KR87B - CONTACTOR, 410V, 87B</td>
<td>1</td>
<td>95.50</td>
</tr>
<tr>
<td>BG42121</td>
<td>Ud. STEP-PO 3/12/24/20/1.75</td>
<td>1</td>
<td>63.70</td>
</tr>
<tr>
<td>BF128209</td>
<td>m Tubo rígido de PVC, de 16 mm de diámetro nominal, adaptado y no propagador de la llama, con una resistencia al m 17.73</td>
<td>17.73</td>
<td></td>
</tr>
<tr>
<td>SM139066</td>
<td>Ud. Parte proporcional de acelerómetro de interconexión</td>
<td>1</td>
<td>0.12</td>
</tr>
<tr>
<td>SM139065</td>
<td>Ud. Coche de derivación rectangular de plástico, de 70x200 mm, con grado de protección IP-65 y para montar superficialmente</td>
<td>1</td>
<td>3.75</td>
</tr>
<tr>
<td>SM147875</td>
<td>Ud. LAPP KABEL - 005100-GÜA, DATOS, 2 PARES, 0.25 mm, 50 M</td>
<td>1</td>
<td>36.58</td>
</tr>
<tr>
<td>SM145067</td>
<td>Ud. HUMITRON® HF7273 Series</td>
<td>1</td>
<td>28.85</td>
</tr>
<tr>
<td>BG42114</td>
<td>Ud. Sensor Éfis del gas del NHI del analizoe TGo-1031</td>
<td>1</td>
<td>34.75</td>
</tr>
<tr>
<td>BG42151</td>
<td>Ud. AE-OF-D40 Válvula de maniobra motorizada; en de tipo; DN40</td>
<td>1</td>
<td>43.51</td>
</tr>
<tr>
<td>BG42154</td>
<td>Ud. Sensor capacitivo analógico proximidad Railf</td>
<td>1</td>
<td>28.74</td>
</tr>
<tr>
<td>BG42125</td>
<td>Ud. ARRIBA - 0.3-0.800 - INTERRUPTOR, ACCIÓN A PRESIÓN, SPDT 15A</td>
<td>1</td>
<td>3.85</td>
</tr>
<tr>
<td>JB21E00</td>
<td>h Técnico superior IP Automatismo</td>
<td>1</td>
<td>24.42</td>
</tr>
<tr>
<td>JB21E00</td>
<td>h Técnico-FP Automatismo</td>
<td>1</td>
<td>18.62</td>
</tr>
<tr>
<td>JB21E00</td>
<td>h Técnico-FP Automatismo</td>
<td>1</td>
<td>25.00</td>
</tr>
<tr>
<td>JB21E00</td>
<td>h Técnico-FP Automatismo</td>
<td>1</td>
<td>124.75</td>
</tr>
<tr>
<td>JB21E00</td>
<td>h Fuente alimentación cero</td>
<td>1</td>
<td>109.45</td>
</tr>
</tbody>
</table>
V Mediciones y Presupuestos

2.2 Descompuestos

<table>
<thead>
<tr>
<th>Código</th>
<th>Cantidad</th>
<th>Ud.</th>
<th>Descripción</th>
<th>Precio</th>
<th>Subtotal</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG21041J</td>
<td>1</td>
<td>U</td>
<td>Instalación central nave</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG424210</td>
<td>1</td>
<td>U</td>
<td>PLC Modulares CJ1M-CPU21 NL Omron</td>
<td>583,08</td>
<td>583,08</td>
<td></td>
</tr>
<tr>
<td>BG424211</td>
<td>2</td>
<td>U</td>
<td>Pic Módulo Expansión 32 Salidas NPN CP1W-32ET Omron</td>
<td>318,6</td>
<td>637,20</td>
<td></td>
</tr>
<tr>
<td>BG424212</td>
<td>1</td>
<td>U</td>
<td>Analógicas 12 bits CP1W-AD041 Omron</td>
<td>354</td>
<td>354,00</td>
<td></td>
</tr>
<tr>
<td>BG424213</td>
<td>1</td>
<td>U</td>
<td>WD-30 WLAN Omron</td>
<td>378,54</td>
<td>378,54</td>
<td></td>
</tr>
<tr>
<td>BG424214</td>
<td>25</td>
<td>U</td>
<td>MULTICOMP - HRSI H-S DC24V - RELÉ, PCB, SPCO, 24VCC SCHNEIDER ELECTRIC / TELEMECANIQUE</td>
<td>3,33</td>
<td>83,25</td>
<td></td>
</tr>
<tr>
<td>BG424215</td>
<td>27</td>
<td>U</td>
<td>LC1D09V7 - CONTACTOR, 4KW, 400VCA ABB CONTROL - 15FL431001R8411</td>
<td>29,17</td>
<td>787,59</td>
<td></td>
</tr>
<tr>
<td>BG424216</td>
<td>1</td>
<td>U</td>
<td>IME PRECISION CONTROLS - MB12-S-10230 - CONTACTOR, 12A, 230VCA</td>
<td>199,39</td>
<td>199,39</td>
<td></td>
</tr>
<tr>
<td>BG424217</td>
<td>1</td>
<td>U</td>
<td>SCHNEIDER ELECTRIC / SAREL - ENNB3364 - ARMARIO, IP66, 1.200 x 800 x 300 mm</td>
<td>159,34</td>
<td>159,34</td>
<td></td>
</tr>
<tr>
<td>BG424219</td>
<td>6</td>
<td>U</td>
<td>SCHNEIDER ELECTRIC - 9001KR4RH6 - BOTÓN, KR4RH6</td>
<td>20,97</td>
<td>125,82</td>
<td></td>
</tr>
<tr>
<td>BG424220</td>
<td>6</td>
<td>U</td>
<td>SCHNEIDER ELECTRIC - 9001KR1B - BOTÓN, KR1B</td>
<td>18,95</td>
<td>113,70</td>
<td></td>
</tr>
<tr>
<td>BG424221</td>
<td>6</td>
<td>U</td>
<td>MULTIPLEXOR 16/8 entradas 0-4/20mA</td>
<td>124,75</td>
<td>748,50</td>
<td></td>
</tr>
<tr>
<td>BM312612</td>
<td>1</td>
<td>U</td>
<td>Técnico superior FP Automatismo</td>
<td>65,78</td>
<td>65,78</td>
<td></td>
</tr>
<tr>
<td>A0124000</td>
<td>2</td>
<td>h</td>
<td>Técnico superior FP Automatismo</td>
<td>21,42</td>
<td>42,84</td>
<td></td>
</tr>
<tr>
<td>A0144000</td>
<td>2</td>
<td>h</td>
<td>Técnico FP Automatismo</td>
<td>18,62</td>
<td>55,86</td>
<td></td>
</tr>
<tr>
<td>BG424223</td>
<td>3</td>
<td>U</td>
<td>Fuente alimentación omron</td>
<td>185,45</td>
<td>556,35</td>
<td></td>
</tr>
</tbody>
</table>

Suma de la partida 4,351,63
Costes indirecto 2,00% 87,03
Total partida 4,438,66

Sube el precio total a la cantidad de CUATRO MIL CUATROCIENTOS TREINTA Y OCHO con SESENTA Y SEIS CÉNTIMOS
### V Mediciones y Presupuestos

<table>
<thead>
<tr>
<th>EG21042I</th>
<th>U</th>
<th>Instalación cajones</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM140067</td>
<td>1</td>
<td>m Caja de derivación rectangular de plástico, de 75x100 mm, con grado de protección IP-65 y para montar superficialmente</td>
</tr>
<tr>
<td>BM143068</td>
<td>0,85</td>
<td>Ud. Parte proporcional de accesorios de caja de derivación rectangular</td>
</tr>
<tr>
<td>A012H000</td>
<td>0,247</td>
<td>h Técnico superior FP Automatismo</td>
</tr>
<tr>
<td>A014H000</td>
<td>0,247</td>
<td>h Técnico FP Automatismo</td>
</tr>
</tbody>
</table>

Suma de la partida: 13,92
Costes indirecto: 2,00%
Total partida: 14,20

Sube el precio total a la cantidad de CATORCE con VEINTE CÉNTIMOS

<table>
<thead>
<tr>
<th>EG21042I</th>
<th>U</th>
<th>Instalación par trenzado</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM134765</td>
<td>1,02</td>
<td>U LAPP KABEL - 0035160 - GUIA, DATOS, 2</td>
</tr>
<tr>
<td>A012H000</td>
<td>0,247</td>
<td>h PARES, 0,25 mm, 50 M</td>
</tr>
<tr>
<td>A014H000</td>
<td>0,247</td>
<td>h Técnico superior FP Automatismo</td>
</tr>
</tbody>
</table>

Suma de la partida: 36,92
Costes indirecto: 2,00%
Total partida: 37,66

Sube el precio total a la cantidad de TREINTA Y SIETE con SESENTA Y SEIS CÉNTIMOS

<table>
<thead>
<tr>
<th>EG21042I</th>
<th>U</th>
<th>Instalación de sensores nave TEMP/HUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM139267</td>
<td>1</td>
<td>U HUMITRON® HTX72/73 Series</td>
</tr>
<tr>
<td>A012H000</td>
<td>0,247</td>
<td>h Técnico superior FP Automatismo</td>
</tr>
<tr>
<td>A014H000</td>
<td>0,247</td>
<td>h Técnico FP Automatismo</td>
</tr>
</tbody>
</table>

Suma de la partida: 34,58
Costes indirecto: 2,00%
Total partida: 35,27

Sube el precio total a la cantidad de TREINTA Y CINCO con VEINTISETE

<table>
<thead>
<tr>
<th>EG21042O</th>
<th>U</th>
<th>Instalación de sensores gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG424412</td>
<td>1</td>
<td>U Sensor fijo del gas del NH3 del amoníaco</td>
</tr>
<tr>
<td>A012H000</td>
<td>0,247</td>
<td>h TGas-1031</td>
</tr>
<tr>
<td>A014H000</td>
<td>0,247</td>
<td>h Técnico superior FP Automatismo</td>
</tr>
</tbody>
</table>

Suma de la partida: 44,64
Costes indirecto: 2,00%
Total partida: 45,53

Sube el precio total a la cantidad de CUARENTA Y CINCO con CINCUENTA Y TRES
### V Mediciones y Presupuestos

<table>
<thead>
<tr>
<th>Código</th>
<th>Cantidad</th>
<th>Ud.</th>
<th>Descripción</th>
<th>Precio</th>
<th>Subtotal</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG21042P</td>
<td></td>
<td></td>
<td>Instalación de sensores mariposa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG424513</td>
<td>1</td>
<td>U</td>
<td>AE-DF-DN40 Valvula de mariposa</td>
<td>43,51</td>
<td>43,51</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>motorizada; en de tipo; DN40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A012H000</td>
<td>0,247</td>
<td>h</td>
<td>Técnico superior FP Automatismo</td>
<td>21,42</td>
<td>5,29</td>
<td></td>
</tr>
<tr>
<td>A014H000</td>
<td>0,247</td>
<td>h</td>
<td>Técnico FP Automatismo</td>
<td>18,62</td>
<td>4,60</td>
<td></td>
</tr>
</tbody>
</table>

**Suma de la partida:** 53,40  
**Costes indirecto:** 2,00%  
**Total partida:** 54,47

Sube el precio total a la cantidad de **CINCUENTA Y CUATRO** con **CUARENTA Y SIETE**

<table>
<thead>
<tr>
<th>Código</th>
<th>Cantidad</th>
<th>Ud.</th>
<th>Descripción</th>
<th>Precio</th>
<th>Subtotal</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG21042Q</td>
<td></td>
<td></td>
<td>Instalación de sensores capacitivos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG424614</td>
<td>1</td>
<td>U</td>
<td>Sensor capacitivo analógico de</td>
<td>28,74</td>
<td>28,74</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>proximidad Balluf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A012H000</td>
<td>0,247</td>
<td>h</td>
<td>Técnico superior FP Automatismo</td>
<td>21,42</td>
<td>5,29</td>
<td></td>
</tr>
<tr>
<td>A014H000</td>
<td>0,247</td>
<td>h</td>
<td>Técnico FP Automatismo</td>
<td>18,62</td>
<td>4,60</td>
<td></td>
</tr>
</tbody>
</table>

**Suma de la partida:** 38,63  
**Costes indirecto:** 2,00%  
**Total partida:** 39,40

Sube el precio total a la cantidad de **TREINTA Y NUEVE** con **CUARENTA**

<table>
<thead>
<tr>
<th>Código</th>
<th>Cantidad</th>
<th>Ud.</th>
<th>Descripción</th>
<th>Precio</th>
<th>Subtotal</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG21042R</td>
<td></td>
<td></td>
<td>Instalación de sensores switch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG424215</td>
<td>1</td>
<td>U</td>
<td>CHERRY - OE13-00E0 - INTERRUPTOR,</td>
<td>3,35</td>
<td>3,35</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACCIÓN A PRESIÓN, SPDT 15A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A012H000</td>
<td>0,247</td>
<td>h</td>
<td>Técnico superior FP Automatismo</td>
<td>21,42</td>
<td>5,29</td>
<td></td>
</tr>
<tr>
<td>A014H000</td>
<td>0,247</td>
<td>h</td>
<td>Técnico FP Automatismo</td>
<td>18,62</td>
<td>4,60</td>
<td></td>
</tr>
</tbody>
</table>

**Suma de la partida:** 13,24  
**Costes indirecto:** 2,00%  
**Total partida:** 13,50

Sube el precio total a la cantidad de **TRECE con CICUENTA**

#### 2.2.2 Descompuestos: Varios

<table>
<thead>
<tr>
<th>Código</th>
<th>Cantidad</th>
<th>Ud.</th>
<th>Descripción</th>
<th>Precio</th>
<th>Subtotal</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF215213</td>
<td></td>
<td>U</td>
<td>Estudio de seguridad y higiene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG426210</td>
<td>1</td>
<td>U</td>
<td>Preventivas, señalización, equipos de protección individual</td>
<td>2500</td>
<td>2500,00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Costes directos complementarios</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

