Control No Lineal de Màquines Elèctriques.
Verificació per Simulació

TITULACIÓ: EAEI

AUTOR: August Plaza Teixidó.
DIRECTOR: Ramon Leyva Grasa.
Introducció.. 4

1.1 Objectiu ... 4

1.2 Nocións Sobre Control Lineal i No Lineal... 5

1.3 Nocións Sobre Backstepping ... 7

1.4 Motors per als quals s’han Desenvolupat Controls Backstepping......................... 11

1.4.1 Motor de Corrent Continu d’Imant Permanent “Brushed DC (PMBDC)” 11

1.4.2 Motor Pas a Pas d’Imants Permanents, “Permanent Magnet Stepper (PMS)” 13

1.4.3 Motor d’Induïció.. 15

2 Control No Lineal del Motor de Corrent Continu d’Imant Permanent Brushed DC (PMBDC).. 18

2.1 Introducció... 18

2.2 Model del sistema.. 20

2.3 Objectiu del Control ... 22

2.4 Control del Sistema Suposant un Coneixement Exacte dels Paràmetres 25

2.5 Simulació d’un Control Backstepping del Motor de Corrent Continu Brushed DC (PMBDC)... 29

2.5.1 Introducció .. 29

2.5.2 Editor de Matlab... 31

2.5.3 Simulink de Matlab ... 33

2.6 Conclusions .. 52

3 Control No Lineal del Motor Pas a Pas d’Imants Permanents, Permanent Magnet Stepper (PMS)... 54

3.1 Introducció... 54

3.2 Model del sistema.. 56

3.3 Objectiu del Control .. 58
3.4 Estratègia de Commutació ... 60

3.5 Control del Sistema Suposant un Coneixement Exacte dels Paràmetres 62

3.6 Simulació d’un Control Backstepping del Motor Pass a Pass d’Imants Permanents (PMS) ... 67

 3.6.1 Introducció .. 67

 3.6.2 Editor de Matlab .. 69

 3.6.3 Simulink de Matlab ... 71

3.7 Conclusions ... 93

4 Control del Motor de Inducció ... 95

 4.1 Introducció .. 95

 4.2 Model del sistema .. 97

 4.3 Objectiu del Control ... 99

 4.3.1 Objectiu de Seguiment Posició / Velocitat .. 99

 4.3.2 Objectiu de Seguiment de Flux ... 102

 4.4 Control del Sistema Suposant un Coneixement Exacte dels Paràmetres 105

 4.5 Simulació d’un Control Backstepping del Motor d’Inducció 113

 4.5.1 Introducció .. 113

 4.5.2 Editor de Matlab .. 115

 4.5.3 Simulink de Matlab ... 117

 4.6 Conclusions ... 156

5 Annex ... 159

 5.1 Transformació d’un Sistema de Trifàsic de Corrent Altern 159

 5.1.1 Taula de Fórmules ... 166

 5.1.2 Taula de Funcions ... 170

 5.1.3 Taula de Constants .. 172

 5.2 Formulari i Figures del Capítol d’Introducció .. 173
5.2.1 Taula de Fórmules ... 173
5.2.2 Taula de Funcions ... 175
5.2.3 Taula de Constants ... 176
5.2.4 Taula de Figures ... 177

5.3 Formulari i Figures del Motor de Corrent Continu Brushed DC (PMBDC) 178

5.3.1 Taula de Fórmules ... 178
5.3.2 Taula de Funcions Variables ... 180
5.3.3 Taula de Funcions Constants ... 181
5.3.4 Taula de Constants ... 181
5.3.5 Taula de Figures ... 183
5.3.6 Taula de Taules ... 185

5.4 Formulari i Figures del Motor Pas a Pas d’Imants Permanents, PMS 186

5.4.1 Taula de Fórmules ... 186
5.4.2 Taula de Funcions Variables ... 189
5.4.3 Taula de Funcions Constants ... 189
5.4.4 Taula de Constants ... 190
5.4.5 Taula de Figures ... 191
5.4.6 Taula de Taules ... 193

5.5 Formulari i Figures del Motor de Inducció .. 194

5.5.1 Taula de Fórmules ... 194
5.5.2 Taula de Funcions Variables ... 198
5.5.3 Taula de Funcions Constants ... 199
5.5.4 Taula de Constants ... 200
5.5.5 Taula de Figures ... 202
5.5.6 Taula de Taules ... 205

5.6 Bibliografia ... 207
1 Introducció

1.1 Objectiu

L’objectiu d’aquest projecte és la comprensió i la verificació per simulació mitjançant software, de controladors de seguiment de posició per a dinàmiques de sistemes electromecànics motor – càrrega no lineals, és a dir, de sistemes constituïts per motors elèctrics que condueixen una càrrega de massa puntual, situada en l’extrem d’un braç articulat a l’eix del rotor d’un motor, a través d’una trajectòria de posició desitjada.

Partirem dels models de les dinàmiques electromecàniques dels diferents sistemes motor - càrrega suposant un perfecte coneixement del seu model, o sigui sense incertesa paramètrica. El model de la dinàmica electromecànica del sistema motor - càrrega serà l’esquelet a raó del qual desenvoluparem el controlador de seguiment de posició.

Per al procés de disseny dels controladors, utilitzarem la tècnica matemàtica del integrador backstepping, donant solució al problema de la manca d’entraudes de control necessàries per a forçar l’objectiu del controlador, objectiu que s’aconseguirà en quant l’ error de seguiment de posició de la trajectòria de la càrrega tendeixi a zero.

Considerant el seu interès en el món industrial en l’àmbit dels manipuladors robòtics, i d’acord amb la seva àmplia utilització, desenvoluparem controladors de seguiment de posició per als següents tres tipus de motors:

(ii) Motor Pas a Pas d’Imants Permanents. Permanent Magnet Stepper (PMS).

En l’apartat 1.4 del present capítol és descriuen els motors emprats en els controls.

Mitjançant el software de simulació per ordinador Matlab, implementarem els controladors de seguiment de posició dissenyats. El procediment serà crear diferents blocs que anomenarem subsistemes, els quals seran constituïts per les equacions dels llaços del control, de manera que quedin diferenciats els objectius del control (dinàmica del motor en llaç obert, seguiment d’error de posició, seguiment d’error de parell, etc.). La connexió entre els subsistemes completarà el controlador de seguiment de posició en llaç tancat.

Executant la simulació il·lustrarem els resultats mitjançant els gràfics de les variables d’interès, per tal de comprovar l’èxit de l’objectiu del control.
1.2 Nocions Sobre Control Lineal i No Lineal

La teoria de sistemes de control s’encarrega de l’anàlisi i el disseny de components interactuats d’un sistema en una configuració que possibiliti un comportament desitjat. La configuració essencial emprada en teoria de sistemes de control es basa en el concepte de realimentació, que consisteix en mesurar les variables d’interès d’un sistema i utilitzar-les per a controlar el seu comportament. La teoria i la pràctica del control té un ampli rang d’aplicacions en els camps de la enginyeria, així com en d’altres disciplines. Els avantatges del control eficient en la indústria són immenses, proporcionen millores en la qualitat dels productes, reduïxen el consum d’energia, minimitzen els residus dels processos, milloren els nivells de seguretat, entre d’altres.

El punt de partida en l’anàlisi d’un sistema de control, és el model matemàtic del sistema, i ve donat com un conjunt d’operacions entre les entrades i sortides del sistema, o com un conjunt d’equacions diferencials. La majoria dels models matemàtics emprats tradicionalment per al control són lineals, i poden representar de forma precisa el comportament de sistemes reals en molts casos. No obstant, els avanços tecnològics i per lo tant les necessitats actuals, han generat una enorme varietat de nous problemes i aplicacions que són no lineals en essència. Per exemple, fenòmens no lineals tals com equilibris múltiples, cicles límit, bifurcaciones, lliscament de freqüències i caos, es troben freqüentment en aplicacions modernes importants en enginyeria, tals com sistemes de comandament de vol, manipuladors robòtics, sistemes d’autopistes automatitzades, sistemes d’injecció de combustible d’alt rendiment, entre d’altres. La dinàmica dels models d’aquests sistemes no pot ésser descrita amb sistemes lineals, lo qual fa obvia la necessitat dels sistemes no lineals per a la seva modelació i control.

Veiem que un sistema lineal que pot ser descrit per un conjunt d’equacions diferencials, com les que es mostren a continuació:

\[\dot{x} = Ax + Bu \quad (1.1) \]

on \(x(t) \) és la variable d’estat, \(A \) i \(B \) són matrius invariants en el temps, i \(u(t) \) indica la entrada de control. Considerant que l’equació (1.1) descriu amb exactitud el comportament del sistema, podem exposar diverses propietats de la teoria de control: (i) si considerem que la entrada de control \(u(t) \) és igual a zero, aleshores realitzant els desenvolupaments matemàtics necessaris, podem dir que existeix un únic punt d’equilibri si la matriu \(A \) no és singular, (ii) que el punt d’equilibri és estable si els valors propis d’\(A \) tenen arrels reals negatives, i (iii) que podem resoldre les equacions diferencials lineals analíticament. Però quan l’entrada de control \(u(t) \) no és igual a zero, les propietats del sistema lineal invariant en el temps inclouen: (i) superposició, (ii) l’estabilitat asimptòtica del sistema no forçat assegura l’estabilitat \(BIBO \), i (iii) una entrada sinusoïdal proporciona una sortida sinusoïdal de la mateixa freqüència. Aquestes propietats no han d’acomplir-se pel cas dels sistemes no lineals.

Constatem doncs que mentre que les propietats dels sistemes lineals proporcionen robustos dissenys i eines d’anàlisi, el comportament d’un sistema no lineal pot ser molt més complex. Amb l’omissió de comportaments no lineals, els dissenys dels controls resultants poden tenir una estabilitat incerta i uns resultats degradats.
Diferents mètodes matemàtics, fan possible el control dels sistemes no lineals, encara que no existeix un mètode comodi. Podem enumerar algunes de les tècniques de control més comuns tals com la linealització aproximada, la linealització estesa, la linealització exacta, el control per règims lliscants, entre d’altres.

En el següent apartat parlem d’una de les tècniques més actuals en control de sistemes no lineals, és la que nosaltres emprem en el disseny dels diferents controladors de seguiment de posició reportats en aquest projecte, i s’anomena integrador *backstepping*.
1.3 Nocions Sobre Backstepping

El backstepping, és mètode de control recursiu per a sistemes no lineals.

La forma bàsica del procediment del backstepping l’explicaré a través d’un exemple, extret de [1] i és la següent:

Sigui un sistema que es pot escriure com:

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2), \\
\dot{x}_2 &= x_3 + f_2(x_1, x_2), \\
\dot{x}_3 &= u + f_3(x_1, x_2, x_3),
\end{align*}
\]

(1.2) (1.3) (1.4)

on \(x_1, x_2\) i \(x_3\) són les variables d’estat i \(u\) és l’entrada física de control.