**Total partida:** 2550,00

Sube el precio total a la cantidad de **DOS MIL QUINIENTOS CINCUENTA**

<table>
<thead>
<tr>
<th>Código</th>
<th>Cantidad</th>
<th>Ud.</th>
<th>Descripción</th>
<th>Precio</th>
<th>Subtotal</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG21042I</td>
<td></td>
<td></td>
<td>Puesta en marcha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A012H000</td>
<td>30</td>
<td>h</td>
<td>Técnico superior FP Automatismo</td>
<td>21,42</td>
<td>642,60</td>
<td></td>
</tr>
<tr>
<td>A014H000</td>
<td>30</td>
<td>h</td>
<td>Técnico FP Automatismo</td>
<td>18,62</td>
<td>558,60</td>
<td></td>
</tr>
</tbody>
</table>

**Suma de la partida:** 1201,20  
**Costes indirecto:** 2,00%  
**Total partida:** 1225,22

Sube el precio total a la cantidad de **MIL DOSCIENTOS VEINTICINCO** con **VEINTIDÓS**
V Mediciones y Presupuestos

2.3 Presupuestos

2.3.1 Presupuesto Instalacion automatismo

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Cantidad</th>
<th>Precio</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG21041J</td>
<td>Ud. Instalación central nave</td>
<td>3</td>
<td>4,438,46</td>
<td>13,315,98</td>
</tr>
<tr>
<td>EG21043K</td>
<td>Ud. Instalación de tubos automatismo</td>
<td>23</td>
<td>28,66</td>
<td>659,18</td>
</tr>
<tr>
<td>EG21042I</td>
<td>Ud. Instalación cajetines</td>
<td>54</td>
<td>14,2</td>
<td>766,80</td>
</tr>
<tr>
<td>EG21042J</td>
<td>Ud. Instalación par trenzado</td>
<td>60</td>
<td>37,66</td>
<td>2,259,60</td>
</tr>
<tr>
<td>EG21042R</td>
<td>Ud. Instalación de sensores switch</td>
<td>30</td>
<td>13,5</td>
<td>405,00</td>
</tr>
<tr>
<td>EG21042Q</td>
<td>Ud. Instalación de sensores capacitivo</td>
<td>36</td>
<td>39,4</td>
<td>1,418,40</td>
</tr>
<tr>
<td>EG21042P</td>
<td>Ud. Instalación de sensores mariposa</td>
<td>36</td>
<td>54,47</td>
<td>1,960,92</td>
</tr>
<tr>
<td>EG21042O</td>
<td>Ud. Instalación de sensores gas</td>
<td>12</td>
<td>45,53</td>
<td>546,36</td>
</tr>
<tr>
<td>EG21042I</td>
<td>Instalación de sensores nave TEMP/HUM</td>
<td>36</td>
<td>35,27</td>
<td>1,269,72</td>
</tr>
<tr>
<td></td>
<td>Total del capítulo 1: Instalación electrónica</td>
<td></td>
<td></td>
<td>22,601,96</td>
</tr>
</tbody>
</table>

2.3.2 Presupuesto Instalacion automatismo

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Cantidad</th>
<th>Precio</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF215213</td>
<td>Ud. Estudio de seguridad y higiene</td>
<td>1</td>
<td>2,550,00</td>
<td>2,550,00</td>
</tr>
<tr>
<td>EG21042I</td>
<td>Ud. Puesta en marcha</td>
<td>1</td>
<td>1229,22</td>
<td>1,229,22</td>
</tr>
<tr>
<td></td>
<td>Total del capítulo 2: Varios</td>
<td></td>
<td></td>
<td>3,775,22</td>
</tr>
</tbody>
</table>

2.4 Resumen de los presupuestos

<table>
<thead>
<tr>
<th>Código</th>
<th>Resumen</th>
<th>Importe</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Instalación electrónica</td>
<td>22,601,96</td>
<td>85,69%</td>
</tr>
<tr>
<td>2</td>
<td>Varios</td>
<td>3,775,22</td>
<td>14,31%</td>
</tr>
</tbody>
</table>

Total ejecución material 26,377,18
13% Gastos generales 3,429,03
6% Beneficio industrial 1,582,63

Suma de Gg + Bi 31,388,84
21% IVA 6,591,66

Total presupuesto contrata 37,980,50
Total presupuesto general 37,980,50

Sube el presupuesto general a la cantidad de TREINTA Y SIETE MIL NOVECIENTOS OCHENTA con CINCUENTA
Automatización de una Granja de Engorde de Pollos

Pliego de Condiciones

TITULACIÓN: Ingeniería Técnica industrial especialidad Electrónica Industrial

AUTORES: Héctor Gayán Sánchez .
DIRECTORES: Alfonso José Romero Nevado .
Fechas: Septiembre del 2013.
VI Pliego de Condiciones

1. Pliego de Condiciones Generales ................................................................. 81

   1.1 Capítulo preliminar: Disposiciones Generales........................................ 81
       1.1.1 Naturaleza y objeto del Pliego General ........................................... 81
       1.1.2 Documentación del Contrato de Obra.............................................. 81

   1.2. Capítulo I: Condiciones Facultativas.................................................... 81
       1.2.1 Epígrafe 1: Delimitación General de Funciones Técnicas ............... 81
       1.2.2 Epígrafe 2: De las obligaciones y derechos generales del Contratista . 83
       1.2.3 Epígrafe 3: Prescripciones generales relativas a los trabajos, los materiales y los medios auxiliares ........................................... 86
       1.2.4 Epígrafe 4: de las recepciones de las obras e instalaciones ............. 90

   1.3. Capítulo II: Condiciones Económicas.................................................... 91
       1.3.1 Epígrafe 1: Principio general ............................................................ 91
       1.3.2 Epígrafe 2: Fianzas ......................................................................... 92
       1.3.3 Epígrafe 3: De los precios ................................................................ 93
       1.3.4 Epígrafe 4: Obras por administración ............................................. 95
       1.3.5 Epígrafe 5: De la valoración y abono de los trabajos ....................... 98
       1.3.6 Epígrafe 6: De las indemnizaciones mutuas .................................... 101
       1.3.7 Epígrafe 7: Varios .......................................................................... 101

2 Pliego de Condiciones Particulares ............................................................. 103

   2.1 Capítulo 1: Instalación electrónica......................................................... 103
1. Pliego de condiciones generales

1.1 Capítulo preliminar: Disposiciones Generales

1.1.1 Naturaleza y objeto del Pliego General

Artículo 1. El presente Pliego General de Condiciones tiene carácter supletorio del Pliego de Condiciones particulares del Proyecto. Ambos, como parte del proyecto tienen como finalidad regular la ejecución de las obras fijando sus niveles técnicos y de calidad exigibles, precisando las intervenciones que corresponden, según el contrato y de acuerdo con la legislación aplicable, al Promotor o propietario de la obra, al Contratista o constructor de la obra, a sus técnicos y encargados, al Proyectista, así como las relaciones entre ellos y sus obligaciones correspondientes en orden al cumplimiento del contrato de obra.

1.1.2 Documentación del Contrato de Obra

Artículo 2. Integran el contrato los siguientes documentos relacionados por orden de relación por lo que se refiere al valor de sus especificaciones en caso de omisión o contradicción aparente:

1. Las condiciones fijadas en el mismo documento de contrato de empresa o arrendamiento de obra si es que existe.

2. El Pliego de Condiciones particulares.


4. El resto de la documentación del Proyecto (memoria, planos, mediciones y presupuesto).

Las órdenes e instrucciones de la Dirección facultativa de las obras se incorporan al Proyecto como interpretación, complemento o precisión de sus determinaciones. En cada documento, las especificaciones literales prevalecen sobre las gráficas y en los planos, la cota prevalece sobre la medida a escala.

1.2. Capítulo I: Condiciones Facultativas

1.2.1 Epígrafe 1: Delimitación General de Funciones Técnicas

El Proyectista

Artículo 3. Corresponde al Proyectista:

a) Redactar los complementos o rectificaciones del proyecto que sean necesarias.

b) Asistir a las obras, cuantas veces lo requiera su naturaleza y complejidad, para resolver
VI Pliego de Condiciones

las contingencias que se produjeran e impartir las instrucciones complementarias que sean necesarias para conseguir la solución correcta.

c) Coordinar la intervención en obra de otros técnicos que, en su caso, concurran a la dirección con función propia en aspectos parciales de su especialidad.

d) Aprobar las certificaciones parciales de obra, la liquidación final y asesorar al promotor en el acto de la recepción.

e) Preparar la documentación final de la obra y expedir y suscribir el certificado de final de obra.

El Constructor

Artículo 4. Corresponde al Constructor:

a) Organizar los trabajos de construcción, redactando los planes de obra que sean necesarias y proyectando o autorizando las instalaciones provisionales y medios auxiliares de la obra.

b) Elaborar el Plan de Seguridad y Salud en el trabajo en el que se analicen, estudien, desarrollen y complementen las previsiones contempladas en el estudio o estudio básico, en función de su propio sistema de ejecución de la obra.

c) Suscribir con el Proyectista el acto de replanteo de la obra.

d) Ostentar la jefatura de todo el personal que intervenga en la obra y coordinar las intervenciones de los subcontratistas.

e) Asegurar la idoneidad de todos y cada uno de los materiales y elementos constructivos que se utilizan, comprobando sus preparados en obra y rechazando, por iniciativa propia o por prescripción del Proyectista, los suministros o prefabricados que no cuenten con las garantías o documentos de idoneidad requeridos por las normas de aplicación.

f) Custodiar el Libro de órdenes y seguimiento de la obra, y dar el visto bueno a las anotaciones que se practiquen.

g) Facilitar al Proyectista, con tiempo suficiente, los materiales necesarios para el cumplimiento de su cometido.

h) Preparar las certificaciones parciales de obra y la propuesta de liquidación final.

i) Suscribir con el Promotor las actas de recepción provisional y definitiva.

j) Conectar los seguros de accidentes de trabajo y de daños a terceros durante la obra.
VI Pliego de Condiciones

1.2.2 Epígrafe 2: De las obligaciones y derechos generales del Contratista

Verificación de los documentos del proyecto

Artículo 5. Antes de empezar las obras, el Contratista consignará por escrito que la documentación aportada le resulta suficiente para la comprensión de la totalidad de la obra contratada, o en caso contrario, solicitará las aclaraciones pertinentes.

Plan de Seguridad y Salud

Artículo 6. El Contratista, a la vista del Proyecto que contenga el Estudio de Seguridad y Salud o bien el Estudio básico, presentará el Plan de Seguridad y Salud que se deberá aprobar, antes del inicio de la obra, por coordinador en materia de seguridad y salud o por la dirección facultativa en caso de no ser necesaria la designación de coordinador.

Será obligatoria la designación, por parte del promotor, de un coordinador en materia de seguridad y salud durante la ejecución de la obra siempre que la misma intervenga más de una empresa, o una empresa y trabajadores autónomos o diversos trabajadores autónomos.

Los contratistas y subcontratistas serán responsables de la ejecución correcta de las medidas preventivas fijadas en el plan de seguridad y salud, relativo a las obligaciones que les correspondan a ellos directamente o, en todo caso, los trabajadores autónomos contratados por ellos. Los contratistas y subcontratistas responderán solidariamente de las consecuencias que se deriven del incumplimiento de las medidas previstas en el plan, en los términos del apartado 2 del artículo 42 de la Ley 31/1995 de Prevención de Riesgos Laborales.

Oficina en la obra

Artículo 8. El Contratista habilitará a la obra una oficina en la que habrá una mesa o mostrador adecuado, donde puedan extender y consultar los planos.

En dicha oficina tendrá siempre el Contratista a disposición de la Dirección Facultativa:

El proyecto completo, incluidos los complementos que en su caso, redacte el proyectista.

La Licencia de obras.

El Libro de Órdenes y Asistencias.

El Plan de Seguridad y Salud.

La documentación de los seguros mencionados en el artículo 4.

Dispondrá además el Contratista una oficina para la Dirección Facultativa, convenientemente acondicionada para trabajar con normalidad a cualquier hora de la jornada.

El Libro de Incidencias, que deberá permanecer siempre en la obra, se encontrará en poder
VI Pliego de Condiciones

del coordinador en materia de seguridad y salud o, en el caso de no ser necesaria la
designación de coordinador, en poder de la Dirección Facultativa.

Representación del Contratista

Artículo 9. El Contratista está obligado a comunicar a la propiedad la persona designada
como delegado suyo en la obra, que tendrá el carácter de Jefe de la misma, con dedicación
plena y con facultades para representar y adoptar en todo momento aquellas decisiones que
se refieren a la contrata.

Sus funciones serán las del Contratista según se especifica en el artículo 5.

Cuando la importancia de las obras lo requiera y así se consigne en el Pliego de
"Condiciones particulares de índole facultativa" el Delegado del Contratista será un
facultativo de grado superior o grado medio, según los casos.

El Pliego de Condiciones particulares determinará el personal facultativo o especialista que
el Contratista obligue a mantener en la obra como mínimo, y el tiempo de dedicación
comprometida. El incumplimiento de esta obligación o, en general, la falta de cualificación
suficiente por parte del personal según la naturaleza de los trabajos, facultará al proyectista
para ordenar la paralización de las obras, sin derecho a reclamación, hasta que se subsane
la deficiencia.

Presencia del Contratista en la obra

Artículo 10. El Jefe de obra, por sí mismo o a través de sus técnicos o encargado-s, estará
presente durante la jornada legal de trabajo y acompañará a la Dirección Facultativa en las
visitas que hagan a las obras, poniendo a su disposición para la práctica los
reconocimientos que se consideren necesarios y suministrando los datos que sean
necesarios para la comprobación de mediciones y liquidaciones.

Trabajos no estipulados expresamente

Artículo 11. Es obligación de la contrata ejecutar todo lo que sea necesario para la buena
construcción y aspecto de las obras, aunque no se encuentre expresamente determinado en
los documentos de Proyecto, siempre que, sin separarse de su espíritu y recta
interpretación, lo disponga el Proyectista dentro de los límites de posibilidades que los
presupuestos habiliten para cada unidad de obra y tipo de ejecución.