Primer pas: imaginem que poguéssim utilitzar la variable \(x_2\) com una entrada i la re-alimentem tal que \(\dot{x}_2 = \alpha_1(x_1)\) portí a zero la primera variable d’estat \(x_1\), (és a dir, existeix una funció de Lyapunov \(V(x) > 0\) tal que \(\frac{\partial V}{\partial x_1} \cdot \frac{\partial x_1}{\partial t} = \frac{\partial V}{\partial x_1} \cdot f_i(x_1, \alpha_1(x_1)) < 0\), per a tot \(x_1 \neq 0\), i per tant \(x_1 \to 0\).

Donem-nos-en compte que nosaltres podem fer que \(x_2\) sigui igual a \(\dot{x}_2 = \alpha_1(x_1)\) llevat en un cert error \(z_2 = x_2 - \alpha_1(x_1)\). Anomenarem a \(z_1 = x_1\), amb lo que \(x_1\) i \(x_2\) són funcions explicites conegudes de \(z_1\) i \(z_2\), i a l’inrevés. Podem reescriure les primeres dues equacions del sistema com a:

\[
\begin{align*}
\dot{z}_2 &= x_2 - \alpha_1(x_1) \\
\dot{z}_1 &= \dot{x}_2 = \dot{x}_2 = \dot{z}_2 + \alpha_1(z_1)
\end{align*}
\]

Derivant les dues primeres equacions del sistema de control obtenim:

\[
\begin{align*}
\dot{z}_1 &= f_1(z_1, z_2 + \alpha_1(z_1)), \\
\dot{z}_2 &= x_3 + f_2(z_1, z_2 + \alpha_1(z_1)) - \dot{z}_1,
\end{align*}
\]

on \(\phi(z_1, z_2)\) és una funció coneguda, ja que \(f_i\) és diferenciable i es pot expressar com a:

\[
f_i(z_1, z_2 + \alpha_1(z_1)) = f_i(z_1, \alpha_1(z_1)) + z_2 \phi_i(z_1, z_2).
\]

(1.5)
Amb el que el sistema ens queda:

\[\dot{z}_1 = f_1(z_1, \alpha_1(z_1)) + z_2 \varphi_1(z_1, z_2), \quad (1.6) \]
\[\dot{z}_2 = x_3 + f_2(z_1, z_2 + \alpha_1(z_1)) - \dot{\alpha}_1, \quad (1.7) \]

Una de les claus a observar és que \(\dot{\alpha}_1 \) és també una funció coneguda, operant tenim:

\[\dot{\alpha}_1 = \frac{\partial \alpha_1}{\partial x_1} \dot{x}_1 = \frac{\partial \alpha_1}{\partial x_1} f_1(x_1, x_2) = \frac{\partial \alpha_1}{\partial z_1} f_1(z_1, z_2 + \alpha_1(z_1)) \equiv \beta_1(z_1, z_2). \quad (1.8) \]

Segon pas: Ara imaginem que tenim que emprar \(x_3 \) per a estabilitzar a zero \((x_1, x_2)\) del sistema anterior mitjançant una llei de control \(\alpha_2(z_1, z_2) \). Per a dissenyar \(\alpha_2 \) primer construirem una funció de Lyapunov:

\[V_2(z_1, z_2) = V_1(z_1) + \frac{1}{2} z_2^2. \quad (1.9) \]

Amb \(x_3 = \alpha_2(z_1, z_2) \) volem fer que \(\dot{V}_2 \) sigui negatiu:

\[\dot{V}_2 = \frac{\partial V_1}{\partial z_1} \dot{z}_1 + \frac{\partial V_1}{\partial z_2} \dot{z}_2 \]
\[\dot{V}_2 = \frac{\partial V_1}{\partial z_1} (f_1(z_1, \alpha_1(z_1)) + z_2 \varphi_1(z_1, z_2)) + \frac{\partial V_2}{\partial z_2} \dot{z}_2 \]
\[\dot{V}_2 = \frac{\partial V_1}{\partial z_1} f_1(z_1, \alpha_1(z_1)) + z_2 \frac{\partial V_2}{\partial z_1} \varphi_1(z_1, z_2) + z_2 \dot{z}_2 \]
\[\dot{V}_2 = \frac{\partial V_1}{\partial z_1} f_1(z_1, \alpha_1(z_1)) + z_2 \frac{\partial V_1}{\partial z_1} \varphi_1(z_1, z_2) + z_2 \left(\alpha_2 + f_2(z_1, z_2 + \alpha_1(z_1, z_2)) \right), \]
\[\dot{V}_2 = \frac{\partial V_1}{\partial z_1} f_1(z_1, \alpha_1(z_1)) + z_2 \left(\frac{\partial V_1}{\partial z_1} \varphi_1(z_1, z_2) + \alpha_2 + f_2(z_1, z_2 + \alpha_1(z_1, z_2)) \right). \quad (1.10) \]

Recordem que en el primer pas el primer terme de l’expressió anterior, es va fer negatiu, així trobarem \(\alpha_2 \) per a fer l’expressió multiplicada per \(z_2 \), la del segon terme, sigui igual a \(-z_2 \), amb el que farem que \(\dot{V}_2 < 0 \):

\[\left(\frac{\partial V_1}{\partial z_1} \varphi_1(z_1, z_2) + \alpha_2 + f_2(z_1, z_2 + \alpha_1(z_1, z_2)) \right) = -z_2, \]
\[\alpha_2(z_1, z_2) = -z_2 - \frac{\partial V}{\partial z_1} \varphi_1(z_1, z_2) - f_1(z_1, z_2 + \alpha_1(z_1)) + \beta_1(z_1, z_2). \quad (1.11) \]

L’error que cometem amb \(x_3 = \alpha_2(z_1, z_2) \) és \(z_3 = x_3 - \alpha_2(z_1, z_2) \), per a corregir-lo, haurem de sumar \(z_3 \) a la part dreta de l’equació (1.11), donat que:

\[z_3 = x_3 - \alpha_2(z_1, z_2) \rightarrow x_3 = z_3 + \alpha_2(z_1, z_2) \], i nosaltres varem substituir \(x_3 = \alpha_2(z_1, z_2) \),

i l’actual \(\dot{V}_2 \) passa a ser:

\[\dot{V}_2 = \frac{\partial V}{\partial z_1} f_1(z_1, \alpha_1(z_1)) - z_2^2 + z_2 \dot{z}_3. \quad (1.12) \]

Haurem de tenir cura amb \(z_2 \dot{z}_3 \) al tercer pas, podria agafar valors que fessin \(\dot{V}_2 \) positiva. Com que coneixem \(z_1, z_2 \) i \(z_3 \) com funcions de \(x_1, x_2 \) i \(x_3 \), i a l’inrevés, el nostre sistema potser reescrit com:

\[\dot{z}_1 = f_1(z_1, \alpha_1(z_1)) + z_2 \varphi_1(z_1, z_2), \quad (1.13) \]

\[\dot{z}_2 = z_3 + \alpha_2(z_1, z_2) + f_2(z_1, z_2 + \alpha_1(z_1)) - \beta_1(z_1, z_2), \quad (1.14) \]

\[\dot{z}_3 = u + f_3(z_1, z_2 + \alpha_1(z_1), z_3 + \alpha_2(z_1, z_2)) - \beta_2(z_1, z_2, z_3), \quad (1.15) \]

on \(\beta_2(z_1, z_2, z_3) \) és l’expressió coneguda per \(\dot{\alpha}_2 \).

Tercer Pas: En aquest últim pas no és necessari imaginar un control fictici, ja que l’entrada de control \(u \) és el nostre control d’entrada al sistema. L’objectiu és doncs, trobar una llei de realimentació per a \(u \) per a fer la derivada de la funció de Lyapunov \(V_3 = V_1 + V_2 + \frac{1}{2} z_3^2 \) negativa:

\[\dot{V}_3 = \frac{\partial V}{\partial z_2} \dot{z}_2 + \frac{\partial V}{\partial z_3} \dot{z}_3 \]

\[\dot{V}_3 = \dot{V}_2 + z_3 \dot{z}_3 \]

\[\dot{V}_3 = \dot{V}_2 + z_3 \dot{z}_3 = \frac{\partial V}{\partial z_1} f_1(z_1, \alpha_1(z_1)) - z_2^2 + z_2 z_3 + z_3(u + f_3 - \beta_2). \quad (1.16) \]

La principal fita que s’ha aconseguit no només és que els dos primers termes són negatius, sinó que també els termes restants tenen \(z_3 \) com a factor comú. Això és crucial, perquè ara, aplicant el mateix criteri que en el segon pas, l’elecció de la realimentació:

\[-z_3 = z_2 + (u + f_3 - \beta_2) \]

\[u = -z_3 - f_3(z_1, z_2 + \alpha_1(z_1) + \alpha_2(z_1, z_2) + \beta_2(z_1, z_2, z_3) - z_2, \quad (1.17) \]

\[\text{Pàgina 9 de 208} \]
amb el que els dos darrers termes a \(\dot{V}_3 \) són igual a \(-z_3^2\) i garanteix que \(\dot{V}_3 < 0 \) per a qualsevol valor diferent de zero de \(z_1, z_2 \) i \(z_3 \). Així, hem aconseguit la propietat de l’estabilitat global asimptòtica d’equilibri a zero. Ara podem expressar la llei de realimentació dissenyada com una funció d’\(x_1, x_2, x_3, \) i està llesta per a la seva implementació.

Aquest procediment és clar i resulta ser global quan el sistema és de la forma especial \textit{strict feedback}. En el cas d’una forma més genèrica \textit{pure feedback}, el resultat pot no ser clar o global, però no desapareix la regió i l’estabilitat està garantitzada.

En l’anterior exemple, el primer pas del \textit{backstepping} va ser empleat per a estabilitzar una equació escalar. En altres aplicacions, el procediment del \textit{backstepping} pot començar amb un sistema d’ordre elevat per al qual una de les variables d’estat externes pot ser empleada com un estabilitzador fictici de control. En particular, el primer pas, pot consistir en un disseny passiu. El 1992 \textit{Transactions on Automatic Control} note, Lozano, Brogliato i Landau donen una interpretació passiva per a cada pas del nostre procediment.

Algú es pot preguntar si el \textit{backstepping} és aplicable a sistemes els quals les realimentacions no són linealitzables. La resposta és sí! Per exemple podem emprar-lo per a estabilitzar globalment el sistema:

\[
\begin{align*}
\dot{x}_1 &= x_1^3, & (1.18) \\
\dot{x}_2 &= u, & (1.19)
\end{align*}
\]

el qual no és controlable a zero. Començant per \(\alpha_i = -x_i^k \), on \(k > 1 \), dir \(k = \frac{4}{3} \) o \(k = 2 \), i així aquesta \(\alpha_i \) és diferenciable. El disseny podrà concloure en dos passos.

Una limitació de la tècnica del \textit{backstepping} és la necessitat de que el sistema controlat tingui una certa estructura triangular. D’altra banda, una altra limitació pràctica d’aquest mètode és la sensibilitat numèrica o la complexitat de la llei de control.
1.4 Motors per als quals s’han Desenvolupat Controls Backstepping

Per a ajudar a la comprensió dels controls dinàmics de posició dels tres tipus de motors, que hem abordat en els següents capítols, realitzarem una introducció per a cadascun d’ells, explicant els principis de funcionament, les seves principals característiques, i àmbit d’aplicació. Cal dir que l’enfocament dels dissenys dels controladors és en l’àmbit dels robots manipuladors, en el control de posició de les dinàmiques dels motors que acoblats a un braç d’un robot manipulador suporten el moviment d’una càrrega sota un parell no lineal. Amb lo que els motors que a continuació descriurem són del tipus i característiques que requereixen, com s’explica en la descripció posterior de cada motor.