En caso de defecto de especificación en el Pliego de Condiciones Particulares, se entenderá
que es necesaria una modificación del proyecto requiriendo consentimiento expreso de la
propiedad toda variación que suponga incremento de precios de alguna unidad de obra en
más del 20 por 100 o del total del presupuesto en más de un 10 por 100.

Interpretaciones, aclaraciones y modificaciones de los documentos del proyecto

Artículo 12. Cuando se trate de aclarar, interpretar o modificar preceptos de los Pliegos de
Condiciones o indicaciones de los planos o croquis, las órdenes e instrucciones
correspondientes se comunicarán precisamente por escrito al Contratista que estará
VI Pliego de Condiciones

obligado a devolver los originales o las copias suscribiendo con su firma el conforme que figurará al pie de todas las órdenes, avisos o instrucciones que reciba, tanto de la Dirección Facultativa.

Cualquier reclamación en contra de las disposiciones de la Dirección Facultativa quiera hacer el Contratista, deberá dirigirla, dentro precisamente del plazo de tres días, aquel que la hubiere dictado, el cual dará al Contratista el correspondiente recibo si así se lo pidiera.

**Artículo 13.** El Contratista podrá requerir de la Dirección Facultativa, las instrucciones o aclaraciones que sean necesarias para la correcta interpretación y ejecución del proyecto.

**Reclamaciones contra las órdenes de la Dirección Facultativa**

**Artículo 14.** Las reclamaciones que el Contratista quiera hacer contra las órdenes o instrucciones demandadas de la Dirección Facultativa, sólo podrá presentarlas, a través del Proyectista, ante la Propiedad, si son de orden económico y de acuerdo con las condiciones estipuladas en los Pliegos de condiciones correspondientes. Contra las disposiciones de orden técnico de la Dirección Facultativa, no se admitirá ninguna reclamación, y el Contratista podrá salvar su responsabilidad, si lo estima oportuno, mediante la exposición razonada dirigida al Proyectista, el cual podrá limitar su respuesta al acuse de recepción que en todo caso será obligatorio para este tipo de reclamaciones.

**Recusación por el Contratista del personal nombrado por el Proyectista**

**Artículo 15.** El Contratista no podrá recusar a los Proyectistas o personal encargado por éstos de la vigilancia de la obra, ni pedir que por parte de la propiedad se designen otros facultativos para los reconocimientos y mediciones.

Cuando se crea perjudicado por su labor, procederá de acuerdo con lo estipulado en el artículo precedente, pero sin que por ello no se pueda interrumpir ni perturbar la marcha de los trabajos.

**Faltas del personal**

**Artículo 16.** El Proyectista, en el caso de desobediencia a sus instrucciones, manifiesta incompetencia o negligencia grave que comprometa o perturbe la marcha de los trabajos, podrá requerir al Contratista para que aparte de la obra a los dependientes u operarios causantes de la perturbación.

**Artículo 17.** El Contratista podrá subcontratar capítulos o unidades de obra a otros contratistas e industriales, sujetando en su caso, a lo estipulado en el Pliego de Condiciones particulares y sin perjuicio de sus obligaciones como Contratista general de la obra.
VI Pliego de Condiciones

1.2.3 Epígrafe 3: Prescripciones generales relativas a los trabajos, los materiales y los medios auxiliares

Caminos y accesos

Artículo 18. El Contratista dispondrá por su cuenta los accesos a la obra, la señalización y el cerramiento o vallado. La Dirección Facultativa podrá exigir su modificación o mejora.

Replanteo

Artículo 19. El Contratista iniciará las obras replanteando en el terreno y señalando sus referencias principales que mantendrá como base de ulteriores replanteos parciales. Estos trabajos se considerarán a cargo del Contratista e incluidos en su oferta.

El Contratista someterá el replanteo a la aprobación de la Dirección Facultativa y una vez que ésta haya dado su conformidad preparará un acta acompañada de un plano que deberá ser aprobado por el Proyectista, y será responsabilidad del Contratista la omisión de este trámite.

Comienzo de la obra. Ritmo de ejecución de los trabajos

Artículo 20. El Contratista comenzará las obras en el plazo marcado en el Pliego de Condiciones Particulares, desarrollando en la forma necesaria para que dentro de los períodos parciales señalados en el Pliego citado queden ejecutados los trabajos correspondientes y, en consecuencia, la ejecución total se lleve a cabo dentro del plazo exigido en el Contrato.

Obligatoriamente y por escrito, el Contratista deberá dar cuenta a la Dirección Facultativa del comienzo de los trabajos al menos con tres días de anticipación.

Orden de los trabajos

Artículo 21. En general, la determinación del orden de los trabajos es facultad de la contrat, salvo aquellos casos en que, por circunstancias de orden técnico, la Dirección Facultativa estime conveniente variar.

Facilidad para otros Contratistas

Artículo 22. De acuerdo con lo que requiera la Dirección Facultativa, el Contratista General deberá dar todas las facilidades razonables para la realización de los trabajos que sean encomendados a todos los demás Contratistas que intervengan en la obra. Sin perjuicio de las compensaciones económicas que tengan lugar entre Contratistas por utilización de medios auxiliares o suministros de energía u otros conceptos. En caso de litigio, ambos Contratistas a lo que resuelva la Dirección Facultativa.

Ampliación del proyecto por causas imprevistas o de fuerza mayor

Artículo 23. Cuando sea necesario por motivo imprevisto o por cualquier accidente ampliar el Proyecto, no se interrumpirán los trabajos y se continuarán según las instrucciones dadas por la Dirección Facultativa en tanto se formule o tramita el Proyecto
Reformado.

El Contratista está obligado a realizar con su personal y sus materiales lo que la Dirección de las obras disponga para hacer calzados, apuntalamientos, derribos, recalces, andamios o cualquier obra de carácter urgente, anticipando de momento este servicio, el importe del que le será consignado en un presupuesto adicional o abonado directamente, de acuerdo con lo que se estipule.

**Prórroga por causa de fuerza mayor**

**Artículo 24.** Si por causa de fuerza mayor e independiente de la voluntad del Contratista, éste no pudiese comenzar las obras, o tuviera que suspenderlas, o no le fuera posible acabar en los plazos prefijados, se le otorgará una prórroga proporcionada para el cumplimiento de la contrata, previo informe favorable del Proyectista. Por ello, el Contratista expondrá, en escrito dirigido a la Dirección Facultativa la causa que impide la ejecución o la marcha de los trabajos y el retraso que por ello se originaría en los plazos acordados, razonando debidamente la prórroga que por la dicha causa solicita.

**Responsabilidad de la Dirección Facultativa en el retraso de la obra**

**Artículo 25.** El Contratista no podrá excusarse de no haber cumplido los plazos de obras estipulados, alegando como causa la carencia de planos u órdenes de la Dirección Facultativa, a excepción del caso en que habiendo solicitado por escrito no se le hubiera proporcionado.

**Condiciones generales de ejecución de los trabajos**

**Artículo 26.** Todos los trabajos se ejecutarán con estricta sujeción al Proyecto, a las modificaciones que previamente hayan sido aprobadas y las órdenes e instrucciones que bajo la responsabilidad de la Dirección Facultativa y por escrito, entreguen los Proyectistas al Contratista, dentro de las limitaciones presupuestarias y de conformidad con lo especificado en el artículo 11. Durante la ejecución de la obra se tendrán en cuenta los principios de acción preventiva de conformidad con la Ley de Prevención de Riesgos Laborales.

**Obras ocultas**

**Artículo 27.** De todos los trabajos y unidades de obra que hayan de quedar ocultos a la terminación del edificio, se levantarán los planos que sean necesarios para que queden perfectamente definidos; estos documentos se extenderán por triplicado y se entregarán: uno a los Técnicos Proyectistas y el otro al Contratista.

Estos documentos irán firmados por los técnicos directores y el contratista. Los planos, que deberán ir suficientemente acotados, se considerarán documentos indispensables e irrecusables para efectuar las mediciones.
VI Pliego de Condiciones

Trabajos defectuosos

Artículo 28. El Contratista deberá emplear materiales que cumplan las condiciones exigidas en las "Condiciones generales y particulares de índole técnica" del Pliego de Condiciones y realizará todos y cada uno de los trabajos contratados de acuerdo con lo especificado también en dicho documento.

Por ello, y hasta que tenga lugar la recepción definitiva del edificio, es responsable de la ejecución de los trabajos que ha contratado y de las faltas y defectos que en los trabajos pudieran existir por su mala ejecución o por la deficiente calidad los materiales empleados o aparatos colocados sin que le exonere de responsabilidad el control que es competencia de los Técnicos Proyectistas, ni tampoco el hecho de que estos trabajos hayan sido valorados en las certificaciones parciales de obra, que siempre se entenderán extendidas y abonadas a buena cuenta.

Como consecuencia de lo expresado anteriormente, cuando el Técnico Proyectista detecte vicios o defectos en los trabajos ejecutados, o que los materiales empleados o los aparatos colocados no reúnan las condiciones preceptuadas, ya sea en el transcurso de la ejecución de los trabajos, o una vez finalizados, y antes de verificarse la recepción definitiva de la obra, podrá disponer que las partes defectuosas sean demolidas o desmontados y reconstruidas o instalados de acuerdo con lo contratado, y todo ello a cargo de la contrata. Si ésta no estimase justa la decisión y se negase a la demolición o desmontaje y reconstrucción ordenadas, se planteará la cuestión ante el Proyectista de la obra, que lo resolverá.

Vicios ocultos

Artículo 29. Si el Técnico Proyectista tuviera razones de peso para creer en la existencia de vicios ocultos de construcción en las obras ejecutadas, ordenará efectuar en cualquier momento, y antes de la recepción definitiva, los ensayos, destructivos o no, que crea necesarios para reconocer los trabajos que suponga defectuosos. Los gastos que ocasionen serán de cuenta del Contratista, siempre y cuando los vicios existan realmente, de lo contrario serán a cargo de la Propiedad.

Los materiales y aparatos. Su procedencia

Artículo 30. El Contratista tiene libertad de proveerse de los materiales y aparatos de todas clases en los puntos que él crea conveniente, salvo en los casos en que el Pliego Particular de Condiciones Técnicas preceptúe una procedencia determinada.

Obligatoriamente, y antes de proceder a su utilización y acopio, el Contratista deberá presentar al Técnico Proyectista una lista completa de los materiales y aparatos que vaya a utilizar en la que se especifiquen todas las indicaciones sobre marcas, calidades, procedencia e idoneidad de cada uno.
Presentación de muestras

Artículo 31. A petición de la Dirección Facultativa, el Contratista le presentará las muestras de los materiales con la anticipación prevista en el Calendario de la Obra.

Materiales no utilizable

Artículo 32. El Contratista, a su cargo, transportará y colocará, agrupando ordenadamente y en el lugar adecuado, los materiales procedentes de las excavaciones, escombros, etc., que no sean utilizables en la obra. Se retirarán de la obra o se llevará al vertedero, cuando así se establezca en el Pliego de Condiciones particulares vigentes en la obra.

Si no se hubiese preceptuado nada sobre el particular, se retirarán de la obra cuando así lo ordene la Dirección Facultativa, pero acordando previamente con el Contratista su justa tasación, teniendo en cuenta el valor de estos materiales y los gastos de su transporte.

Materiales y aparatos defectuosos

Artículo 33. Cuando los materiales, elementos de las instalaciones o aparatos no fuesen de la calidad prescrita en este Pliego, o no tuvieran la preparación que se exige o, en fin, cuando la falta de prescripciones formales del Pliego, se reconociera o se demostrara que no eran adecuados para su objeto, la Dirección Facultativa dará orden al Contratista de sustituir por otros que satisfagan las condiciones o cumplan el objetivo al que se destinan.

Si el Contratista a los quince (15) días de recibir órdenes que retire los materiales que no estén en condiciones no lo ha hecho, podrá hacer lo la Propiedad cargando los gastos a la contrata. Si los materiales, elementos instalaciones o aparatos fueran defectuosos, pero aceptables a criterio de la Dirección Facultativa, se recibirán, pero con la rebaja de precio que él determine, a no ser que el Contratista prefiera sustituirlos por otros en condiciones.

Gastos ocasionados por pruebas y ensayos

Artículo 34. Todos los gastos de los ensayos, análisis y pruebas realizados por el laboratorio y, en general, por personas que no intervengan directamente en la obra serán por cuenta del propietario o del promotor (art. 3.1. Del Decreto 375/ 1988. Generalitat de Catalunya)

Limpieza de las obras

Artículo 35. Es obligación del Contratista mantener limpias las obras y sus alrededores, tanto de escombros como de materiales sobrantes, hacer desaparecer las instalaciones provisionales que no sean necesarias, así como adoptar las medidas y ejecutar todos los trabajos que sean necesarios para que la obra ofrezca buen aspecto.

Obras sin prescripciones

Artículo 36. En la ejecución de trabajos que entran en la construcción de las obras e instalaciones y para los que no existan prescripciones consignadas explícitamente en este Pliego ni en la documentación restante del Proyecto, el Contratista se atenderá, en primer
VI Pliego de Condiciones

lugar, a las instrucciones que dicte la Dirección Facultativa de las obras y, en segundo lugar, a las reglas y prácticas de la buena construcción.

1.2.4 Epígrafe 4: de las recepciones de las obras e instalaciones

De las recepciones provisionales

Artículo 37. Treinta días antes de finalizar las obras, la Dirección Facultativa comunicará a la Propiedad la proximidad de su finalización con el fin de convenir la fecha para el acto de recepción provisional.

Esta recepción se hará con la intervención de la Propiedad, del Constructor y la Dirección Facultativa. Se convocará también a los técnicos restantes que, en su caso, hubieran intervenido en la dirección con función propia en aspectos parciales o unidades especializadas.

Practicado un detenido reconocimiento de las obras, se extenderá un acta con tantos ejemplares como intervinientes y firmados por todos ellos. Desde esa fecha comenzará a correr el plazo de garantía, si las obras se encontraran en estado de ser admitidas.

Seguidamente, los Técnicos de la Dirección Facultativa extenderán el correspondiente Certificado de final de obra. Cuando las obras no se hallen en estado de ser recibidas, se hará constar en el acta y se dará al Contratista las oportunas instrucciones para subsanar los defectos observados, fijando un plazo para subsanarlos, finalizado el cual, se efectuará un nuevo reconocimiento a fin de proceder a la recepción provisional de la obra. Si el Contratista no hubiese cumplido, podrá declarar resuelto el contrato con pérdida de la fianza.

Documentación final de obra

Artículo 38. La Dirección Facultativa facilitará a la Propiedad la documentación final de las obras, con las especificaciones y contenido dispuestos por la legislación vigente y, si se trata de viviendas, con lo establecido en los párrafos 2, 3, 4 y 5, del apartado 2 del artículo 4º. Del Real Decreto 515/1989, de 21 de abril.

Medición definitiva de los trabajos y liquidación provisional de la obra

Artículo 39. Recibidas provisionalmente las obras, se procederá inmediatamente por el técnico proyectista a su medición definitiva, con la asistencia precisa del Contratista o de su representante. Se extenderá la oportuna certificación por triplicado que, aprobada por la Dirección Facultativa con su firma, servirá para el abono por parte de la Propiedad del saldo resultante salvo la cantidad retenida en concepto de fianza.

Plazo de garantía

Artículo 40. El plazo de garantía deberá estipularse en el Pliego de Condiciones Particulares y en cualquier caso nunca deberá ser inferior a nueve meses.
VI Pliego de Condiciones

Conservación de las obras recibidas provisionalmente

Artículo 41. Los gastos de conservación durante el plazo de garantía comprendido entre las recepciones provisionales y la definitiva, serán a cargo del Contratista. Si el edificio fuese ocupado o utilizado antes de la recepción definitiva, la vigilancia, limpieza y reparaciones causadas por el uso serán a cargo del propietario y las reparaciones por vicios de obra o por defectos en las instalaciones, serán a cargo de la contrata.

De la recepción definitiva

Artículo 42. La recepción definitiva se verificará después de transcurrido el plazo de garantía en igual forma y con las mismas formalidades que la provisional, a partir de cuya fecha cesará la obligación del Contratista de reparar a su cargo aquellos desperfectos inherentes a la conservación normal de los edificios y quedarán sólo subsistentes todas las responsabilidades que pudieran afectar por vicios de construcción.

Prórroga del plazo de garantía

Artículo 43. Si al proceder al reconocimiento para la recepción definitiva de la obra, no se encontrara en las condiciones debidas, la recepción definitiva se aplazará y la Dirección Facultativa marcará al Contratista los plazos y formas en que se deberán hacer las obras necesarias y, de no efectuarse dentro de estos plazos, podrá resolverse el contrato con pérdida de la fianza.

De las recepciones de trabajos la contrata de las que haya sido rescindida

Artículo 44. En el caso de resolución del contrato, el Contratista estará obligado a retirar, en el plazo que se fije en el Pliego de Condiciones Particulares, la maquinaria, medios auxiliares, instalaciones, etc., a resolver los subcontratos que tuviese concertados y a dejar la obra en condiciones de ser reanudada por otra empresa. Las obras y trabajos terminados por completo se recibirán provisionalmente con los trámites establecidos en el artículo 35.

Transcurrido el plazo de garantía se recibirán definitivamente según lo dispuesto en los artículos 39 y 40 de este Pliego. Para las obras y trabajos no terminados pero aceptables a criterio de la Dirección Facultativa, se efectuará una sola y definitiva recepción.

1.3. Capítulo II: Condiciones Económicas

1.3.1 Epígrafe 1: Principio general

Artículo 45. Todos los que intervienen en el proceso de construcción tienen derecho a percibir puntualmente las cantidades acreditadas por su correcta actuación de acuerdo con las condiciones contractualmente establecidas.

Artículo 46. La propiedad, el contratista y, en su caso, los técnicos pueden exigirse recíprocamente las garantías adecuadas al cumplimiento puntual de sus obligaciones de pago.
VI Pliego de Condiciones

1.3.2 Epígrafe 2: Fianzas

**Artículo 47.** El Contratista prestará fianza de acuerdo con algunos de los procedimientos siguientes, según se estipule:

a) Depósito previo, en metálico o valores, o aval bancario, por importe entre el 3 por 100 y 10 por 100 del precio total de contrata (art. 53).

b) Mediante retención en las certificaciones parciales o pagos a cuenta en la misma proporción.

**Fianza provisional**

**Artículo 48.** En caso de que la obra se adjudique por subasta pública, el depósito provisional para tomar parte se especificará en el anuncio de dicha subasta y su cuantía será de ordinario, y salvo estipulación distinta en el Pliego de Condiciones particulares vigente en la obra, de un tres por ciento (3 por 100) como mínimo, del total del presupuesto de contrata.

El Contratista al que se haya adjudicado la ejecución de una obra o servicio por la misma, deberá depositar en el punto y plazo fijados en el anuncio de la subasta o el que se determine en el Pliego de Condiciones particulares del Proyecto, la fianza definitiva que se señale y, en su defecto, su importe será del diez por ciento (10 por 100) de la cantidad por la que se haga la adjudicación de la obra, fianza que puede constituirse en cualquiera de las formas especificadas en el apartado anterior.

El plazo señalado en el párrafo anterior, y salvo condición expresa establecida en el Pliego de Condiciones Particulares, no excederá de treinta días naturales a partir de la fecha en que sea comunicada la adjudicación y en este plazo deberá presentar el adjudicatario la carta de pago o recibo que acredite la constitución de la fianza a que se refiere el mismo párrafo. El incumplimiento de este requisito dará lugar a que se declare nula la adjudicación, y el adjudicatario perderá el depósito provisional que hubiese hecho para tomar parte en la subasta.

**Ejecución de trabajos con cargo a la fianza**

**Artículo 49.** Si el Contratista se negase a hacer por su cuenta los trabajos necesarios para ultimar la obra en las condiciones contratadas, la Dirección Facultativa, en nombre y representación del Propietario, los ordenará ejecutar a un tercero o, podrá realizar directamente por administración, abonando su importe con la fianza depositada, sin perjuicio de las acciones a las que tenga derecho el propietario, en caso de que el importe de la fianza no fuera suficiente para cubrir el importe de los gastos efectuados en las unidades de obra que no fueran de recepción.
VI Pliego de Condiciones

De su devolución en general

Artículo 50. La fianza retenida será devuelta al Contratista en un plazo que no exceda treinta (30) días una vez firmada el Acta de Recepción Definitiva de la obra. La propiedad podrá exigir que el Contratista le acredite la liquidación y saldo de sus deudas causadas por la ejecución de la obra, tales como salarios, suministros, subcontratos...

Devolución de la fianza en caso de que se hagan recepciones parciales

Artículo 51. Si la propiedad, con la conformidad de la Dirección Facultativa, accediera a hacer recepciones parciales, tendrá derecho el Contratista a que le devuelva la parte proporcional de la fianza.

1.3.3 Epígrafe 3: De los precios

Composición de los precios unitarios

Artículo 52. El cálculo de los precios de las distintas unidades de obra es el resultado de su -mar los costes directos, los indirectos, los gastos generales y el beneficio industrial.

Se consideran costes directos:

a) La mano de obra, con sus pluses, cargas y seguros sociales, que intervengan directamente en la ejecución de la unidad de obra.

b) Los materiales, los precios resultantes a pie de obra, que queden integrados en la unidad de que se trate o que sean necesarios para su ejecución.

c) Los equipos y sistemas técnicos de seguridad e higiene para la prevención y protección de accidentes y enfermedades profesionales.

d) Los gastos de personal, combustible, energía, etc. que tengan lugar por el accionamiento o funcionamiento de la maquinaria e instalación utilizadas en la ejecución de la unidad de obra.

e) Los gastos de amortización y conservación de la maquinaria, instalaciones, sistemas y equipos anteriormente citados.

Se considerarán costes indirectos:

Los gastos instalación de oficinas a pie de obra, comunicaciones, edificación de almacenes, talleres, pabellones temporales para obreros, laboratorios, seguros, etc., Los del personal técnico y administrativo adscritos exclusivamente a la obra y los imprevistos. Todos estos gastos, se cifrarán en un porcentaje de los costes directos.
VI Pliego de Condiciones

Se considerarán gastos generales:

Los gastos generales de empresa, gastos financieros, cargas fiscales y tasas de la administración, legalmente establecida. Se cifrarán como un porcentaje de la suma de los costes directos e indirectos (en los contratos de obras de la Administración pública este porcentaje se establece entre un 13 por 100 y un 17 por 100.)

Beneficio industrial:

El beneficio industrial del Contratista se establece en el 6 por 100 sobre la suma de las partidas anteriores.

Precio de Ejecución material:

Se denominará Precio de Ejecución material el resultado obtenido por la suma de los anteriores conceptos excepto el Beneficio industrial.

Precio de Contrata

El precio de Contrata es la suma de los costes directos, los indirectos, los Gastos Generales y el Beneficio Industrial. El IVA gira sobre esta suma, pero no integra el precio.

Precios de contrat. Importe de contrat

Artículo 53. En caso de que los trabajos a realizar en un edificio u obra ajena cualquiera se contratasen a riesgo y ventura, se entiende por Precio de Contrata el que importa el coste total de la unidad de obra, es decir, el precio de ejecución material más el tanto por ciento (%) sobre este último precio en concepto de Beneficio Industrial de Contratista. El beneficio se estima normalmente, en un 6 por 100, salvo que en las Condiciones Particulares se establezca otro distinto.

Precios contradictorios

Artículo 54. Se producirán precios contradictorios sólo cuando la Propiedad por medio del Arquitecto decida introducir unidades o cambios de calidad en alguna de las previstas, o cuando sea necesario afrontar alguna circunstancia imprevista. El Contratista estará obligado a efectuar los cambios.

Si no hay acuerdo, el precio se resolverá contradictoriamente entre la dirección facultativa y el Contratista antes de comenzar la ejecución de los trabajos y en el plazo que determine el Pliego de Condiciones Particulares. Si subsiste la diferencia se acudirá, en primer lugar, al concepto más análogo dentro del cuadro de precios del proyecto, y en segundo lugar en el banco de precios de utilización más frecuente en la localidad. Los contradictorios que hubiere se referirán siempre a los precios unitarios de la fecha del contrato.
VI Pliego de Condiciones

Reclamaciones de aumento de precios por causas diversas

Artículo 55. Si el Contratista antes de la firma del contrato, no hubiera hecho la reclamación u observación oportuna, no podrá bajo ningún pretexto de error u omisión reclamar aumento de los precios fijados en el cuadro correspondiente del presupuesto que sirva de base para la ejecución de las obras (con referencia a Facultativas).

Formas tradicionales de medir o de aplicar los precios

Artículo 56. En ningún caso podrá alegar el Contratista los usos y costumbres del país respecto a la aplicación de los precios o de la forma de medir las unidades de obra ejecutadas, se respetará lo previsto en primer lugar, el Pliego General de Condiciones Técnicas, y en segundo lugar, el Pliego General de Condiciones particulares.

De la revisión de los precios contratados

Artículo 57. Si se contratan obras por su cuenta y riesgo, no se admitirá la revisión de los precios en tanto que el incremento no llegue, en la suma de las unidades que faltan por realizar de acuerdo con el Calendario, a un montante superior al tres por 100 (3 por 100) del importe total del presupuesto de Contrato.

En caso de producirse variaciones en alza superiores a este porcentaje, se efectuará la revisión correspondiente de acuerdo con la fórmula establecida en el Pliego de Condiciones Particulares, recibiendo el Contratista la diferencia en más que resulte por la variación del IPC superior al 3 por 100. No habrá revisión de precios de las unidades que puedan quedar fuera de los plazos fijados en el Calendario de la oferta.

Almacenamiento de materiales

Artículo 58. El Contratista está obligado a hacer los almacenajes de materiales o aparatos de obra que la Propiedad ordene por escrito. Los materiales almacenados, una vez abonados por el Propietario son, de la exclusiva propiedad de éste; de su cuidado y conservación será responsable el Contratista.

1.3.4 Epígrafe 4: Obras por administración

Administración

Artículo 59. Se dicen "Obras por Administración" aquellas en que las gestiones que sea necesario para su realización las lleva directamente el propietario, sea él personalmente, sea un representante suyo o bien mediante un constructor. Las obras por administración se clasifican en las dos modalidades siguientes:

a) Obras por administración directa.

b) Obras por administración delegada o indirecta.
Obras por administración directa

Artículo 60. Se dicen "Obras por Administración directa" aquellas en que el Propietario por sí mismo o mediante un representante, que puede ser la Dirección Facultativa, autorizado expresamente por este tema, lleve directamente las gestiones que sean necesarias para la ejecución del obra, adquiriendo sus materiales, contratando su transporte a la obra y, en definitiva, intervinviendo directamente en todas las operaciones precisas para que el personal y los obreros contratados por él puedan realizar, en estas obras el constructor, si fuera, o el encargado de su realización, es un simple dependiente del propietario, ya sea como empleado suyo o como autónomo contratado por él, que es el que reúne, por tanto, la doble personalidad de Propiedad y Contratista.

Obras por administración delegada o indirecta

Artículo 61. Se entiende por "Obra por administración delegada o indirecta" la que convienen un Propietario y un Constructor para que este último, por cuenta de aquél y como delegado suyo, realice las gestiones y los trabajos que sean necesarios y se convenzan. Son, por tanto, características peculiares de las "Obras por Administración delegada o indirecto" las siguientes:

a) Por parte del Propietario, la obligación de abonar directamente o por medio del Constructor todos los gastos inherentes a la realización de los trabajos convenidos, reservándose el Propietario la facultad de poder ordenar, bien por sí mismo o mediante la Dirección Facultativa en su representación, el orden y la marcha de los trabajos, la elección de los materiales y aparatos que en los trabajos deben emplearse y, al fin, todos los elementos que crea necesarios para regular la realización de los trabajos convenidos.

b) Por parte del Contratista, la obligación de llevar la gestión práctica de los trabajos, aportando sus conocimientos constructivos, los medios auxiliares precisos y, en definitiva, todo aquello que, en armonía con su tarea, se requiera para el ejecución de los trabajos, recibiendo por ello del Propietario un tanto por ciento (%) prefijado sobre el importe total de los gastos efectuados y abonados por el Contratista.