1.4.1 Motor de Corrent Continu d’Imant Permanent “Brushed DC (PMBDC)”

El mode de funcionament del motor de corrent continu amb escombretes, es basa en el principi en el qual, quan per un conductor on hi circula un corrent I, es introduït en un camp magnètic B, apareix una força F. Si amb el conductor es genera un circuit, en forma de malla en un pla horitzontal, que pot girar lliurement. Llavors, les forces generades actuaran de forma que el circuit sigui travessat per la màxima quantitat de flux possible, produint el gir del circuit fins a una posició horitzontal, perpendicular al sentit del flux. Si en un moment posterior s’inverteix el sentit del corrent, novament es produeixen forces en sentit contrari que permetran que el circuit segueixi girant. Varis circuits com l’esmenta’t s’enroten sobre un cilindre de material magnètic, l’armadura, formant la bobina del motor, que pot girar lliurement, o sigui el rotor del motor. Cadascun d’aquest circuits es connecta al commutador sobre el que actuen les escombretes, normalment de carbó. D’aquesta forma, quan l’armadura gira, el commutador inverteix el corrent sobre els circuits per tal que el rotor continui girant. Per a invertir el sentit de gir serà suficient en invertir el sentit del corrent a les escombretes. El camp magnètic exterior es manté fix (constant) per lo que rep el nom d’estator, el qual es produït per electroimants o per imants permanents en motors petits.

El control de la velocitat s’effectua fàcilment mantenint constant el corrent de l’inductor i actuant sobre la tensió en bornes d’induït, o bé mantenint constant la tensió d’induït i actuant sobre l’inductor. Amb el primer mètode, amb flux constant, el parell electromagnètic generat és proporcional al corrent d’induït, lo qual permet mesurar fàcilment el parell i emprar aquesta variable en el control del motor.

En el control per induït, generalment, és possible treballar amb inductàncies d’induït negligibles, amb lo que la funció de transferència per a aquest cas es reduceix a:

$$\frac{\theta(s)}{E_a(s)} = \frac{K}{s(R_a I_a + R_a f + K K_b)} = \frac{K_m}{s(T_m s + 1)},$$ \hspace{1cm} (1.20)

essent:

$$T_m = \frac{R_a J}{R_a f + K K_b} \text{ i si } f << K K_b; \quad T_m = \frac{R_a J}{K K_b},$$ \hspace{1cm} (1.21)
Així doncs, veiem que tenim una transmitància de segon ordre i que la inèrcia juga un paper important en la resposta del motor.

En el control per corrent de camp, la inductància de camp L_f no és negligible amb lo que ens resulta una transmitància de tercer ordre, essent a més, més difícil de mantenir constant el corrent d’induït que el de camp, degut a l’efecte de la força contra electromotriu. Amb tot i degut al baix rendiment del motor de corrent continu controlat per camp, i l’efecte estabilitzador de la velocitat degut a la força contra electromotriu en el control per induït, fa que aquest últim sigui el més emprat.

Per a l’obtenció de motors de corrent continu ràpids, i especialment adequats per al control, s’han emprat various tècniques, destacant actualment la denominada de rotor pla o de baixa inèrcia. Els motor construïts segons aquest sistema tenen l’excitació assegurada per imants permanents, el que afavoreix l’estabilitat de la velocitat i simplifica l’alimentació. En aquests motor, el rotor és un disc format per làmines de coure estampades, aïllades entre sí, que constitueixen les espires del debanat. El parell és molt constant, inclús a baixes velocitats. El seu moment d’inèrcia al voltant de 5 vegades inferior a la dels millors motor convencionals de continua. Permetent, en els robots, reduir les transmissions, apropant el motor a l’element a accionar. En l’actualitat podem trobar motors d’aquests tipus amb potències nominals de fins a 10 kW.

Aquest últim és el tipus de motor de corrent continu que emprem en el nostre control, l’anomena’t *brushed DC, permanent magnet brushed DC (PMBDC)*.
1.4.2 Motor Pas a Pas d’Imants Permanents, “Permanent Magnet Stepper (PMS)”

Els motors elèctrics pas a pas són motors síncrons que a partir d’una senyal de comandament en forma de tren de polsos, giren un cert angle, el valor del qual és un nombre sencer de vegades un angle elemental, o pas. Degut a aquesta característica, aquest tipus de motor es especialment adecuat per al control en llàc obert, ja que el control de la posició es pot fer directament amb el senyal de comandament. No obstant és necessari acudir al control en llàc tancat quan es requereix alta precisió i robustesa, ja que es poden donar situacions en les que no es pugui assegurar que la posició del rotor correspongui a la marcada pel tren de polsos, com podria ser una sobrecàrrega que provoca un parell de càrrega superior al que pot mantenir-se pel camp magnètic generat.

Els motors pas a pas poden ésser d’imant permanent, de reluctància variable o híbrids. Els motors pas a pas treballen amb grans fluctuacions instantànies de velocitat, lo que ocasiona acceleracions elevades.

En la figura següent podem observar com es realitzen les commutacions de corrent d’excitació a les bobines d’un motor PMS, figura 1.1:

![Diagrama de Representació d’un Motor Pas a Pas de 2 Pols i 8 Fases](image)

Els motor pas a pas poden de tres tipus diferents. El motor pas a pas d’imants permanents de corrent continu, presenta un parell elevat a baixes freqüències de treball, un parell de manteniment bo i una elevada inèrcia. Els de reluctància variable poden girar a major velocitat i tenir un pas molt més petit, el que permet evitar en alguns casos, emprar reductors. Els híbrids són un entremig entre els dos anteriors.
Els bobinats d’un motor pas a pas estan normalment ubicats a l’estator formant les bobines polars, i commutant sobre aquests una seqüència d’impulsos d’ona determinada, es defineixen la velocitat i el sentit de gir.

Els imants permanents ubicats en el rotor estan confrontats angularment amb les bobines polars dels circuits de l’estator, aquestes reben el corrent elèctric trossejat en forma de tren de polsos d’ona quadrada per crear els fluxos magnètics que es confrontaran amb els imants del rotor, activant la seva polarització de forma seqüencial, en funció del tren de polsos que rebin. Per exemple, un circuit de control intern, circuits integrats, converteix el corrent continu d’alimentació a bornes de l’estator del motor, en un corrent digital en forma d’ona quadrada, realitzant les commutacions als debanats de l’estator, excitant les bobines polars. Mitjançant *encoders* controlen les voltes que dónen els imants permanents del rotor, amb lo qual s’aconsegueix governar la velocitat, sentit de gir i posició.

Donada la naturalesa d’aquest tipus de motors, el model elèctric del motor pas a pas de corrent continu *PMS*, és un model de dues fases elèctriques, tal i com veurem en el capítol 2.

En general els motors pas a pas són de potències baixes, poden aconseguir-se’n fins a 1kW, amb un parell màxim de 2.6Nm i 1.8° de pas.
1.4.3 Motor d’Inducció

D’entre tots, el motor d’inducció de corrent altern és el més freqüent utilitzat en el món de la indústria. Això és degut a la seva simplicitat, qualitat i alta eficiència.

El seu nom be donat perquè el voltatge del rotor (que produeix tant el corrent com el camp magnètic del rotor) és induït al bobinat del rotor en lloc de connectar-se físicament mitjançant conductors. Opera sota el principi de inducció electromagnètica a l’igual que un transformador. La característica que defineix un motor de inducció és que no necessita corrent de camp continu per a posar-se a funcionar. Degut a que aquests tipus de motors no arriben mai a treballar a la seva velocitat síncrona, s’anomenen motors asíncrons.

Un motor d’inducció té físicament el mateix estator bobinat que una màquina síncrona, el que varia és el rotor. L’estator donc d’una màquina asíncrona consta de varis bobines en cada fase, distribuïdes en ranures al voltant de la superfície interna de l’estator.

En quant al rotor d’un motor de inducció, n’existen de dos tipus diferents, el de gàbia d’esquirol, que consisteix en una sèrie de barres conductores col·locades en ranures tallades en la cara del rotor i amb els seus extrems curtcircuitats, i el de rotor bobinat, el qual disposa d’un joc complet de bobinats trifàsics que són el reflex de la imatge dels bobinats de l’estator, curtcircuitats mitjançant escombretes situades sobre els anells de roçament del estator.

Un sistema de voltatges normalment trifàsics s’apliquen a l’estator i un conjunt de corrents trifasiques de l’estator circulen per els seus bobinats. Aquests corrents produeixen un camp magnètic B_s, el qual està girant en el sentit contrari de les agulles del rellotge. La velocitat de rotació del camp magnètic s’expressa com:

$$n_{sinc} = \frac{120f_e}{P}, \quad (1.22)$$

Figura 1.2. Diagrama de Representació d’un Motor d’Inducció Trifàsic
d’on f_e és la freqüència del sistema en hertzs i P és el nombre de pols de la màquina. Aquest camp magnètic rotatori B_s, passa sobre les barres del rotor i els hi induceix un voltatge. El voltatge induït en una barra de rotor donada s’obté mitjançant l’expressió:

$$e_{ind} = (v \times B)l,$$ \hspace{1cm} (1.23)

d’on v és la velocitat de les barres del rotor en relació al camp magnètic, B és la densitat de flux magnètic de l’estator i l és la longitud de la barra del rotor.

El moviment relatiu del rotor en relació al camp magnètic de l’estator és el que produeix el voltatge induït en una barra del rotor. Aquest moviment relatiu del rotor i dels camps magnètics és defineix com la velocitat de lliscament, que es defineix com la velocitat síncrona (velocitat del camp magnètic) i la velocitat del rotor:

$$n_{lliscament} = n_{sin c} - n_m,$$ \hspace{1cm} (1.24)

un altre terme per descriure el moviment relatiu és el lliscament, que és la velocitat relativa expressada en tant per u o en percentatge:

$$s = \frac{n_{sin c} - n_m}{n_{sin c}},$$ \hspace{1cm} (1.25)

de les expressions anteriors podem escriure la velocitat mecànica del rotor en termes de velocitat síncrona y de lliscament:

$$n_m = (1 - s)n_{sin c},$$ \hspace{1cm} (1.26)

Com hem dit un motor d’inducció treballa induint tensions i corrents al rotor de la màquina, a l’igual que un transformador el rotor seria el secundari i l’estator el primari, però amb la freqüència elèctrica no passa el mateix, la freqüència secundaria no és necessàriament la mateixa que la primària. Quan el rotor està bloquejat (estàtic) $n_m = 0$ rpm, la freqüència del rotor és igual a la de l’estator $f_r = f_e$, i el lliscament $s = 1$. Per a $n_m = n_{sin c}$, la freqüència del rotor $f_r = 0$, i el lliscament $s = 0$, i per a qualsevol velocitat de entre mig, la freqüència del rotor és directament proporcional a la diferència entre la velocitat del camp magnètic i la del rotor. La freqüència del rotor la podem expressar com:

$$f_r = \frac{n_{sin c} - n_m}{n_{sin c}} f_e,$$ \hspace{1cm} (1.27)

i com que $n_{sin c} = 120 \frac{f_e}{P}$, resolem:

$$f_r = \frac{P}{120} (n_{sin c} - n_m),$$ \hspace{1cm} (1.28)

d’on P és el nombre de pols de la màquina.
Les formulacions i exposicions anteriors ens serveixen per introduir el concepte de control de velocitat per a una màquina de inducció, pot realitzar-se mitjançant dues tècniques. Una és variant la velocitat síncrona, que és la velocitat dels camps magnètics de l’estator i el rotor, lo qual es pot aconseguir o bé variant el nombre de pols o variant la freqüència elèctrica de l’estator. L’altra és variar el lliscament del motor per a una càrrega determinada, lo qual ho podem a aconseguir variant la resistència del rotor o bé variant la tensió en bornes del motor.