Liquidación de obras por administración

Artículo 62. Para la liquidación de los trabajos que se ejecuten por administración delegada o indirecta, regirán las normas que al efecto se establezcan en las "Condiciones particulares de índole económica" vigentes en la obra, en caso de que no hubieran, los gastos de administración las presentará el Contratista al Propietario, en relación valorada a la que se adjuntarán en el orden expresado más adelante los siguientes documentos conformados todos ellos por la Dirección facultativa:

a) Las facturas originales de los materiales adquiridos para los trabajos y el documento adecuado que justifique el depósito o la utilización de dichos materiales en la obra.

b) Las nóminas de los jornales abonados, ajustadas a lo establecido en la legislación vigente, especificando el número de horas trabajadas en la obra por los operarios de cada oficio y su categoría, acompañando dichas nóminas con una relación numérica de los encargados, capataces, jefes de equipo, oficiales y ayudantes de cada oficio, peones especializados y sueltos, listeros, guardas, etc., que hayan trabajado en la obra durante el
plazo de tiempo al que correspondan las nóminas que se presenten.

c) Las facturas originales de los transportes de materiales puestos en la obra o de retirada de escombros.

d) Los recibos de licencias, impuestos y demás cargas inherentes a la obra que hayan pagado o en la gestión de la que haya intervenido el Constructor, ya que su abono es siempre a cuenta del Propietario.

A la suma de todos los gastos inherentes a la propia obra en la gestión o pago de la que hayan intervenido el Constructor se le aplicará, si no hay convenio especial, un quince por ciento (15 por 100), entendiendo que en este porcentaje están incluidos los medios auxiliares y los de seguridad preventivos de accidentes, los gastos generales que originen al Constructor los trabajos por administración que realice el Beneficio Industrial del mismo.

Abono a constructor de las cuentas de administración delegada

Artículo 63. Salvo pacto distinto, los abonos al Constructor de las cuentas de Administración delegada, los realizará el Propietario mensualmente según los partes de trabajo realizados aprobados por el propietario o por su delegado representante.

Independientemente, la Dirección Facultativa Técnico redactará, con la misma periodicidad, la medición de la obra realizada, valorando la de acuerdo con el presupuesto aprobado. Estas valoraciones no tendrán efectos para los abonos al Contratista que se hubiese pactado lo contrario contractualmente.

Normas para la adquisición de los materiales y aparatos

Artículo 64. No obstante, las facultades que en estos trabajos por Administración delegada se reserva el Propietario para la adquisición de los materiales y aparatos, si al Contratista se le autoriza para gestionar y adquirirlos, deberá presentar al Propietario, o en su representación en la Dirección Facultativa, los precios y las muestras de los materiales y aparatos ofrecidos, necesitando su previa aprobación antes de adquirirlos.

Responsabilidad del constructor en el bajo rendimiento de los obreros

Artículo 65. Si la Dirección Facultativa advirtiera en los partes mensuales de obra ejecutada que preceptivamente debe presentarle el Contratista, que los rendimientos de la mano de obra, en todas o en alguna de las unidades de obra ejecutadas fueran notablemente inferiores a los rendimientos normales admitidos generalmente para unidades de obra iguales o similares, se lo notificará por escrito al Contratista, con el fin de que éste haga las gestiones precisas para aumentar la producción en la cuantía señalada por la Dirección Facultativa.

Si una vez hecha esta notificación al Contratista, en los meses sucesivos, los rendimientos no llegasen a los normales, el Propietario queda facultado para resarcirse de la diferencia, rebajando su importe del quince por ciento (15 por 100) que por los conceptos antes expresados correspondería abonar le al Contratista en las liquidaciones quincenales que preceptivamente deban efectuarse le. En caso de no llegar ambas partes a un acuerdo con respecto a los rendimientos de la mano de obra, se someterá el caso a arbitraje.
Responsabilidades del contratista

Artículo 66. En los trabajos de "Obras por Administración delegada" el Contratista sólo será responsable de los defectos constructivos que pudieran tener los trabajos o unidades ejecutadas por él y también los accidentes o perjuicios que pudieran sobrevenir a los obreros o a terceras personas por no haber tomado las medidas necesarias y que en las disposiciones legales vigentes establecen. En cambio, y salvo lo expresado en el artículo 63 precedente, no será responsable del mal resultado que pudieran dar los materiales y aparatos elegidos según las normas establecidas en este artículo. En virtud de lo consignado anteriormente, el Contratista está obligado a reparar por su cuenta los trabajos defectuosos y a responder también de los accidentes o perjuicios expresados en el párrafo anterior.

1.3.5 Epígrafe 5: De la valoración y abono de los trabajos

Formas diferentes de abono de las obras

Artículo 67. Según la modalidad elegida para la contratación de las obras y salvo que en el Pliego Particular de Condiciones económicas se preceptúe otra cosa, el abono de los trabajos se efectuará así:

1. Tipo fijo o tanto alzado total. Se abonará la cifra previamente fijada como base de la adjudicación, disminuida en su caso al importe de la baja efectuada por el adjudicatario.

2. Tipo fijo o tanto alzado por unidad de obra, el precio invariable se haya fijado por adelantado, pudiendo variar solamente el número de unidades ejecutadas. Previa medición y aplicando al total de las diversas unidades de obra ejecutadas, del precio invariable estipulado de antemano para cada una de ellas, se abonará al Contratista el importe de las comprendidas en los trabajos ejecutados y ultimados de acuerdo con los documentos que constituyen el Proyecto, los cuales servirán de base para la medición y valoración de las diversas unidades.

3. Tanto variable por unidad de obra, según las condiciones en que se realice y los materiales diversos utilizados en su ejecución de acuerdo con las órdenes de la Dirección Facultativa. Abonará al Contratista en idénticas condiciones al caso anterior.

4. Por listas de jornales y recibos de materiales autorizados en la forma que el presente "Pliego General de Condiciones económicas" determina.

5. Por horas de trabajo, ejecutado en las condiciones determinadas en el contrato.

Relaciones valoradas y certificaciones

Artículo 68. En cada una de las épocas o fechas que se fijen en el contrato o en los "Pliegos de Condiciones Particulares" que rijan en la obra, formará el Contratista una relación valorada de las obras ejecutadas durante los plazos previstos, según la medición que deberá practicado la Dirección Facultativa.

El trabajo ejecutado por el Contratista en las condiciones prestablecidas, se valorará
VI Pliego de Condiciones

aplicando al resultado de la medición general, cúbica, superficial, lineal, ponderal o numeral correspondiente para cada unidad de obra, los precios señalados en el presupuesto para cada una de ellas, teniendo presente además lo establecido en el presente "Pliego General de Condiciones económicas" respecto a mejoras o sustituciones de material ya las obras accesorias y especiales, etc.

Al Contratista, que podrá presenciar las mediciones necesarias para extender esta relación, la Dirección Facultativa le facilitará los datos correspondientes de la relación valorada, acompañando las de una nota de envío, al objeto de que, dentro del plazo de diez (10) días a partir de la fecha de recepción de esta nota, el Contratista pueda al examinarlas y devolver las firmadas con su conformidad o hacer, en caso contrario, las observaciones o reclamaciones que considere oportunas. Dentro de los diez (10) días siguientes a su recepción, la Dirección Facultativa aceptará o rechazará las reclamaciones del Contratista si los hubiera, dando le cuenta de su resolución y pudiendo el Contratista, en el segundo caso, acudir ante el Propietario contra la resolución de la Dirección Facultativa en la forma prevista en los "Pliegos Generales de Condiciones Facultativas y Legales".

Tomando como base la relación valorada indicada en el párrafo anterior, la Dirección Facultativa expedirá la certificación de las obras ejecutadas. Del importe se deducirá el tanto por ciento que para la constitución de la financiación haya prestablecido. El material almacenado a pie de obra por indicación expresa y por escrito del Propietario, podrá certificarse hasta el noventa por ciento (90 por 100) de su importe, a los precios que figuran en los documentos del Proyecto, sin afectar los del tanto por ciento de contrata.

Las certificaciones se remitirán al Propietario, dentro del mes siguiente al período a que se refieren, y tendrán el carácter de documento y entregas a buena cuenta, sujetos a las rectificaciones y variaciones que se deriven de la liquidación final, no suponiendo tampoco dichas certificaciones ni aprobación ni recepción de las obras que comprenden. Las relaciones valoradas contendrán solamente la obra ejecutada en el plazo al que la valoración se refiere. En caso de que la Dirección Facultativa lo exigiera, las certificaciones se extenderán al origen.

**Mejoras de obras entrega ejecutadas**

**Artículo 69.** Cuando el Contratista, incluso con autorización de la Dirección Facultativa, utilizara materiales de más esmerada preparación o de mayor tamaño que el señalado en el Proyecto o sustituyese una clase de fábrica por otra de precio más alto, o ejecutase con mayores dimensiones cualquier parte de la obra o, en general introdujese en la obra sin pedirlo, cualquier otra modificación que sea beneficiosa a criterio del Técnico Director, no tendrá derecho, sin embargo, más que al abono de lo que pudiera corresponder en el caso de que hubiera construido la obra con estricta sujeción a la proyectada y contratada o adjudicada.

**Abono de trabajos presupuestados con partida alzada**

**Artículo 70.** Salvo lo preceptuado en el "Pliego de Condiciones Particulares de índole económica", vigente en la obra, el abono de los trabajos presupuestados en partida alzada, se efectuará de acuerdo con el procedimiento que corresponda entre los que a continuación se expresan:
VI Pliego de Condiciones

a) Si existen precios contratados para unidades de obra iguales, las presupuestadas mediante partida alzada, se abonarán previa medición y aplicación del precio establecido.

b) Si existen precios contratados para unidades de obra similares, se establecerán precios contradictorios para las unidades con partida alzada, deducidos de los similares contratados.

c) Si no existen precios contratados para unidades de obra iguales o similares, la partida alzada se abonará íntegramente al Contratista, exceptuando el caso de que en el Presupuesto de la obra se exprese que el importe de esta partida debe justificarse, en este caso, el Técnico Director indicará al Contratista y con anterioridad a la ejecución, el procedimiento a seguir para llevar esta cuenta que, en realidad será de administración, valorando sus materiales y jornales a los precios que figuran en el Presupuesto aprobado o, en su defecto, a los que anteriormente a la ejecución convengan ambas partes, incrementando el importe total con el porcentaje que se fije en el Pliego de Condiciones Particulares en concepto de Gastos Generales y Beneficio Industrial del Contratista.

Abono de agotamientos y otros trabajos especiales no contratados

Artículo 71. Cuando fuese preciso efectuar agotamientos, inyecciones u otros trabajos de cualquier índole especial u ordinaria, que por no haber sido contratados no fueran por cuenta del Contratista, y si no fueran contratados con tercera persona, el Contratista tendrá la obligación de hacerle de pagar los gastos de todo tipo que ocasionen, y le serán abonados por el Propietario por separado de la contrata. Además de reintegrar mensualmente estos gastos al Contratista, se le abonará junto con ellos el tanto por ciento del importe total que, en su caso, especifique en el Pliego de Condiciones Particulares.

Pagos

Artículo 72. El Propietario en los plazos previamente establecidos. El importe de estos plazos corresponderá precisamente al de las certificaciones de obra conformadas por el Técnico Director, en virtud de las cuales se verificarán los pagos.

Abono de trabajos ejecutados durante el plazo de garantía

Artículo 73. Efectuada la recepción provisional y si durante el plazo de garantía se hubieran ejecutado los trabajos, para su abono se procederá así:

1 °. Si los trabajos que se realicen estuvieran especificados en el Proyecto y, sin causa justificada, no se hubieran realizado por el Contratista a su tiempo, y la Dirección Facultativa exigiera su realización durante el plazo de garantía, serán valorados los precios que figuran en el presupuesto y abonados de acuerdo con lo que se estableció en los "Pliegos Particulares" o en su defecto en los Generales, en caso de que estos precios fueran inferiores a los vigentes en la época de su realización, en caso contrario, se aplicarán estos últimos.

2 °. Si se han hecho trabajos puntuales para la reparación de desperfectos ocasionados por el uso del edificio, debido a que éste ha sido utilizado durante este tiempo por el Propietario, se valorarán y abonarán los precios del día, previamente acordados.
VI Pliego de Condiciones

3°. Si se han hecho trabajos para la reparación de desperfectos ocasionados por deficiencia de la construcción o de la calidad de los materiales, no se abonará por ellos al Contratista.

1.3.6 Epígrafe 6: De las indemnizaciones mutuas

Importe de la indemnización por retraso no justificado en el plazo de finalización de las obras

Artículo 74. La indemnización por retraso en la terminación se establecerá en un tanto por mil (10/1000) del importe total de los trabajos contratados, por cada día natural de retraso, contados a partir del día de finalización fijado en el calendario de obra. Las sumas resultantes se descontarán y retendrán con cargo a la fianza.

Demora de los pagos

Artículo 75. Si el propietario no pagara las obras ejecutadas, dentro del mes siguiente al que corresponde el plazo convenido, el Contratista tendrá además el derecho de percibir el abono de un cuatro y medio por ciento (4,5 por 100) anual, en concepto de intereses de demora, durante el espacio de tiempo de retraso y sobre el importe de dicha certificación.

Si aún transcurrieran dos meses a partir de la finalización de este plazo de un mes sin realizar éste pago, tendrá derecho el Contratista a la resolución del contrato, procediendo a la liquidación correspondiente de las obras ejecutadas y los materiales almacenados, siempre que éstos reúnan las condiciones prestablecidas y que su cantidad no exceda de la necesaria para la finalización de la obra contratada o adjudicada.

No obstante lo anteriormente, se rechará toda solicitud de resolución del contrato fundado en la demora de pagos, cuando el Contratista no justifique que en la fecha de dicha solicitud ha invertido en obra o en materiales acopiados admisibles la parte de presupuesto correspondiente al plazo de ejecución que tenga señalado en el contrato.

1.3.7 Epígrafe 7: Varios

Mejoras y aumentos de obra. Casos contrarios

Artículo 76. No se admitirán mejoras de obra, sólo en el caso de que el Técnico Director haya mandado por escrito la ejecución de trabajos nuevos o que mejoren la calidad de los contratados, así como la de los materiales y aparatos previstos en el contrato.