Aquest mètode últim s’aplica en petits motors i és el que nosaltres emprarem per a realitzar el controlador de seguiment de posició del model del motor de inducció.

2 Control No Lineal del Motor de Corrent Continu d’Imant Permanent Brushed DC (PMBDC)

2.1 Introducció

Per a realitzar el control d’un motor elèctric, podem descompondre el sistema en tres parts diferents: (i) un subsistema elèctric, (ii) un subsistema mecànic, i (iii) un subsistema d’acòblament entre el parell mecànic i el corrent elèctric i entre la velocitat i la força contraelectromotriu, com podem veure representat en la figura 2.1.

Donat que la dinàmica del subsistema elèctric és intrínsecament més ràpida que la dinàmica del subsistema mecànic, la dinàmica elèctrica és sovint negligible durant el procediment del disseny del control. Amb aquesta assumpció en la modelització es poden obtenir transformacions de sistemes de motors que no necessiten precisió en la posició, i per tant que no requereixen afinar en el seu control. Per exemple motors de cintes transportadores, ventiladors, etc. No obstant la majoria de transformacions per a la modelització de sistemes com els robòtics, màquines eina, màquines de fresar, etc, requereixen modelitzacions de major nivell que siguin insensibles a les variacions en les condicions d’operació.

A més, la dinàmica dels motors elèctrics actua com un filtre passa baixos tenint el voltatge com a entrada i el corrent com a sortida. El fet de no considerar-ho com a com a faltant la dinàmica del subsistema mecànic, la dinàmica elèctrica és sovint negligible durant el procediment del disseny del control. Amb aquesta assumpció en la modelització es poden obtenir transformacions de sistèmes de motors que no necessiten precisión en la posició, i per tant que no requereixen afinar en el seu control. Per exemple motors de cintes transportadores, ventiladors, etc. No obstant la majoria de transformacions per a la modelització de sistemes com els robòtics, màquines eina, màquines de fresar, etc, requereixen modelitzacions de major nivell que siguin insensibles a les variacions en les condicions d’operació.

Donat que la dinàmica del subsistema elèctric és intrínsecament més ràpida que la dinàmica del subsistema mecànic, la dinàmica elèctrica és sovint negligible durant el procediment del disseny del control. Amb aquesta assumpció en la modelització es poden obtenir transformacions de sistemes de motors que no necessiten precisió en la posició, i per tant que no requereixen afinar en el seu control. Per exemple motors de cintes transportadores, ventiladors, etc. No obstant la majoria de transformacions per a la modelització de sistemes com els robòtics, màquines eina, màquines de fresar, etc, requereixen modelitzacions de major nivell que siguin insensibles a les variacions en les condicions d’operació.

A més, la dinàmica dels motors elèctrics actua com un filtre passa baixos tenint el voltatge com a entrada i el corrent com a sortida. El fet de no considerar-ho com a faltant la dinàmica del subsistema mecànic, la dinàmica elèctrica és sovint negligible durant el procediment del disseny del control. Amb aquesta assumpció en la modelització es poden obtenir transformacions de sistemes de motors que no necessiten precisión en la posició, i per tant que no requereixen afinar en el seu control. Per exemple motors de cintes transportadores, ventiladors, etc. No obstant la majoria de transformacions per a la modelització de sistemes com els robòtics, màquines eina, màquines de fresar, etc, requereixen modelitzacions de major nivell que siguin insensibles a les variacions en les condicions d’operació.

Actualment, el disseny de controladors per als sistemes electromecànics es poden resoldre amb desenvolupaments de controladors no lineals. Els controladors no lineals son capaços d’incloure els següents objectius: (i) controlar sistemes electromecànics tenint en compte termes no lineals, (ii) controlar sistemes de motors amb incògnites en els paràmetres, i (iii) estimar variables d’estat del sistema (tot i ser sistemes no lineals).
En este capítulo estudiaremos y simularemos la técnica del integrador backstepping, un control basado en la realimentación de estado (full state feedback, FSFB), con la finalidad de obtener controladores de seguimiento de posición para el motor de imán permanente de corriente continua Brushed DC (PMBDC), también conocido como Brush DC, acoplado a una carga mecánica no lineal. Así, dividiendo la técnica de seguimiento en la parte eléctrica y en la parte mecánica del problema del motor. Amb ambos, primero veremos el motor como una fuente de par, y de esta manera diseñaremos una entrada de par para asegurar que la carga mecánica siga la trayectoria de la posición deseadas. Como que el desarrollo matemático del par del motor es función del corriente en las espiras, el controlador de entrada de par puede estar en la trayectoria deseadas de corriente. Luego, la entrada de control de corriente la podemos formular para que el corriente eléctrico en las espiras siga la trayectoria de corriente deseadas. Así, la cinemática eléctrica estará trazada considerando la trayectoria de corriente deseadas, y a la hora el objetivo de control de posición estará incluido en el objetivo de seguimiento de corriente. Por lo tanto, si la entrada de control de corriente la podemos diseñar para garantizar que el corriente siga la corriente deseada, entonces podremos asegurar el éxito en el objetivo de seguimiento de posición.

En este capítulo aplicaremos la técnica de backstepping para obtener el diseño de un controlador para un sistema motor-carga con un conocimiento exacto, es decir, sin incertidumbre en el modelo. Así, seguiremos los siguientes pasos en el desarrollo matemático del problema: (i) modelo del sistema, (ii) objetivo del control y (iii) control del sistema suponiendo un conocimiento exacto de los parámetros.

Finalmente en el apartado 2.5 Simulación, desarrollaremos la implementación del controlador, mediante el programa Matlab. Utilizando bloques de código predefinidos s’implementarán las ecuaciones del control en Simulink. Obteniendo los resultados simulados ilustrados en el mismo apartado.
2.2 Model del sistema

Com hem comentat en el capítol d’introducció, la dinàmica de molts sistemes electromecànics és pot dividir en tres blocs diferenciat:

(i) La dinàmica del subsistema mecànic: que té com a objectiu la determinació de la posició depenent de la càrrega i del rotor del motor.

(ii) La dinàmica del subsistema elèctric: inclou tots els efectes elèctrics rellevants.

(iii) Una relació estàtica: representa la conversió d’energia elèctrica a energia mecànica.

La dinàmica del subsistema mecànic de la figura 1.2, d’un motor DC acoblat a un braç amb una massa puntual en el seu extrem, d’acord amb la posició de la càrrega de la massa de la càrrega respon a l’expressió:

\[M\ddot{q} + B\dot{q} + N\sin(q) = I \] \hspace{1cm} (2.1)

on \(M = \frac{J}{K_r} + \frac{m_1l_2^2}{3K_r} + \frac{m_2l_2^2}{K_r} + \frac{2m_pr_o^2}{5K_r} \) representa la constant global d’inèrcia, \(B = \frac{B_o}{K_r} \) la constant del coeficient de fricció, \(N = \frac{m_1lG}{2K_r} + \frac{m_2lG}{K_r} \) la constant global de la càrrega, \(q(t) \) és la posició angular de la càrrega (i per lo tant la posició del rotor del motor), \(\dot{q}(t) \) és la velocitat angular de la càrrega, \(\ddot{q}(t) \) és l’acceleració angular de la càrrega, i \(I(t) \) és el corrent del rotor. Els paràmetres \(M, B, i N \) descrits a (2.1) son definits per a incloure els efectes del coeficient de parell constant que caracteritza la conversió electromecànica de el corrent del rotor en parell. Els paràmetres que intervenen en les expressions \(M, B \) i \(N \) són: \(J \) que és la inèrcia del rotor, \(m_1 \) és la massa puntual, \(m_2 \) és la massa de la càrrega, \(l \) és la longitud de l’enllaç, \(r_o \) és el radi de la càrrega, \(B_o \) és el coeficient de fricció viscous mutu, \(G \) és el coeficient de gravetat, i \(K_r \) és el coeficient que caracteritza la conversió electromecànica de corrent d’armadura a parell.

La dinàmica del subsistema elèctric per al motor Brush DC respon a l’expressió:

\[L\dot{I} = v - RI - K_g\dot{q} \] \hspace{1cm} (2.2)

on \(L \) és la constant d’inductància del rotor, \(R \) la constant de resistència del rotor, \(K_g \) és la constant del coeficient de la força contraelectromotriu, i \(v(t) \) és el voltatge de control d’entrada. Per als controladors desenvolupats en aquest capítol, assumirem que les variables d’estat (es a dir, \(q, \dot{q}, \ddot{q} \) i \(I \) són totes mesurables.)
Figura 2.2. Diagrama Esquemàtic del BDC Sistema Motor/Càrrega
2.3 Objectiu del Control

Suposades accessibles totes les variables d’estat \((q, \dot{q} \text{ i } I)\), l’objectiu del control és desenvolupar controladors de seguiment de posició de la càrrega, per a les dinàmiques electromecàniques donades per les equacions \((2.1)\) i \((2.2)\). Per a començar el desenvolupament definim l’error de seguiment de posició de la càrrega, \(e(t)\), com:

\[
e = q_d - q \quad (2.3)
\]
on \(q_d(t)\) representa la posició de la càrrega desitjada, i \(q(t)\) és la posició que fou definida a \((2.1)\). Assumirem que la primera, segona i tercera derivada de \(q_d(t)\), són funcions variables en el temps i de magnitud afitada.

Definim el filtre de l’error de seguiment, \(r(t)\), com:

\[
r = \dot{e} + \alpha e \quad (2.4)
\]
on \(\alpha\) és una constant positiva de control de guany. El filtre de seguiment de l’error permet analitzar la dinàmica del subsistema mecànic de segon ordre de \((2.1)\) com un sistema de primer ordre.