Tampoco se admitirán aumentos de obra en las unidades contratadas, salvo en caso de error en las mediciones del Proyecto, a menos que la Dirección Facultativa ordene, también por escrito, la ampliación de las contratadas.

En todos estos casos será condición indispensable que ambas partes contratantes, antes de su ejecución o utilización, convengan por escrito los importes totales de las unidades mejoradas, los precios de los nuevos materiales o aparatos ordenados emplear y los aumentos que todas estas mejoras o aumentos de obra supongan sobre el importe de las unidades contratadas. Se seguirá el mismo criterio y procedimiento, cuando el Técnico Director introduzca innovaciones que supongan una reducción apreciable en los importes
VI Pliego de Condiciones

de las unidades de obra contratadas.

**Unidades de obra defectuosa pero aceptable**

**Artículo 77.** Cuando por cualquier causa fuera menester valorar obra defectuosa, pero aceptable según la Dirección Facultativa de las obras, éste determinará el precio o partida de abono después de oír al Contratista, el cual deberá conformarse con dicha resolución, salvo el caso en que, estando dentro del plazo de ejecución, prefiera demoler la obra y rehacer de acuerdo con condiciones, sin exceder dicho plazo.

**Seguro de las obras**

**Artículo 78.** El Contratista estará obligado a asegurar la obra contratada durante todo el tiempo que dure su ejecución hasta la recepción definitiva, la cuantía del seguro coincidirá en cada momento con el valor que tengan por Contrata los objetos asegurados. El importe abonado por la Sociedad Aseguradora, en el caso de siniestro, se ingresará en cuenta a nombre del Propietario, para que con cargo a ella se abone la obra que se construya, ya medida que ésta se vaya haciendo. El reintegro de dicha cantidad al Contratista se hará por certificaciones, como el resto de los trabajos de la construcción. En ningún caso, salvo conformidad expresa del Contratista, hecho en documento público, el Propietario podrá disponer de este importe por menesteres distintos del de reconstrucción de la parte siniestrada, la infracción de lo que anteriormente se ha expuesto será motivo suficiente para que el Contratista pueda resolver el contrato, con devolución de fianza, abono completo de gastos, materiales almacenados, etc., y una indemnización equivalente al importe de los daños causados al Contratista por el siniestro y que no se le hubieran abonado, pero sólo en proporción equivalente a lo que represente la indemnización abonada por la Compañía Aseguradora, respecto al importe de los daños causados por el siniestro, que serán tasados a tal fin por el Técnico Director.

En las obras de reforma o reparación, se fijará previamente la parte de edificio que deba ser asegurada y su cuantía, y si nada se prevé, se entenderá que el seguro debe comprender toda la parte del edificio afectada por la obra. Los riesgos asegurados y las condiciones que figuran en la póliza o pólizas de Seguros, los pondrá el Contratista, antes de contratarlos, en conocimiento del Propietario, al objeto de recabar de éste su previa conformidad o reparos.

**Conservación de la obra**

**Artículo 79.** Si el Contratista, aun siendo su obligación, no atiende la conservación de la obra durante el plazo de garantía, en caso de que el edificio no haya sido ocupado por el Propietario antes de la recepción definitiva, el Técnico Director, en representación del Propietario, podrá disponer todo lo necesario para que se atienda la vigilancia, limpieza y todo lo que fuese menester para su buena conservación, abonándose se todo por cuenta de la contrata. Al abandonar el Contratista el edificio, tanto por buena terminación de las obras, como en el caso de resolución del contrato, está obligado a dejar lo desocupado y limpio en el plazo que la Dirección Facultativa fije.

Tras la recepción provisional del edificio y en el caso de que la conservación del edificio corra a cargo del Contratista, no se guardarán más herramientas, útiles, materiales, muebles, etc. que los indispensables para la vigilancia y limpieza y los trabajos que fuera
VI Pliego de Condiciones

necesario ejecutar. En todo caso, tanto si el edificio está ocupado o no, el Contratista está obligado a revisar y reparar la obra, durante el plazo expresado, procediendo en la forma prevista en el presente "Pliego de Condiciones Económicas".

Utilización por el contratista de edificios o bienes del propietario

Artículo 80. Cuando durante la ejecución de las obras ocupe el Contratista, con la necesaria y previa autorización del Propietario, edificios o uso de materiales o útiles que pertenezcan al Propietario, tendrá la obligación de abonar y conservarlos para hacer su entrega a la finalización del contrato, en perfecto estado de conservación, reponiendo las que se hubieran inutilizado, sin derecho a indemnización por esta reposición ni por las mejoras hechas en los edificios, propiedades o materiales que haya utilizado. En caso de que al terminar el contrato y hacer entrega del material, propiedades o edificaciones, no hubiese cumplido el Contratista con lo previsto en el párrafo anterior, lo realizará el Propietario a costa de aquél y con cargo a la fianza.

2. Pliego de condiciones particulares

2.1 Capítulo 1: Instalación electrónica

EG21041J Instalación central nave

BG424210 PLC Compacto CP1E-N40DR-D Omron

Definición:

CP1E-N40DR-D Omron PLC Compacto CPU 24/16 E/S DC Salidas Relé 8K Programa 8K Datos. El CP1E proporciona una magnífica solución para la automatización de máquinas pequeñas y compactas, y forma parte del concepto de automatización optimizada de Omron. La automatización optimizada es compatible con máquinas independientes o módulos pertenecientes a sistemas de mayor tamaño. Sus ventajas radican en su sencillez, tamaño reducido y bajo coste económico.

6 entradas de contador de alta velocidad y 2 salidas de impulsos de alta velocidad.

 Conjunto de instrucciones compatible con CP1H, CJ1, CS1 y superiores.

 Puertos serie RS232C y RS-422/485 opcionales para los modelos de aplicaciones de la serie N.

 Funciones de movimiento básicas, incluida la función maestra sencilla mediante el protocolo Modbus-RTU.
VI Pliego de Condiciones

La ejecución de la unidad de obra incluye las operaciones siguientes:

Colocación y nivelación.

Conexiónado.

Condiciones generales:

Debe estar montado a presión sobre un perfil DIN simétrico en el interior de una caja o armario.

Las conexiones deben estar hechas por presión de tomillos.

Resistencia a la tracción de las conexiones $\geq 3$ kg

BG424211 PLC Módulo Expansión 32 Salidas NPN CP1W-32ET Omron

Definición:
CP1W-32ET Omron Módulo Expansión 32 Salidas NPN Amplíe la capacidad de su PLC compacto. Hay disponible una amplia variedad de unidades expansoras, E/S digitales, E/S analógicas y E/S remotas, para crear la aplicación que necesita. Estas unidades expansoras CP1W / CPM1A se pueden utilizar para CPM1A y también para la serie de PLC CPM2A, CP21H, CP1L y CP1E.

La ejecución de la unidad de obra incluye las operaciones siguientes:

Colocación y nivelación.

Conexiónado.

Condiciones generales:

Debe estar montado a presión sobre un perfil DIN simétrico en el interior de una caja o armario.

Las conexiones deben estar hechas por presión de tomillos.

Resistencia a la tracción de las conexiones $\geq 3$ kg

BG424212 PLC Módulo Expansión 4 Entradas Analógicas 12 bits CP1W-AD041 Omron

Definición:
CP1W-DA041 Omron Módulo Expansión 4 Salidas Analógicas 12 bits Amplíe la capacidad de su PLC compacto. Hay disponible una amplia variedad de unidades
expansoras, E/S digitales, E/S analógicas y E/S remotas, para crear la aplicación que necesita. Estas unidades expansoras CP1W / CPM1A se pueden utilizar para CPM1A y también para la serie de PLC CPM2A, CP21H, CP1L y CP1E.

La ejecución de la unidad de obra incluye las operaciones siguientes:

Colocación y nivelación.
Conexiónado.

Condiciones generales:

La sujeción de cables debe estar hecha mediante la presión de tornillos.
Todos los conductores deben quedar conectados a los bornes correspondientes.
Ninguna parte accesible del elemento instalado no debe estar en tensión, fuera de los puntos de conexión.
Cuando se coloca a presión, debe estar montado sobre un perfil DIN simétrico en el interior de una caja o armario.
Cuando se coloca con tornillos, debe estar montado sobre una placa base aislante en el interior de una caja también aislante.

BG424213 WD-30 WLAN Omron

Definición:

El sistema consta de un maestro serie WT30-M y varios tipos de esclavos de E/S WT30-S. La E/S del WT30-S se controla y monitoriza mediante un WT30-M a través de comunicaciones serie CompoWay/F. También se puede utilizar el maestro wireless DeviceNet WD30-ME V2 para controlar y monitorizar la E/S del WT30-S. El WT30-S está disponible como modelo de 16 entradas y como modelo de 8 entradas/8 salidas. Distintos tipos de antenas cubren las diferentes áreas de aplicación.

La ejecución de la unidad de obra incluye las operaciones siguientes:

Colocación y nivelación.
Conexiónado.

Condiciones generales:

La sujeción de cables debe estar hecha mediante la presión de tornillos.
Todos los conductores deben quedar conectados a los bornes correspondientes.
Ninguna parte accesible del elemento instalado no debe estar en tensión, fuera de los pun-
VI Pliego de Condiciones

tos de conexión.

Cuando se coloca a presión, debe estar montado sobre un perfil DIN simétrico en el interior de una caja o armario.

Cuando se coloca con tornillos, debe estar montado sobre una placa base aislante en el interior de una caja también aislante.

BG424214  AF38-30-00-11 ABB Contactor tripolar de 400 V 18,5 kW con bobinado de 24 Vdc

Definición:

Contactor tripolar de 400 V de 18,5 kW con bobinado de control de 24 Vdc.

La ejecución de la unidad de obra incluye las operaciones siguientes:

Colocación y nivelación.

Conexiónado.

Condiciones generales:

La sujeción de cables debe estar hecha mediante la presión de tornillos.

Todos los conductores deben quedar conectados a los bornes correspondientes.

Ninguna parte accesible del elemento instalado no debe estar en tensión, fuera de los puntos de conexión.

Cuando se coloca a presión, debe estar montado sobre un perfil DIN simétrico en el interior de una caja o armario.

Cuando se coloca con tornillos, debe estar montado sobre una placa base aislante en el interior de una caja también aislante.

BG424215 SCHNEIDER ELECTRIC / TELEMECANIQUE - LC1D09V7 – CONTACTOR, 4KW, 400VCA

Definición:

Contactor tripolar de 400 V de 4 kW con bobinado de control de 24 Vdc.

La ejecución de la unidad de obra incluye las operaciones siguientes:

Colocación y nivelación.
VI Pliego de Condiciones

Conexionado.

**Condiciones generales:**

La sujeción de cables debe estar hecha mediante la presión de tornillos.

Todos los conductores deben quedar conectados a los bornes correspondientes.

Ninguna parte accesible del elemento instalado no debe estar en tensión, fuera de los puntos de conexión.

Cuando se coloca a presión, debe estar montado sobre un perfil DIN simétrico en el interior de una caja o armario.

Cuando se coloca con tornillos, debe estar montado sobre una placa base aislante en el interior de una caja también aislante.

---

**BG424216 ABB CONTROL - 1SFL431001R8411 - CONTACTOR, 45KW, 96A, 400 V.**

**Definición:**

Contactor tripolar de 400 V de 45 kW, 96 A con bobinado de control de 24 Vdc.

**La ejecución de la unidad de obra incluye las operaciones siguientes:**

Colocación y nivelación.

Conexionado.

**Condiciones generales:**

La sujeción de cables debe estar hecha mediante la presión de tornillos.

Todos los conductores deben quedar conectados a los bornes correspondientes.

Ninguna parte accesible del elemento instalado no debe estar en tensión, fuera de los puntos de conexión.

Cuando se coloca a presión, debe estar montado sobre un perfil DIN simétrico en el interior de una caja o armario.

Cuando se coloca con tornillos, debe estar montado sobre una placa base aislante en el interior de una caja también aislante.
VI Pliego de Condiciones

BG424217 IMO PRECISIÓN CONTROLS - MB12-S-10230 - CONTACTOR, 12A, 230 VCA

Definición:

Contactor tripolar de 230 V, 12 A con bobinado de control de 24 Vdc

Colocación y nivelación.

Conexiónado.

Condiciones generales:

La sujeción de cables debe estar hecha mediante la presión de tornillos.

Todos los conductores deben quedar conectados a los bornes correspondientes.

Ninguna parte accesible del elemento instalado no debe estar en tensión, fuera de los puntos de conexión.

Cuando se coloca a presión, debe estar montado sobre un perfil DIN simétrico en el interior de una caja o armario.

Cuando se coloca con tornillos, debe estar montado sobre una placa base aislante en el interior de una caja también aislante.

BG424218 SCHNEIDER ELECTRIC / SAREL - ENN83364 - ARMARIO, IP66, 1.200 x 800 x 300 mm

Definición:

ARMARIO, IP66, 1.200 x 800 x 300 mm

La ejecución de la unidad de obra incluye las operaciones siguientes:

Colocación y nivelación.

Conexiónado.

Condiciones generales:

La sujeción de cables debe estar hecha mediante la presión de tornillos.

Todos los conductores deben quedar conectados a los bornes correspondientes.

Ninguna parte accesible del elemento instalado no debe estar en tensión, fuera de los puntos de conexión.
VI Pliego de Condiciones

Cuando se coloca a presión, debe estar montado sobre un perfil DIN simétrico en el interior de una caja o armario.

Cuando se coloca con tornillos, debe estar montado sobre una placa base aislante en el interior de una caja también aislante.

**BG424219 SCHNEIDER ELECTRIC - 9001KR4RH6 - BOTÓN, KR4RH6**

Definición: Botón pulsador ,33 mm diámetro, IP40

Condiciones generales:

La sujeción de cables debe estar hecha mediante la presión de tornillos.
Todos los conductores deben quedar conectados a los bornes correspondientes.

Ninguna parte accesible del elemento instalado no debe estar en tensión, fuera de los puntos de conexión.

Cuando se coloca a presión, debe estar montado sobre un perfil DIN simétrico en el interior de una caja o armario.

Cuando se coloca con tornillos, debe estar montado sobre una placa base aislante en el interior de una caja también aislante.

**BG424220 SCHNEIDER ELECTRIC - 9001KR1B - BOTÓN, KR1B**

Definición: Botón pulsador ,50 mm diámetro, IP40

Condiciones generales:

La sujeción de cables debe estar hecha mediante la presión de tornillos.
Todos los conductores deben quedar conectados a los bornes correspondientes.

Ninguna parte accesible del elemento instalado no debe estar en tensión, fuera de los puntos de conexión.

Cuando se coloca a presión, debe estar montado sobre un perfil DIN simétrico en el interior de una caja o armario.

Cuando se coloca con tornillos, debe estar montado sobre una placa base aislante en el interior de una caja también aislante.
VI Pliego de Condiciones

BG424221 STEP-PS/ 1AC/24DC/1.75

Definición: Fuente alimentación con 1 salida AC y 1 salida 24 Vdc con 1,75 A

Condiciones generales:

La sujeción de cables debe estar hecha mediante la presión de tornillos. 

Todos los conductores deben quedar conectados a los bornes correspondientes. 

Ninguna parte accesible del elemento instalado no debe estar en tensión, fuera de los puntos de conexión. 

Cuando se coloca a presión, debe estar montado sobre un perfil DIN simétrico en el interior de una caja o armario. 

Cuando se coloca con tornillos, debe estar montado sobre una placa base aislante en el interior de una caja también aislante.

BG424221 MULTIPLEXOR 16/8 entradas 0-4/20 mA

Definición: Multiplexor de 8 canales para entradas analógicas de 0-4/20 mA y alimentado con 24 Vdc

Condiciones generales:

La sujeción de cables debe estar hecha mediante la presión de tornillos. 

Todos los conductores deben quedar conectados a los bornes correspondientes. 

Ninguna parte accesible del elemento instalado no debe estar en tensión, fuera de los puntos de conexión. 

Cuando se coloca a presión, debe estar montado sobre un perfil DIN simétrico en el interior de una caja o armario. 

Cuando se coloca con tornillos, debe estar montado sobre una placa base aislante en el interior de una caja también aislante.

BF228209 Tubo rígido de PVC, de 16 mm de diámetro nominal, aislante y no propagador de la llama, con una resistencia al impacto de 2 J, resistencia a compresión de 1250 N y una rigidez dieléctrica de 2000 V

Tubo rígido de PVC, de diámetro nominal referencia 16, con grado de resistencia al choque 5, enchufado y montado superficialmente
Definición:

Tubo rígido de PVC de hasta 140 mm de diámetro nominal, con grado de resistencia al choque 5 o 7, conectado a presión o roscado.

Se han considerado los tipos de colocación siguientes:

Montado superficialmente

La ejecución de la unidad de obra incluye las operaciones siguientes:

El tendido, fijación y curvado

La conexión o roscado de los tramos

Condiciones generales:

Los cambios de dirección se realizarán con curvas de acoplamiento, calentándose ligeramente, sin que se produzcan cambios sensibles en la sección.

Cuando las uniones son roscadas, deben estar hechas con manguitos con rosca.

Tolerancias de instalación.

Posición ± 20 mm
Alineación ± 2%

BM139065 Instalación de caja de derivación rectangular de plástico, de 75x100 mm

Caja de derivación rectangular de PVC, con aislamiento del tipo IP65, tamaño 75x 100 mm y montado superficialmente

Definición:

Caja de derivación rectangular de PVC, con aislamiento del tipo IP65, tamaño 75x100 mm y montado superficialmente

Se han considerado los tipos de colocación siguientes:

Montado superficialmente

La ejecución de la unidad de obra incluye las operaciones siguientes:

Fijación

La conexión o roscado de los tramos

Condiciones generales:
VI Pliego de Condiciones

Cuando las uniones son roscadas, deben estar hechas con manguitos con rosca.

**Tolerancias de instalación:**

Posición ± 20 mm  
Alineación ± 2%

**BM134765 LAPP KABEL - 0046001 - GUÍA, SILICONA, 2 NÚCLEOS, 0.75mm colocado en tubo**

**Definición:**

Conductor par de cobre estañado de hasta 24 AWG de sección.

**Se han considerado los tipos de colocación siguientes:**

Montado superficialmente  
Colocado en tubo

**La ejecución de la unidad de obra incluye las operaciones siguientes:**

El tendido, fijación y conexionado a cajas o mecanismos

**Condiciones generales:**

El conductor debe penetrar dentro de las cajas de derivación y de mecanismos.

El cable debe llevar una identificación mediante anillas o bridas del circuito al que pertenecen, a la salida del cuadro de protección.

No debe haber empalmes entre las cajas de derivación, ni entre éstas y los mecanismos.

Los empalmes y las derivaciones deben estar hechos con bornes o regletas de conexión.

El radio de curvatura mínimo admitido será 10 veces el diámetro exterior del cable en mm.

Penetración del conductor dentro de las cajas ≥ 10 cm

Penetración del conductor dentro de las cajas ± 10 mm

**Colocar superficialmente:**

Su fijación al paramento debe quedar vertical o alineada paralelamente al techo o pavimento y la posición será la fijada en el proyecto.
VI Pliego de Condiciones

EG21041J Instalación de sensores nave

BM139267 HUMITRON® HTX72/73 Series

Definición:

HUMITRON ® HTX72/73 serie es un modelo económico para clima de control general y hace que sea posible medir la temperatura exacta y la humedad.

Se han considerado los tipos de colocación siguientes:

Montado superficialmente

La ejecución de la unidad de obra incluye las operaciones siguientes:

Fijación

Condiciones generales:

La sujeción del sensor se hará mediante tornillería de rosca chapa

Tolerancias de instalación.

Posición ± 20 mm
Alineación ± 2%

BG424412 Sensor fijo del gas del NH3 del amoníaco TGas-1031

Definición:

Producto de alta precisión, una buena linealidad, rendimiento estable, con control remoto por infrarrojos

Se han considerado los tipos de colocación siguientes:

Montado superficialmente

La ejecución de la unidad de obra incluye las operaciones siguientes:

Fijación

Condiciones generales:

La sujeción del sensor se hará mediante tornillería de rosca chapa

Tolerancias de instalación.

Posición ± 20 mm
VI Pliego de Condiciones

Alineación ± 2%

BG424513 AE-DF-DN40 Válvula de mariposa motorizada; en de tipo; DN40

Definición:

Válvula motorizada controlada por un solenoide de 24 Vdc

La ejecución de la unidad de obra incluye las operaciones siguientes:

Fijación

Condiciones generales:

La sujeción será realizada mediante tornillería con tuercas

BG424614 Sensor capacitivo analógico de proximidad Balluf

Definición:

Sensor analógico 4-20 mA capacitivo, detección de líquidos de sólidos de medios y gruesos

Se han considerado los tipos de colocación siguientes:

Roscado en la chapa

La ejecución de la unidad de obra incluye las operaciones siguientes:

Fijación

Condiciones generales:

Roscado en la chapa

BG424215 CHERRY - 0E13-00E0 - INTERRUPTOR, ACCIÓN A PRESIÓN, SPDT 15A

Definición:

Interruptor por presión con protección IP40

Se han considerado los tipos de colocación siguientes:

Montado superficialmente en la pared
VI Pliego de Condiciones

La ejecución de la unidad de obra incluye las operaciones siguientes:

Fijación

Condiciones generales:

La sujeción del sensor se hará mediante tornillería de rosca chapa, cerca del marco de la ventana

Tolerancias de instalación.

Posición ± 20 mm
Alineación ± 2%
Automatización de una Granja de Engorde de Pollos

Estudio de Seguridad e Higiene

TITULACIÓN: Ingeniería Técnica industrial especialidad Electrónica Industrial

AUTORES: Héctor Gayán Sánchez.
DIRECTORES: Alfonso José Romero Nevado.
Fechas: Septiembre del 2013.
Índice Estudio de Seguridad e Higiene

1. Estudio básico de seguridad y salud en las obras......................................................... 118
   1.1 Principios generales aplicables durante la ejecución de la obra.............................. 119
   1.2 Los principios de la acción preventiva establecidos en el artículo 15 de la Ley 31/95
       son los siguientes:                                                                 119
   1.3 Identificación de los riesgos................................................................................... 120
   1.4 Trabajos previos...................................................................................................... 121
   1.5 Instalaciones........................................................................................................... 121
   1.6 Relación no exhaustiva de los trabajos que implican riesgos especiales (Anexo II del
       RD 1627/1997)........................................................................................................ 122
   1.7 Medidas de prevención y protección ....................................................................... 122
   1.8 Medidas de protección colectiva.............................................................................. 122
   1.9 Medidas de protección individual............................................................................. 123
   1.10 Medidas de protección a terceros............................................................................. 123
   1.11 Primeros auxilios.................................................................................................... 124
   1.12 Referencias de las normativas................................................................................ 124
1. Estudio básico de seguridad y salud en las obras.

El cumplimiento del R.D.1627/97 de 24 de octubre sobre disposiciones mínimas de seguridad y salud en las obras de construcción

Este Estudio Básico de Seguridad y Salud establece, durante la ejecución de esta obra, las previsiones respecto a la prevención de riesgos de accidentes y enfermedades profesionales, así como información útil para efectuar en su día, en las debidas condiciones de seguridad y salud, los previsibles trabajos posteriores de mantenimiento.

Servirá para dar unas directrices básicas a la empresa constructora para llevar a cabo sus obligaciones en el terreno de la prevención de riesgos profesionales, facilitando su desarrollo, de acuerdo con el Real Decreto 1627/1997 de 24 de octubre, por se establecen disposiciones mínimas de seguridad y de salud en las obras de construcción.

En base al art. 7º, y en aplicación de este Estudio Básico de Seguridad y Salud, el contratista debe elaborar un Plan de Seguridad y Salud en el trabajo en el que se analicen, estudien, desarrollen y complementen las previsiones contenidas en el presente documento.

El Plan de Seguridad y Salud deberá ser aprobado antes del inicio de la obra por el Coordinador de Seguridad y Salud durante la ejecución de la obra o, en su defecto, por la Dirección Facultativa. En caso de obras de las Administraciones Públicas se deberá someter a la aprobación de esta Administración.

Se recuerda la obligatoriedad de que en cada centro de trabajo haya un Libro de Incidencias para el seguimiento del Plan. Cualquier anotación hecha en el Libro de Incidencias deberá ponerse en conocimiento de la Inspección de Trabajo y Seguridad Social en el plazo de 24 horas. Asimismo se recuerda que, según el art. 15 del Real Decreto, los contratistas y sometidos contratistas deberán garantizar que los trabajadores reciban la información adecuada de todas las medidas de seguridad y salud en la obra.

Antes del comienzo de los trabajos el promotor deberá efectuar un aviso a la autoridad laboral competente, según modelo incluido en el anexo III del Real Decreto. La comunicación de apertura del centro de trabajo a la autoridad laboral competente deberá incluir el Plan de Seguridad y Salud.

El Coordinador de Seguridad y Salud durante la ejecución de la obra o cualquier integrante de la Dirección Facultativa, en caso de apreciar un riesgo grave inminente para la seguridad de los trabajadores, podrá detener la obra parcial o totalmente, comunicándolo en la Inspección de Trabajo y Seguridad Social, al contratista, subcontractistas y representantes de los trabajadores. Las responsabilidades de los coordinadores, de la Dirección Facultativa y del promotor no eximirán de sus responsabilidades a los contratistas ya los subcontractistas (art. 11º).
1.1 Principios generales aplicables durante la ejecución de la obra

El artículo 10 del RD 1627/1997 establece que se aplicarán los principios de acción preventiva recogidos en el art. 15 º de la "Ley de Prevención de Riesgos Laborales (Ley 31/1995, de 8 de noviembre)" durante la ejecución de la obra y en particular en las siguientes actividades:

El mantenimiento de la obra en buen estado de orden y limpieza

La elección del emplazamiento de los puestos y áreas de trabajo, teniendo en cuenta sus condiciones de acceso y la determinación de las vías o zonas de desplazamiento o circulación

La manipulación de los diferentes materiales y la utilización de los medios auxiliares. El mantenimiento, el control previo a la puesta en servicio y el control periódico de las instalaciones y dispositivos necesarios para la ejecución de la obra, con objeto de corregir los defectos que pudieran afectar a la seguridad y salud de los trabajadores

La delimitación y acondicionamiento de las zonas de almacenamiento y depósito de los diferentes materiales, en particular si se trata de materias y sustancias peligrosas

La recogida de los materiales peligrosos utilizados

El almacenamiento y la eliminación o evacuación de residuos y escombros

La adaptación en función de la evolución de la obra del período de tiempo efectivo que habrá de dedicarse a los distintos trabajos o fases del trabajo

La cooperación entre los contratistas, subcontratistas y trabajadores autónomos

Las interacciones e incompatibilidades con cualquier otro tipo de trabajo o actividad que se realice la obra o cerca de la obra.

1.2 Los principios de la acción preventiva establecidos en el artículo 15 de la Ley 31/95 son los siguientes:

El empresario aplicará las medidas que integran el deber general de prevención, de acuerdo con los siguientes principios generales:

Evitar riesgos

Evaluar los riesgos que no se puedan evitar

Combatir los riesgos en su origen

Adaptar el trabajo a la persona, en particular con lo que respecta a la concepción de los puestos de trabajo, la elección de los equipos y los métodos de trabajo y de producción,
VII Estudio de Seguridad e Higiene

para reducir el trabajo monótono y repetitivo y reducir los efectos del mismo en la salud

Tener en cuenta la evolución de la técnica

Sustituir lo peligroso por lo que tenga poco o ningún peligro

Planificar la prevención, buscando un conjunto coherente que integre la técnica, la organización del trabajo, las condiciones de trabajo, las relaciones sociales y la influencia de los factores ambientales en el trabajo

Adoptar medidas que antepongan la protección colectiva a la individual

Dar las debidas instrucciones a los trabajadores

El empresario tendrá en consideración las capacidades profesionales de los trabajadores en materia de seguridad y salud en el momento de encomendarles las tareas

El empresario adoptará las medidas necesarias para garantizar que sólo los trabajadores que hayan recibido información suficiente y adecuada puedan acceder a las zonas de riesgo grave y específico

La efectividad de las medidas preventivas deberá prever las distracciones o imprudencias no temerarias que pudiera cometer el trabajador. Para su aplicación se tendrán en cuenta los riesgos adicionales que pudieran implicar determinadas medidas preventivas, que sólo podrán adoptarse cuando la magnitud de dichos riesgos sea sustancialmente inferior a las de los que se pretende controlar y no existan alternativas más seguras

Podrán concertar operaciones de seguros que tengan como finalidad garantizar como ámbito de cobertura la previsión de riesgos derivados del trabajo, la empresa respecto de sus trabajadores, los trabajadores autónomos respecto de ellos mismos y las sociedades cooperativas respecto a los socios, la actividad de los cuales consista en la prestación de su trabajo personal.