Per a formar el filtre de seguiment de l’error, diferenciem respecte el temps i reordenant els termes ens queda:

\[
\begin{align*}
 r &= \dot{e} + \alpha e \\
 e &= q_d - q \\
 \dot{e} &= \dot{q}_d - \ddot{q} \\
 \ddot{e} &= \dddot{q}_d - \dddot{q} \\
 \dot{r} &= (\dddot{q}_d - \dddot{q}) + \alpha \dot{e} \\
 \dot{r} &= (\dddot{q}_d + \alpha \dot{e}) - \dddot{q}. \quad (2.5)
\end{align*}
\]

Multiplicant \((2.8)\) per \(M\) i substituint a la dinàmica del subsistema mecànic de \((2.1)\) obtenim el filtre de seguiment de l’error de la forma:

\[
\begin{align*}
 M\dot{r} &= M((\dddot{q}_d + \alpha \dot{e}) - \dddot{q}) \\
 M\dddot{q} + B\dot{q} + N\sin(q) &= I \\
 \rightarrow \quad M\dddot{q} &= -B\dddot{q} - N\sin(q) + I \\
 \downarrow \\
 \downarrow \\
 M\dddot{q} &= M(\dddot{q}_d + \alpha \dot{e}) + B\dddot{q} + N\sin(q) - I. \quad (2.6)
\end{align*}
\]

Les variables d’estat del subsistema mecànic de \((2.1)\) han passat de segon a primer ordre.

Per a simplificar l’equació algebraica, el cantó dret de \((2.6)\) el reescrivim com:

\[
 M\dddot{q} = W_\tau \theta_\tau - I \quad (2.7)
\]
on la matriu de regressió \(W_\tau(q, \dot{q}, t) \in \mathbb{R}^{1 \times 3}\) ve donada per:

\[
 W_\tau = \begin{bmatrix} \dddot{q}_d + \alpha \dot{e} & \dot{q} & \sin(q) \end{bmatrix} \quad (2.8)
\]

\[\text{Pàgina 22 de 208}\]
i el vector de paràmetres \(\theta_t \in \mathbb{R}^{1 \times 3} \) ve donat per:

\[
\theta_t = \begin{bmatrix} M & B & N \end{bmatrix} \quad (2.9)
\]

Degut a l’estructura del sistema electromecànic donada de (2.1) fins a (2.2), només tenim llibertat per a especificar el voltatge del rotor del motor \(v(t) \). En altres paraules, la dinàmica de l’error del subsistema dinàmic manca d’un nivell de control d’entrada de corrent (parell) verdadera. Per aquesta raó, sumarem i restarem una senyal de corrent desitjat, \(I_d(t) \), a la dreta de la equació (2.7) obtenint:

\[
M \dot{\theta}_t = W_r \theta_t - I_d + \eta_i \quad (2.10)
\]

on \(\eta_i(t) \) representa l’error de pertorbació de seguiment de corrent en la dinàmica del subsistema mecànic i té la forma:

\[
\eta_i = I_d - I \quad (2.11)
\]

Més tard, dissenyarem la trajectòria desitjada de corrent \(I_d(t) \) tal que proporcioni un bon seguiment de la posició de la càrrega en la dinàmica mecànica (o sigui, assumirem que podrà ser aplicada directament a la càrrega). Mostrarem en el desenvolupament que \(I_d(t) \) actualment està enclavat dins d’un conjunt d’estratègia de control en la qual es dissenya \(v(t) \), voltatge final d’entrada al motor. Indicar que el procediment que hem vist de sumar i restar la entrada de control \(I_d(t) \) és conegut normalment com a un integrador backstepping.

Si el terme de l’error de seguiment de corrent \(\eta_i(t) \) a (2.10) fos igual a zero, llavors \(I_d(t) \) podria ser dissenyat per aconseguir un bon seguiment de la posició de la carrega utilitzant tècniques de control standards. Com que l’error de seguiment de corrent en general no és igual a zero, podem dissenyar una entrada de control de voltatge \(v(t) \) la qual compensi el efectes de \(\eta_i(t) \) a (2.10). Per a acomplir aquest objectiu de control, és necessària la dinàmica de l’error de seguiment de corrent. Agafant la derivada en el temps de l’error de seguiment de corrent a (2.11) i multiplicant per \(L \) obtenim:

\[
L \dot{\eta}_i = L \dot{I}_d - L \dot{I} \quad (2.12)
\]

Substituint la par dreta de (2.2) per \(L \dot{I} \) a (2.12), la dinàmica de l’error de seguiment de corrent resulta:

\[
L \dot{\eta}_i = L \dot{I}_d - (v - R I - K_y \dot{q})
\]

\[
L \dot{\eta}_i = L \dot{I}_d - (v - R I - K_y \dot{q}) \quad \text{(arranjant)}
\]

\[
L \dot{\eta}_i = L \dot{I}_d + R I + K_y \dot{q} - v \quad (2.13)
\]

La dinàmica en llaç obert de (2.10) i (2.13) representen el sistema, del que coneixem el model exacte, sense incerteses paramètriques, per al qual dissenyarem el controlador de seguiment deposició. Així, com desenvoluparem en els apartats següents, partirem d’una
trajectòria coneguda de corrent \(I_a(t) \) i formularem un control aplicat a l’entrada de voltatge \(v(t) \) per a assegurar un bon seguiment de la posició de la càrrega.
2.4 Control del Sistema Suposant un Coneixement Exacte dels Paràmetres

Basat en el model exacte conegut, ara dissenyarem un controlador de seguiment de posició per a la dinàmica en llaç obert de (2.10) i (2.13); a més, el sistema electromecànic en llaç tancat formulat, es podrà utilitzar per a un posterior anàlisi d’estabilitat, el qual no realitzarem en aquest capítol. El primer pas en el procediment és dissenyar la trajectòria de corrent desitjada $I_d(t)$. Així doncs, seleccionem $I_d(t)$ com a:

$$I_d = W_i \theta_t + k_r$$ \hspace{1cm} (2.14)

on $W_i(q, \dot{q}, t)$ i θ_t han estat prèviament definides a (2.8) i (2.9), respectivament, k_r és una constant positiva de control de guany. Substituint (2.14) a la dinàmica en llaç obert de (2.10) obtenim la dinàmica del filtre de seguiment de l’error en llaç tancat de la forma:

$$I_d = W_i \theta_t + k_r$$

$$M \dot{r} = W_i \theta_t - I_d + \eta_r$$

arranjant
treballa i obtenim:

$$M \dot{r} = -k_r \eta_r$$ \hspace{1cm} (2.15)

Ara que tenim dissenyada la trajectòria desitjada de corrent $I_d(t)$, podem completar la descripció del sistema en llaç obert amb la dinàmica de l’error de seguiment de corrent. Així doncs, podem calcular el terme \dot{I}_d a (2.13) agafant la derivada en el temps de (2.14) per a obtenir:

$$\dot{I}_d = \dot{W}_i \theta_t + k_r \dot{r}.$$ \hspace{1cm} (2.16)

Substituint (2.5) i la derivada en el temps de (2.8) a la part dreta de (2.16) obtenim:

$$\dot{r} = (\ddot{q}_d + \alpha \dot{\theta}) - \ddot{\theta}$$

$$\frac{d}{dt} (W_i = \begin{bmatrix} \ddot{q}_d + \alpha \dot{\theta} & \dot{q} \sin(q) \end{bmatrix})$$

$$\begin{bmatrix} \dot{\theta}_t \end{bmatrix} = \begin{bmatrix} M & B & N \end{bmatrix}^T$$

$$\frac{d^2}{dt} (e = q_d - q)$$

$$\dot{I}_d = \dot{W}_i \theta_t + k_r \dot{r}$$

$$\dot{I}_d = \ddot{q}_d + \alpha \dot{\theta} - \ddot{\theta} \begin{bmatrix} M & B & N \end{bmatrix}^T + k_r \begin{bmatrix} \ddot{q}_d + \alpha \dot{\theta} - \ddot{\theta} \end{bmatrix}$$

arranjant

$$\dot{I}_d = M(\ddot{q}_d + \alpha (\ddot{q}_d - \ddot{\theta})) + B \ddot{\theta} + N \dot{\theta} \cos(q) + k_r (\ddot{q}_d - \ddot{\theta} + \alpha \dot{\theta})$$ \hspace{1cm} (2.17)

la qual està descrita en termes d’estats mesurables (es a dir, $q(t)$ i $\dot{q}(t)$), funcions coneegudes, paràmetres constants coneeguts, però la càrrega d’acceleració $\ddot{q}(t)$ no és mesurable. De (2.1), podem resoldre per a $\ddot{q}(t)$ de la següent forma:
\[M \ddot{q} + B \dot{q} + N \sin(q) = I \quad \text{operand} \rightarrow \dot{q} = -\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M} \quad \text{queda} \]

\[\dot{q} = -\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M} \quad (2.18) \]

Substituint per \(\ddot{q}(t) \) de la dreta de l’equació (2.18) a (2.17), podem escriure \(I_d(t) \) en termes d’estats mesurables (es a dir, \(q(t) \), \(\dot{q}(t) \), i \(I(t) \)), funcions conegudes, i paràmètres constants coneguts de la forma:

\[\ddot{q} = -\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M} \]

\[\dot{I}_d = M (\ddot{q}_d + \alpha (\dot{q}_d - \ddot{q})) + B \dot{q} + N \dot{q} \cos(q) + k_s (\dot{q}_d - \dot{q} + \alpha \dot{e}) \]

\[\dot{I}_d = M \left[\ddot{q}_d + \alpha (\dot{q}_d - \left(-\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M} \right)) \right] + B \left(-\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M} \right) + N \dot{q} \cos(q) + k_s \left[\ddot{q}_d - \left(-\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M} \right) + \alpha \right] \]

\[\dot{I}_d = M \ddot{q}_d + M \alpha \ddot{q}_d - M \alpha \left(-\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M} \right) + B \left(-\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M} \right) + N \dot{q} \cos(q) + k_s \ddot{q}_d - k_s \left(-\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M} \right) + k_s \alpha \dot{e} \]

\[\dot{I}_d = M (\ddot{q}_d + \alpha \dot{q}_d) + N \dot{q} \cos(q) + k_s \ddot{q}_d + (B - M \alpha - k_s) \left(-\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M} \right) + k_s \alpha \dot{e} \]

\[\dot{I}_d = M (\ddot{q}_d + \alpha \dot{q}_d) + N \dot{q} \cos(q) + k_s \ddot{q}_d + (B - M \alpha - k_s) \left(-\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M} \right) + k_s \alpha \dot{e} \quad (2.19) \]