1.3 Identificación de los riesgos.

Sin perjuicio de las disposiciones mínimas de Seguridad y Salud aplicables a la obra establecidas en el anexo IV del Real Decreto 1627/1997 de 24 de octubre, se enumeran a continuación los riesgos particulares de diferentes trabajos de obra, aunque considerando que algunos de ellos se pueden dar durante todo el proceso de ejecución de la obra o bien ser aplicables a otros trabajos.

Se deberá tener especial cuidado en los riesgos más usuales en las obras, como son, caídas, cortes, quemaduras, erosiones y golpes, debiendo adoptar en cada momento la postura más adecuada por el trabajo que se realice. Además, hay que tener en cuenta las posibles repercusiones en las estructuras de edificación vecinas y tener cuidado en minimizar en todo momento el riesgo de incendio. Sin embargo, los riesgos relacionados deberán tener en cuenta los previsibles trabajos posteriores (reparación, mantenimiento...).
VII Estudio de Seguridad e Higiene

1.4 Trabajos previos

Interferencias con Instalaciones de suministro público (agua, luz, gas...)

Caídas desde puntos altos y / o desde elementos provisionales de acceso (escaleras, plataformas)

Golpes y tropiezos

Caída de materiales, rebotes

Sobre esfuerzos por posturas incorrectas

Vuelco de pilas de materiales

Riesgos derivados del almacenamiento de materiales (temperatura, humedad, reacciones químicas)

1.5 Instalaciones

Interferencias con Instalaciones de suministro público (agua, luz, gas...)

Caídas desde puntos altos y / o desde elementos provisionales de acceso (escaleras, plataformas)

Cortes y pinchazos

Golpes y tropiezos

Caída de materiales, rebotes

Emanaciones de gases en aperturas de pozos negros

Contactos eléctricos directos o indirectos

Sobresfuerzos por posturas incorrectas

Caídas de palos y antenas
VII Estudio de Seguridad e Higiene

1.6 Relación no exhaustiva de los trabajos que implican riesgos especiales (Anexo II del RD 1627/1997)

Trabajos con riesgos especialmente graves de sepultamiento, hundimiento o caída de altura, por las particulares características de la actividad desarrollada, los Procedimientos aplicados o el entorno del puesto de trabajo

Trabajos en los que la exposición a agentes químicos o biológicos suponga un riesgo de especial gravedad, o por los que la vigilancia específica de la salud de los trabajadores sea legalmente exigible

Trabajos con exposición a radiaciones ionizantes para los que la normativa específica obligue a la delimitación de zonas controladas o vigiladas

Trabajos en la proximidad de líneas eléctricas de alta tensión

1.7 Medidas de prevención y protección

Como criterio general primarán las protecciones colectivas frente las individuales. Además, se mantendrán en buen estado de conservación los medios auxiliares, la maquinaria y las herramientas de trabajo. Por otra parte los medios de protección deberán estar homologados según la normativa vigente. Sin embargo, las medidas relacionadas deberán tener en cuenta los previsibles trabajos posteriores (reparación, mantenimiento...).

1.8 Medidas de protección colectiva

Organización y planificación de los trabajos para evitar interferencias entre los distintos trabajos y circulaciones dentro de la obra

Señalización de las zonas de peligro

Prever el sistema de circulación de vehículos y su señalización, tanto en el interior de la obra como en relación con los viales exteriores

Dejar una zona libre en el entorno de la zona excavada por el paso de maquinaria

Inmovilización de camiones mediante cuñas y / o topes durante las tareas de carga y descarga

Respetar las distancias de seguridad con instalaciones existentes

Los elementos de las instalaciones deben estar con sus protecciones aislantes

Fundamentación correcta de la maquinaria de obra

Revisión periódica y mantenimiento de maquinaria y equipos de obra

Sistema de riego que impida la emisión de polvo en gran cantidad
VII Estudio de Seguridad e Higiene

Comprobación de la adecuación de las soluciones de ejecución al estado real de los elementos (subsuelo, edificaciones vecinas)

Comprobación de apuntalamientos, condiciones de entibado y pantallas de protección de zanjas

Utilización de pavimentos antideslizantes.

Colocación de barandas de protección en lugares con peligro de caída.

Colocación de mallazo en agujeros horizontales

Protección de agujeros y fachadas para evitar la caída de objetos (redes, lonas)

Uso de escaleras de mano, plataformas de trabajo y andamios

1.9 Medidas de protección individual

Utilización de caretas y gafas homologadas contra el polvo y / o proyección de partículas

Utilización de calzado de seguridad

Utilización de casco homologado

Utilización de guantes homologados para evitar el contacto directo con materiales agresivos y minimizar el riesgo de cortes y pinchazos

Utilización de protectores auditivos homologados en ambientes excesivamente ruidosos

Utilización de mandiles

1.10 Medidas de protección a terceros

Cierre, señalización y alumbrado de la obra. Caso de que el cierre invada la calzada debe preverse un pasillo protegido por el paso de peatones. El cierre debe impedir que personas ajenas a la obra puedan entrar.

Prever el sistema de circulación de vehículos tanto en el interior de la obra como en relación con los viales exteriores

Inmovilización de camiones mediante cuñas y / o topes durante las tareas de carga y descarga

Comprobación de la adecuación de las soluciones de ejecución al estado real de los elementos (subsuelo, edificaciones vecinas)

Protección de agujeros y fachadas para evitar la caída de objetos (redes, lonas)
1.11 Primeros auxilios

Se dispondrá de un botiquín con el contenido de material especificado en la normativa vigente.

Se informará al inicio de la obra, de la situación de los diferentes centros médicos a los que deberán trasladar los accidentados. Es conveniente disponer a la obra y en sitio bien visible, de una lista con los teléfonos y direcciones de los centros asignados para urgencias, ambulancias, taxis, etc. para garantizar el rápido traslado de los posibles accidentados.

1.12 Referencias de las normativas

Relación de normas y reglamentos aplicables

(En negrita las que afectan directamente a la Construcción)
Fecha de actualización: 12/05/1998

Directiva 92/57/CEE de 24 de Junio (DO: 26.08.1992)

Disposiciones mínimas de Seguridad y de salud que deben aplicarse en las obras de construcción temporales o móviles

RD 1627/1997 de 24 de octubre (BOE: 25/10/1997)

Disposiciones mínimas de Seguridad y de Salud en las obras de construcción

Transposición de la Directiva 92/57/CEE
Deroga el RD 555/86 sobre obligatoriedad de inclusión de Estudio de Seguridad e Higiene en proyectos de edificación y obras públicas

Ley 31/1995 de 8 de noviembre (BOE: 10/11/1995)

Prevención de Riesgos laborales
Desarrollo de la Ley a través de las siguientes disposiciones:

RD 39/1997 de 17 de enero (BOE: 31/01/1997).
Reglamento de los Servicios de Prevención

RD 485/1997 de 14 de abril (BOE: 23/04/1997)

Disposiciones mínimas en materia de Señalización, de Seguridad y salud en el Trabajo

Real 486/1997 de 14 de abril (BOE: 23/04/1997)

Disposiciones mínimas de Seguridad y salud en los Lugares de Trabajo
VII Estudio de Seguridad e Higiene

En el capítulo 1 excluyendo las obras de construcción pero el **RD 1627/1997** la menciona en cuanto a escaleras de mano.

**Modifica y deroga algunos capítulos de la Ordenanza de Seguridad e Higiene en el trabajo (O. 09/03/1971)**

**RD 487/1997** de 14 de abril (BOE: 23/04/1997)

Disposiciones mínimas de Seguridad y salud relativas a la manipulación manual de Cargas que entrañe Riesgos, en particular dorso lumbares, para los Trabajado-res

**RD 488/97** de 14 de abril (BOE: 23/04/1997)

Disposiciones mínimas de Seguridad y salud relativas al Trabaja con Equipos que incluyen pantallas de visualización

**RD 664/1997** de 12 de mayo (BOE: 24/05/1997)

Protección de los Trabajadores contra los Riesgos relacionados con la exposición a agentes biológicos durante el citado Trabajo

**RD 665/1997** de 12 de mayo (BOE: 24/05/1997)

Protección de los Trabajadores contra los Riesgos relacionados con la exposición a agentes cancerígenos durante el citado Trabajo

**RD 773/1997** de 30 de mayo (BOE: 12/06/1997)

Disposiciones mínimas de Seguridad y salud, relativas a la utilización por los Trabajadores de Equipos de Protección individual

**RD 1215/1997** de 18 de julio (BOE: 07/08/1997)

Disposiciones mínimas de Seguridad y salud para la utilización por los Trabajadores de los Equipos de Trabajo

*Transposición de la Directiva 89/655/CEE sobre utilización de los equipos de trabajo*

*Modifica y deroga algunos capítulos de la Ordenanza de Seguridad e Higiene en el trabajo (O. 09/03/1971)*

**O. de 20 de mayo de 1952** (BOE: 15/06/52)

Reglamento de Seguridad e Higiene del Trabajo en la industria de la Construcción

Modificaciones: **O. de 10 de diciembre de 1953** (BOE: 22/12/53)  
**O. de 23 de septiembre de 1966** (BOE: 01/10/66)

**Art. 100 a 105 derogados por O. de 20 de enero de 1956**

**O. de 31 de enero de 1940. Andamios: Cap. VII, art. 66 º a 74 º** (BOE: 03/02/40)
Reglamento general sobre Seguridad e Higiene

O. de 28 de agosto de 1970. Arte. 1º a 4º, 183º a 291º y Anexos I y II (BOE: 05/ 09/70; 09/09/70)

Ordenanza del Trabajo para las Industrias de la Construcción, Ecovidrio y cerámica
Corrección de errores: BOE: 17/10/70

O. de 20 de septiembre de 1986 (BOE: 13/10/86)

Modelo de libro de incidencias correspondiente a las obras en que sea obligatorio el estudio de Seguridad e Higiene
Corrección de errores: BOE: 31/10/86

O. de 16 de diciembre de 1987 (BOE: 29/12/87)

Por la que se establecen nuevos modelos para la notificación de accidentes de trabajo y se dan instrucciones para su cumplimentación y tramitación

O. de 31 de agosto de 1987 (BOE: 18/09/87)

Señalización, balizamiento, limpieza y terminación de obras fija en vías Fuera de población

O. de 23 de mayo de 1977 (BOE: 14/06/77)

Reglamento de aparatos elevadores para obras
Modificación: O. de 7 de marzo de 1981 (BOE: 14/03/81)

O. de 28 de junio de 1988 (BOE: 07/07/88)

Instrucciones Técnica Complementaria MIE-AEM 2 del Reglamento de Aparatos de elevación y Manutención Reference a grúa-torre desmontables para obras
Modificación: O. de 16 de abril de 1990 (BOE: 04/24/1990)

O. de 31 de octubre de 1984 (BOE: 07/11/84)

Reglamento sobre Seguridad de los Trabajos con Riesgo de amianto

O. de 7 de enero de 1987 (BOE: 15/01/87)
Normas Complementarias del Reglamento sobre Seguridad de los Trabajos con Riesgo de amianto

RD 1316/1989 de 27 de octubre (BOE: 02/11/89)
Protección a los Trabajadores Frente a los Riesgos Derivados de la exposición al ruido durante el citado Trabajo

O. de 9 de marzo de 1971 (BOE: 16 y 17/03/71)
VII Estudio de Seguridad e Higiene

Ordenanza General de Seguridad e Higiene en el Trabajo
Corrección de errores: BOE: 06/04/71
Modificación: BOE: 02/11/89

Se aprueba el modelo de Libro de Incidencias en obras de construcción

Resoluciones aprobatorias de Normas Técnicas Reglamentarias para distintos Medios de Protección personal de Trabajadores

R. de 14 de diciembre de 1974 (BOE: 30/12/74): N.R. MT-1:
Cascos no metálicos

R. de 28 de julio de 1975 (BOE: 01/09/75):
N.R. MT-2: Protectores auditivos

R. de 28 de julio de 1975 (BOE: 02/09/75):
N.R. MT-3: Pantallas para soldadores

Modificación: BOE: 24/10/75
R de 28 de julio de 1975 (BOE: 03/09/75): N.R. MT-4: Guantes AISLANTES de electricidad

Modificación: BOE: 25/10/75
R de 28 de julio de 1975 (BOE: 04/09/75): N.R. MT-5: Calzado de Seguridad contra Riesgos mecánicos

Modificación: BOE: 27/10/75
R. de 28 de julio de 1975 (BOE: 05/09/75): N.R. MT-6: banquetas AISLANTES de maniobras

Modificación: BOE: 28/10/75
R. de 28 de julio de 1975 (BOE: 06/09/75): N.R. MT-7: Equipos de Protección personal de vías respiratorias. Normas comunes y adaptadores faciales

Modificación: BOE: 29/10/75
R. de 28 de julio de 1975 (BOE: 08/09/75): N.R. MT-8: Equipos de Protección personal de vías respiratorias: filtros mecánicos
VII Estudio de Seguridad e Higiene

Modificación: BOE: 30/10/75

Modificación: BOE: 31/10/75
R. de 28 de julio de 1975 (BOE: 10/09/75): N.R. MT-10: Equipos de Protección personal de vías respiratorias: filtros químicos y mixtos contra amoníaco

Modificación: BOE: 01/11/75
Normativa de ámbito local (ordenanzas municipales)