Substituint l’expressió per \(\dot{I}_d(t) \) de (2.19) a (2.13) obtenim el model final en llaç obert per l’error de seguiment de corrent de la forma:
\[
\begin{align*}
\dot{I}_d &= M(\ddot{q}_d + \alpha \dot{q}_d) + N\dot{q} \cos(q) + (k_s \ddot{q}_d + \alpha \dot{e}) + (B - M\alpha - k_s)(-\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M}) \\
L\dot{\eta}_1 &= \dot{L}\dot{I}_d + RI + K_b \dot{q} - \nu \quad \text{substitu \int} \\
L\dot{\eta}_1 &= L \left[M(\ddot{q}_d + \alpha \dot{q}_d) + N\dot{q} \cos(q) + (k_s \ddot{q}_d + \alpha \dot{e}) \right] + RI + K_b \dot{q} - \nu \quad \text{operant} \\
L\dot{\eta}_1 &= L\left[M(\ddot{q}_d + \alpha \dot{q}_d) + N\dot{q} \cos(q) + (k_s \ddot{q}_d + \alpha \dot{e}) \right] + RI + K_b \dot{q} + L(B - M\alpha - k_s)\left(-\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M}\right) - \nu \\
L\dot{\eta}_1 &= w_c - \nu \quad (2.20)
\end{align*}
\]

on la variable auxiliar escalar \(w_c(q, \dot{q}, I, t) \) bé donada per:

\[
\begin{align*}
w_c &= L\left[M(\ddot{q}_d + \alpha \dot{q}_d) + N\dot{q} \cos(q) + (k_s \ddot{q}_d + \alpha \dot{e}) \right] + RI + K_b \dot{q} + L(B - M\alpha - k_s)\left(-\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M}\right) \\
&= \frac{22}{21}.
\end{align*}
\]

El segon pas en el procediment implica el disseny del control del voltatge d’entrada \(\nu(t) \) per al sistema en llàc obert de (2.20). Donada la estructura de (2.20) i (2.15), definim el control del voltatge d’entrada com a:

\[
\begin{align*}
L\dot{\eta}_1 &= w_c - \nu \quad (2.20) \\
Mr &= -k_s r + \eta_j \quad (2.15) \\
v &= w_c + k_c \eta_j + r \quad (2.22)
\end{align*}
\]

on \(k_c \) és una constant positiva de control de guany. Substituint (2.22) a la dinàmica en llàc obert de (2.20) obtenim la dinàmica de l’error de seguiment de corrent en llàc tancat de la forma:

\[
\begin{align*}
v &= w_c + k_c \eta_j + r \quad (2.22) \\
L\dot{\eta}_1 &= w_c - (w_c + k_c \eta_j + r) \quad \text{operant} \\
L\dot{\eta}_1 &= -k_c \eta_j - r \quad (2.23)
\end{align*}
\]

El model del control desenvolupat bé donat doncs per les equacions (2.14) i (2.22), sistema electromecànric en llàc tancat, i representen l’entrada de control que s’implementarà als bornes de voltatge del motor:
\[I_d = W_e \theta_e + k_r r \quad (2.14) \]

\[\nu = w_e + k_e \eta_l + r \quad (2.22) \]

Comentar que la trajectòria de corrent desitjada \(I_d(t) \) està inclosa (en la forma de la variable \(\eta_l(t) \)) dins de l’entrada de control de voltatge \(\nu(t) \).

Un cop explicada la deducció de la llei de control, en el següent apartat passem a mostrar les simulacions realitzades.
2.5 Simulació d’un Control Backstepping del Motor de Corrent Continu Brushed DC (PMBDC)

2.5.1 Introducció

Per tal de simular el motor i el control dissenyat, el software de simulació emprat ha estat el programa Matlab amb l’editor Simulink. Mitjançant els blocs de codi predefinits, s’han implementat les equacions del control en l’espai del Simulink, introduint les equacions del motor i del control descrit, d’acord amb una trajectòria desitjada, obtenim els valors de tensió d’entrada en bornes del motor per tal de que l’error de seguiment de la posició sigui mínim, tal i com veurem a continuació en el apartat l’apartat 2.5.3 on es descriuen els subsistemes dinàmics.

El model del motor que hem simulat és el Baldor 3300 dc, controlat per un encoder de 1000 línies per a mesurar la posició.

Mitjançant les característiques tècniques subministrades pel fabricant s’obtenen tots els valors de les constants del motor, els quals implementarem en les equacions per a la simulació.

El motor de corrent amb escombretes (brushed) està directament connectat mitjançant una articulació d’enllaç a un braç d’un robot imitant el sistema mecànic donat a (2.1). L’agrupació mecànica dels paràmetres de (2.1) està calculada com:

\[
M = \frac{J}{K_r} + \frac{m_l l^2}{3K_r} + \frac{m_0 l^2}{K_r} + \frac{2m_0 r_o^2}{5K_r},
\]

\[
N = \frac{m_l G}{2K_r} + \frac{m_0 G}{K_r}, \quad B = \frac{B_o}{K_r}, \quad \text{(2.24)}
\]

on \(J\) és la inèrcia del rotor, \(m_l\) és la massa puntual, \(m_0\) és la càrrega de la massa, \(l\) és la longitud de l’enllaç, \(r_o\) és el radi de la càrrega, \(B_o\) és el coeficient de fricció visciosa mutu, \(G\) és el coeficient de gravetat, i \(K_r\) és el coeficient que caracteritza la conversió electromecànica de corrent d’armadura a parell. Els paràmetres electromecànics del sistema per al model del motor de (2.1) i (2.2) foren obtinguts amb tests i procediments estàndards, i els seus valors són:

\[
J = 1.625 \times 10^{-3} \text{Kgm}^2 / \text{rad} \quad m_l = 0.506 \text{Kg}
\]

\[
r_o = 0.023m \quad m_0 = 0.506 \text{Kg}
\]

\[
l = 0.305m \quad G = 9.81 \text{Kg} - m / \text{s}^2
\]

\[
R = 5.0 \Omega \quad B_o = 16.25 \times 10^{-3} \text{Nms} / \text{rad}
\]

\[
L = 24.0 \times 10^{-3} \text{H} \quad K_r = K_B = 0.90 \text{Nm} / \text{A}. \quad \text{(2.25)}
\]
Els valors dels paràmetres electromecànics esmentats seran emprats en les condicions inicials del control, introduint-los en l’arxiu `constants_brusdc` de l’editor del programa *Matlab*.

La posició desitjada de la càrrega ha estat seleccionada com a:

\[q_d(t) = \frac{\pi}{2} (1 - e^{-0.1t}) \sin\left(\frac{8\pi}{5} t\right) \text{ rad} \quad (2.26) \]

la qual té la propietat avantatjosa que \(q_d(0) = \dot{q}_d(0) = \ddot{q}_d(0) = \dddot{q}_d(0) = 0 \).

El millor valor de l’error de seguiment de posició obtingut s’ha trobat utilitzant el següents valors de control de guany:

\[k_s = 160, \quad k_e = 160, \quad \alpha = 80. \]

La posició resultant de l’error de seguiment la podem veure més endavant a la *figura 2.17*.

S’ha aconseguit que el màxim error de seguiment de posició estigui aproximadament entre \(\pm 0.02 \) graus. El corrent i el voltatge al rotor és mostren a les *figures 2.10 i 2.7*, respectivament.

Un cop descrits els paràmetres del motor, generem els diferents fitxers del *Matlab*.
2.5.2 *Editor de Matlab*

Per tal de facilitar l’anàlisi i execució de les diferents simulacions, s’ha creat l’arxiu `constants_brushdc.m` a l’editor del *Matlab*, en el qual s’hi relacionen tots els valors dels paràmètres constants, de les equacions de la dinàmica electromecànica del motor *Brush DC*, així com l’expressió de la trajectòria desitjada de la càrrega. D’aquesta forma ens és molt còmode afegir, treure o modificar paràmeters per a les diferents proves de simulació.

En la següent figura podem observar l’arxiu editat `constants_brushdc.m`:

```matlab
% Paràmetres Electromecànics BRUSHDC
j=1.625e-3 % Inercia del rotor
r=0.023 % Radi de la carrega
l=0.305 % Longitud de l'enllaç
R=5 % Resistencia del rotor
L=25e-3 % Inductancia del rotor
m1=0.506 % Massa puntual
m2=0.494 % Massa de la carrega
G=9.81 % Coeficient de gravetat
D=16.25e-3 % Coeficient de friccio visciosa muta
KB=0.9 % Força contraelectromotriu
Kt=0.9 % Coeficient de conversió

% Efectes del coef. de parell constant. Conversió parell-corrent
M=(j/Kt)+(m1*l^2)/(3*Kt)+(m2*l^2)/Kt+((2*m1*l^2)/0^2)/(5*Kt)

B=D0/Kt
N=(m1*l^2)/0*Kt+(m2*l^2)/Kt

k=160 % Control de guany
ke=160 % Control de guany
a=00 % Control de guany

% Posició desitjada de la càrrega
temps=0:0.0001:10;
qd=pi/4*(1-exp(-0.1*temps.^3)).*sin((8*pi/5)*temps);
```

Figura 2.3. Editor del Matlab, Arxiu: constants_brushdc.m
Per comprovar el funcionament del control es crea també l’arxiu `fig_brushdc.m`. Amb aquest arxiu crisdem a dibuix els gràfics dels paràmetres i variables del control que hi hàgim editat, el que ens permetrà observar el comportament de totes les variables de control desitjades, d’una manera ràpida i pràctica.

En la següent figura podem observar l’arxiu `fig_brushdc.m` editat:

```
figure
plot(tempsw,qw,'b')
xlabel('temps(s)')
ylabel('q')
figure
plot(tempsw,cpu,'g')
xlabel('temps(s)')
ylabel('qpr')
figure
plot(tempsw,Iw,'b')
xlabel('temps(s)')
ylabel('Iw')
figure
plot(tempsw,qw,'g',tempsw,qdw,'r')
xlabel('temps(s)')
ylabel('verd q(*),vermell qd(*)')
figure
plot(tempsw,qdw-qw,'b')
xlabel('temps(s)')
ylabel('qd-q')
figure
plot(tempsw,Iw,'g',tempsw,Idw,'r')
xlabel('temps(s)')
ylabel('verd I(*),vermell Id(*)')
figure
plot(tempsw,qdw,'b')
xlabel('temps(s)')
ylabel('qd')
```

Figura 2.4. Editor del Matlab. Arxiu: fig_brushdc.m

Durant el desglossament dels diferents subsistemes de control del Simulink, anirem afegint per a cada cas les figures de les gràfiques de les variables d’interès.

Una vegada generats els fitxers, passarem al Simulink a implementar el control.
2.5.3 Simulink de Matlab

En el Simulink del Matlab, implementarem les equacions matemàtiques resultants de l’anàlisi del control. Implementant-ho en diferents subsistemes per tal que sigui manejable i interpretable. En una primera pantalla veiem tota la realimentació del control de seguiment de posició en llàc tancat, formada per tots els diferents subsistemes que formen l’anàlisi:

La figura anterior, figura 2.5, es tornarà a mostrar a plana sencera, com a figura 2.5.bis.

A continuació mostrarem desglossat el conjunt del control de la figura, mostrant subsistema a subsistema els blocs que constitueixen el llàc de control. Per a cada subsistema s’enumeren en forma de taula les equacions que hi intervenen, i les variables d’entrada i de sortida.

La descripció dels blocs dels subsistemes que formen el control, està ordenada seguint el guió del desenvolupament matemàtic del controlador. Tal i com s’ha desenvolupat en els apartats anteriors d’aquest capítol. Juntament amb cada subsistema es mostren els gràfics de les variables i paràmeters que tenen interés en el control.
A continuació indiquem el nom dels blocs dels subsistemes que s’han constituït per a simular el llaç de control:

- Model del Sistema Electromecànic del Motor *Brush DC*
- Posició Desitjada de la Càrrega
- Derivades de la Velocitat Desitjada de la Càrrega
- Variable Auxiliar \(w_c(t) \)
- Filtre de Seguiment de l’Error de Posició \(r(t) \)
- Trajectòria Desitjada de Corrent \(I_d(t) \)
- Seguiment de l’Error de Pertorbació de Corrent (Parell)
- Voltatge de Control d’Entrada al Motor
Comencem doncs amb el Subsistema que constitueix el càlcul del model electromecànic del motor Brush DC.

Figura 2.5bis. Controlador de Seguiment de Posició en Llaç Tancat del Motor Brush DC
Model del Sistema Electromecànic del Motor *Brush DC*

Comencem creant el bloc del subsistema d’equacions del motor *Brush DC* de corrent continu:

Figura 2.6. Subsistema de les Equacions del Motor Brush DC

Taula 2.1. Equacions del Subsistema del Motor Brush DC

<table>
<thead>
<tr>
<th>Variables d’Entrada</th>
<th>$v(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables Sortida</td>
<td>$q(t)$, $\dot{q}(t)$ i $I(t)$</td>
</tr>
<tr>
<td>Equacions</td>
<td>$M\ddot{q} + B\dot{q} + N\sin(q) = I$ (2.1)</td>
</tr>
<tr>
<td></td>
<td>$L\dot{I} = v - RI - K_B\dot{q}$ (2.2)</td>
</tr>
</tbody>
</table>
L’anterior subsistema correspon a les equacions del model sense incertesa del motor d’inducció acoblat a una càrrega, segons la figura ja coneguda,

Figura 2.2:

Figura 2.2_bis. Diagrama Esquemàtic del BDC Sistema Motor/Càrrega

Observem a continuació en les figurers següents, la variable d’entrada i les variables de sortida al subsistema d’equacions del motor brush DC, o sigui l’entrada de voltatge al motor, voltatge resultant del control en llaç tancat, la posició i la velocitat reals de la càrrega, i el corrent al rotor del motor. *Figures 2.7, 2.8, 2.9 i 2.10*, respectivament.
Variable d’Entrada al Sistema Electromecànic del Motor *Brush DC*:

Gràfic de la tensió d’entrada al rotor del motor \(v(t) \):

![Gràfic de la tensió d’entrada al rotor del motor](image1)

Figura 2.7. Tensió d’Entrada al Rotor del Motor Brush DC

Variables de Sortida del Sistema Electromecànic del Motor *Brush DC*, \(q(t) \), \(\dot{q}(t) \) i \(I(t) \):

Gràfic de la posició de la càrrega en graus, \(q(t) \):

![Gràfic de la posició de la càrrega en graus](image2)

Figura 2.8. Posició de la Càrrega acoblada
Gràfic de la velocitat angular de la càrrega en \(rad/s \), \(\dot{q}(t) \):

\[\text{Figura 2.9. Velocitat de la Càrrega acoblada} \]

Gràfic de el corrent al rotor del motor \(I(t) \):

\[\text{Figura 2.10. Corrent al Rotor del Motor Brush DC} \]

A continuació el subsistema per a introduir el senyal de consigna de la posició desitjada de la càrrega \(q_d(t) \).
Posició Desitjada de la Càrrega

Com el disseny del controlador requereix els senyals de consigna, en el següent subsistema introduïm al llàc de control, l’equació de la posició desitjada de la trajectòria a seguir per la càrrega, \(q_d(t) \), i la seva primera derivada, la velocitat desitjada \(\dot{q}_d(t) \):

Figura 2.11. Subsistema de la Posició Desitjada de la Trajectòria de la Càrrega

<table>
<thead>
<tr>
<th>Subsistema de Derivades de la Posició Desitjada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables d’Entrada</td>
</tr>
<tr>
<td>Variables Sortida</td>
</tr>
<tr>
<td>Equacions</td>
</tr>
</tbody>
</table>

Taula 2.2. Equacions del Subsistema de la Posició Desitjada de la Trajectòria de la Càrrega

Observem gràficament les variables d’entrada i sortida del subsistema. La posició desitjada de la trajectòria de la càrrega \(q_d(t) \), i de la velocitat desitjada de la càrrega \(\dot{q}_d(t) \), a les figures 2.12 i 2.13:
Variable d’Entrada al Subsistema de la Posició Desitjada de la Càrrega:

Gràfic de la de la posició desitjada en graus, $q_d(t)$:

![Gràfic de la posició desitjada](image1)

Figura 2.12. Posició Desitjada de la Càrrega

Variable de Sortida del Subsistema de la Posició Desitjada de la Càrrega:

Gràfic de la velocitat angular desitjada de la càrrega en rad/s, $\dot{q}_d(t)$:

![Gràfic de la velocitat desitjada](image2)

Figura 2.13. Velocitat Desitjada de la Càrrega
Derivades de la Velocitat Desitjada de la Càrrega

A continuació el subsistema de derivades de la velocitat desitjada de la càrrega \(\dot{q}(t) \), la qual és la entrada del subsistema, que calcula la seva primera derivada (acceleració) \(\ddot{q}(t) \), i segona derivada \(\dddot{q}(t) \):

![Diagrama de subsistema de derivades de la velocitat de la càrrega](image)

Figura 2.14. Subsistema de la Velocitat i Derivades de la Càrrega

<table>
<thead>
<tr>
<th>Subsistema de Derivades de la Velocitat de la Càrrega</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables d’Entrada</td>
</tr>
<tr>
<td>Variables Sortida</td>
</tr>
</tbody>
</table>

Taula 2.3. Equacions del Subsistema de la Velocitat i Derivades de la Càrrega

Ometi’m la representació de la variable d’entrada al subsistema donat que ja fou mostrada en el subsistema anterior.
Variable Auxiliar \(w_e(t) \)

Aquest subsistema calcula la variable auxiliar escalar \(w_e(t) \), variable que forma part de l’equació (2.23), que és l’expressió del model en llàc obert de l’error de seguiment de corrent. S’ha calculat a banda per a simplificar el diagrama gràfic del control en l’espai del Simulink. La sortida \(w_e(t) \), serà l’entraida del subsistema de l’equació (2.25), equació de control del voltatge d’entrada al motor \(v(t) \).

![Subsistema de la Variable Auxiliar](image)

Figura 2.15. Subsistema de la Variable Auxiliar \(w_e(t) \)

<table>
<thead>
<tr>
<th>Variables d’Entrada</th>
<th>(I(t)), (q(t)), (\dot{q}(t)), (\dot{q}_d(t)), (\ddot{q}_d(t)) i (\dddot{q}_d(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables Sortida</td>
<td>(w_e(t))</td>
</tr>
</tbody>
</table>
| Equacions | \[
\begin{aligned}
w_e &= L \left[M (\ddot{q}_d + \alpha \dot{q}_d) + N \dot{q} \cos(q) + (k_s \ddot{q}_d + \alpha \theta) \right] + RI + K_n \dot{q} \\
&+ L(B-M\alpha-k_s) \left(-\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M} \right)
\end{aligned}
\] (2.24) |

Taula 2.4. Equacions del Subsistema de Variable Auxiliar \(w_e(t) \)
A continuació es mostra el desenvolupament del subsistema de la variable auxiliar $w_c(t)$:

Figura 2.16 Desenvolupament del Subsistema de la Variable Auxiliar $w_c(t)$
Filtre Seguiment de L’Error de Posició $r(t)$

El present subsistema calcula el filtre de l’error de seguiment de posició $r(t)$, i serà l’entrada del subsistema de càlcul del corrent desitjat $I_d(t)$ equació (2.17), i del subsistema de càlcul de l’equació (2.25), equació de control del voltatge d’entrada al motor $v(t)$.

![Diagrama del filtre de seguiment de l’error de posició](image)

Figura 2.17. Subsistema del Filtre de Seguiment de l’Error de Posició

<table>
<thead>
<tr>
<th>Subsistema del Filtre de Seguiment de l’Error Posició</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables d’Entrada</td>
</tr>
<tr>
<td>$q(t)$, $\dot{q}(t)$, $q_d(t)$ i $\dot{q}_d(t)$</td>
</tr>
<tr>
<td>Variables Sortida</td>
</tr>
<tr>
<td>$r(t)$</td>
</tr>
<tr>
<td>Equacions</td>
</tr>
<tr>
<td>$r = \dot{e} + ae$</td>
</tr>
<tr>
<td>$e = q_d - q$</td>
</tr>
</tbody>
</table>

Taula 2.5. Equacions del Subsistema del Filtre Seguiment de l’Error de Posició

Observar, que per al càlcul del filtre de seguiment de l’error de posició, $r(t)$, no s’ha derivat en cap moment l’error de seguiment de posició $e(t)$, això es degut a que si ho haguéssim fet amplificaríem els valors del mateix, lo que faria menys precis el control i per lo tant el seu objectiu. La representació gráfica de la variable de sortida del subsistema bé donada en la següent figura:
Variable de Sortida del Subsistema del Filtre de Seguiment de l’Error de Posició:

Gràfic del filtre de seguiment de l’error de posició \(r(t) \).

![Gràfic del filtre de seguiment de l’error de posició](image)

Figura 2.18. Filtre de l’Error de Seguiment de Posició

Ometi’m la representació de les variables d’entrada al subsistema donat que ja foren mostrades en subsistemes anteriors.
Trajectòria Desitjada de Corrent $I_d(t)$

El següent subsistema calcula el corrent desitjat al rotor, $I_d(t)$ de l’equació (2.17). Aquest corrent està definit per tal de poder crear un nivell de control d’entrada de corrent (parell) al sistema electromecànic del motor, i poder realitzar un bon seguiment de posició, tal i com hem explicat en l’apartat de l’objectiu del control, serà entrada de l’equació (2.14), de l’error de seguiment de pertorbació de corrent $\eta_i(t)$.

![Diagrama del Subsistema del Corrent Desitjat al Rotor]

Figura 2.19. Bloc Principal del Subsistema del corrent desitjat al rotor

<table>
<thead>
<tr>
<th>Subsistema del Corrent Desitjat al Rotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables d’Entrada</td>
</tr>
<tr>
<td>Variables Sortida</td>
</tr>
<tr>
<td>Equacions</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Taula 2.6. Equacions del Subsistema del Corrent Desitjat al Rotor
A continuació es mostra el desenvolupament del Subsistema del Corrent Desitjat al Rotor:

Figura 2.20. Desenvolupament del Subsistema del Corrent Desitjat al Rotor

Observem a continuació el gràfic de la variable de sortida del subsistema:

Variable de Sortida del Subsistema del la Trajectòria Desitjada de Corrent:

Gràfic del corrent desitjat \(I_d(t) \):

Figura 2.21. Corrent Desitjat al Rotor
Seguiment de l’ Error de Pertorbació de Corrent (Parell)

En aquest subsistema es calcula l’equació (2.14), equació de l’error de seguiment parell / corrent, també anomenada error de pertorbació de parell / corrent, \(\eta_i(t) \). Serà una de les entrades del subsistema de càlcul de l’equació (2.25), equació de control del voltatge d’entrada al motor \(v(t) \), amb la que obtindrem finalment el llaç tancat del control.

![Diagrama del subsistema de l’Error de Pertorbació de Parell / Error de Seguiment de Corrent](image)

Figura 2.22. Subsistema de l’Error de Pertorbació de Parell / Error de Seguiment de Corrent

<table>
<thead>
<tr>
<th>Subsistema de l’Error de Seguiment Parell / Corrent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables d’Entrada</td>
</tr>
<tr>
<td>Variables Sortida</td>
</tr>
<tr>
<td>Equacions</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Taula 2.7. Equacions del Subsistema de l’Error de Pertorbació de Parell / Error de Seguiment de Corrent

Es mostra a continuació els gràfics dels corrents \(I(t) \) i \(I_d(t) \) sobreposats, i la variable de sortida \(\eta_i(t) \), o sigui l’error de seguiment de corrent. Figures 2.23 i 2.24, respectivament:
Gràfic del corrent desitjat $I_d(t)$ i el corrent real $I(t)$:

Figura 2.23. Corrent Desitjat i Corrent Real al Rotor

Variable de Sortida del Subsistema del Seguiment de l’ Error de Parell:

Gràfic de l’error de seguiment de corrent $\eta_i(t)$:

Figura 2.24. Error de Seguiment de Corrent

Ometí’m la representació de les variables d’entrada al subsistema donat que ja foren mostrades en subsistemes anteriors. Acabarem amb el subsistema de càlcul d’ $v(t)$.
Voltatge de Control d’Entrada al Motor

Finalment, per a tancar el llàc de control es calcula l’equació (2.25), que correspon al subsistema de l’equació del voltatge de control a l’entrada de bornes del motor, \(v(t) \), la qual serà entrada del subsistema d’equacions del model conegut del motor:

\[
\begin{align*}
\text{Figura 2.25. Subsistema de la Tensió d’Entrada al Motor Brush DC}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Subsistema del Voltatge a l’Entrada del Motor Brush DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables d’Entrada</td>
</tr>
<tr>
<td>Variables Sortida</td>
</tr>
</tbody>
</table>
| **Equacions** | \[
\begin{align*}
\text{(2.25)}
\end{align*}
\]
| | \[
\begin{align*}
\text{Equacions (2.24)}
\begin{align*}
& w_e = L\left[M(q_d + q_d) + Nq\cos(q) + (k_iq_d + \alpha\dot{q})\right] + RI + K\dot{q} \\
& + L(\beta - M\alpha - k_i)\left[-\frac{B}{M}\dot{q} - \frac{N}{M}\sin(q) + \frac{I}{M}\right]
\end{align*}
\end{align*}
\]
| | \[
\begin{align*}
\text{(2.7)}
\end{align*}
\]
| | \[
\begin{align*}
\text{(2.2)}
\end{align*}
\]

| Taula 2.8. Equacions del Subsistema de la Tensió d’Entrada al Motor Brush DC |

\[
\text{Taula 2.8. Equacions del Subsistema de la Tensió d’Entrada al Motor Brush DC}
\]
2.6 Conclusions

Especificats i resumits tots els subsistemes que formen les equacions del control, finalment podem observar la gràfica de la posició desitjada \(q_d(t) \) en color vermell, i la de la posició simulada en el control \(q(t) \) en verd, totes dues expressades en escala de graus i superposades en la mateixa finestra de visualització, per tal d’observar les desviacions entre ambdues:

Gràfic de la posició desitjada i la posició simulada, \(q_d(t) \) i \(q(t) \), respectivament:

![Gràfic de la Posició Desitjada i la Posició Simulada](image)

Figura 2.26. Gràfic de la Posició Desitjada i la Posició Simulada

Per a un a major visualització de l’èxit del control de seguiment de posició, mostrem el gràfic de la **figura 2.26**, on es pot observar l’error de seguiment de posició de la càrrega en graus, \(e = q_d - q \).
Gràfic de l’error de seguiment de posició de la càrrega $e(t)$:

![Gràfic de l’error de seguiment de posició de la càrrega](image)

Figura 2.27. Error de Seguiment de Posició

En el gràfic de l’error de seguiment de la posició de la càrrega obtingut, s’observa que s’ha aconseguit un error màxim que oscil·la en el límit $\pm 0.02\,^\circ$.

"Pàgina 53 de 208"
3 Control No Lineal del Motor Pas a Pas d’Imants Permanents,
Permanent Magnet Stepper (PMS)

3.1 Introducció

Tradicionalment, els motors amb escombretes *brushed DC (BDC)*, tractats en el capítol anterior, han estat utilitzats en sistemes de posicionament industrials. Una raó és que els motors BDC són essencialment sistemes lineals amb lo que facilita el seu control. Però en els anys recents, el desenvolupament de controladors de precisió no lineals ha encoratjat l’ús de màquines sense escombretes *brushless (BLDC)* en lloc dels motors *BDC*.

El motor que ens ocupa en aquest desenvolupament, és el motor pas a pas d’imants permanents, a partir d’ara motor *PMS*, ha esdevingut una alternativa popular per a la majoria dels controls de moviments de precisió per serioses raons. Aquestes raons inclouen: millor fiabilitat degut a la eliminació de les escombretes mecàniques, millor dissipació de calor ja que no hi han esforços al rotor durant el 100% del cicle de treball, alt parell d’inèrcia degut a la major lleugeresa del rotor, el rotor és sense debanats, i de preus més econòmics.

En els motors *PMS* es fa més complicat el problema del control, això és degut a l’acoblament de múltiples entrades de dinàmiques no lineals en tot el conjunt de la dinàmica del sistema electromècànic. La dinàmica electromècànica motor/càrrega del motor *PMS* manifesta:

(i) Termes no lineals, els quals son produïts pel corrent elèctric i els termes trigonomètrics en la equació de transmissió del parell.

(ii) Termes no lineals, els quals son produïts per la velocitat del rotor i els termes trigonomètrics en la dinàmica del subsistema elèctric (manifestat en la figura 3.1).

En aquest capítol utilitzarem i simularem la tècnica del integrador *backstepping*, fusionada amb una estratègia de commutació, per a dissenyar un controlador de seguiment de posició, per al motor *PMS*. D’aquesta manera posicionarem una càrrega mecànica segons una trajectòria predefinida.

El terme estratègia de commutació s’empra per a descriure el mètode per a desenvolupar els senyals desitjats de corrent a les bobines polars de l’estатор, els quals es basen en la posició del rotor, el senyal desitjat de parell, i la transmissió de parell estática del model. Ja que els motors PMS aconsegueixen el moviment commutant els corrents a les bobines de l’estатор generant camps magnètics, que es confrontaran amb els camps magnètics dels imants permanents del rotor.

Primer, veurem el motor com una font de parell, i d’aquesta forma dissenyarem una senyal de parell desitjat per assegurar que la càrrega segueix la trajectòria de la posició desitjada. Com que el parell del motor desenvolupat és funció de la posició del rotor i dels corrents elèctrics als debanats, utilitzarem una simple estratègia de commutació sinusoïdal per a restar el senyal de parell desitjat com un conjunt de trajectòries de corrent desitjades.
Llavors les entrades de control de voltatge les formularem per a forçar que els corrents als debanats elèctrics segueixin les trajectòries de corrent desitjades. Així, la dinàmica elèctrica considerarà l’objectiu de seguiment de corrent, amb lo que l’objectiu del control de seguiment de posició estarà inclòs en l’objectiu de seguiment de corrent. Per lo tant, si l’entrada de control de voltatge pot ésser dissenyada per a garantir que els corrents segueixen els corrents desitjats, llavors la posició de la càrrega seguirà la trajectòria de posició desitjada.

Com hem comentat anteriorment, en aquest capítol aplicarem la tècnica del *backstepping* per a obtenir el disseny d’un controlador per a un sistema motor - càrrega on es suposa un coneixement exacte, és a dir, sense incertesa en el model. Així doncs, seguirem els següents passos en el desenvolupament matemàtic del problema: (i) model del sistema, (ii) objectiu del control i (iii) control del sistema suposant un coneixement exacte dels paràmetres.

Finalment a l’apartat 3.6 *Simulació*, desenvoluparem la implementació del controlador, mitjançant el programa *Matlab*. Utilitzant blocs de codi predefinit s’implementaran les equacions del control en *Simulink*. Obtenint els resultats simulats il·lustrats en el mateix apartat.
3.2 Model del sistema

La dinàmica de la posició de la càrrega per a un motor pas a pas d’imants permanents bifàsic, per al qual desenvoluparem el control, la podem descriure com un bloc d’equacions diferencials. Aquesta representació permet fer una separació dels components mecànics i els elèctrics de la dinàmica del sistema. La dinàmica està descomposta en un subsistema mecànic i dos subsistemes elèctrics, els quals estan relacionats pel parell de transmissió i els termes de la força contra electromotriu. La relació entre els subsistemes és una part integral dins l’operació del motor. La dinàmica del subsistema mecànic per a una càrrega seguint una posició desitjada, com es representa en la figura 3.1, actuada per un motor pas a pas d’imants permanents és assumida per l’expressió:

\[M\ddot{q} + B\dot{q} + N \sin(q) + K_D \sin(4N,q) = \sum_{j=1}^{2} -\sin(x_j)I_j \quad (3.1) \]

on \(q(t) \), \(\dot{q}(t) \) i \(\ddot{q}(t) \) representen la posició de la càrrega, la velocitat i l’acceleració respectivament. El paràmetre constant \(M \) indica la inèrcia mecànica del rotor del motor i de la càrrega connectada, \(B \) representa el coeficient de fricció viscosa, i \(N \) la constant global de la càrrega, relacionada amb la massa de la càrrega i el coeficient de la gravetat.

Figura 3.1. Diagrama Esquemàtic del Motor PMS Acoblat a una Càrrega

El terme \(K_D \sin(4N,q) \) modela el parell en posició d’aturat, i \(K_D \) refereix a la constant de parell aturat. Els termes \(\sum_{j=1}^{2} -\sin(x_j)I_j \) els considerarem com a les entrades de parell originades en els subsistemes elèctrics. Indicar que els paràmetres \(M, B, N \) i \(K_D \) de (3.1) son definits per a incloure els efectes del coeficient de parell constant \(K_m \), que caracteritza la conversió electromecànica dels corrents elèctrics dels debanats en parell. Així doncs, els
paràmetres mecànics originals de (3.1) han estat dividits per la constant de parell K_m. A (3.1), I_j indica una sola fase de corrent, i x_j respon a l’expressió:

$$x_j = N_r q - (j - 1) \frac{\pi}{2} \quad (3.2)$$

en la qual N_r compta el nombre de dents al rotor.

La dinàmica del corrent per als dos subsistemes elèctrics està descrita per l’equació:

$$\dot{L}_j = v_j - RI_j + K_m \dot{q} \sin(x_j), \quad j = 1, 2 \quad (3.3)$$

on v_j és el voltatge d’entrada per a cada fase, sigui $j = 1$ o $j = 2$. Els paràmetres elèctrics constants R, L i K_m descriuen la resistència del debanat i la inductància, respectivament. El terme de la força contraelectromotriu $K_m \dot{q} \sin(x_j)$ serà considerat com una realimentació intrínseca del subsistema mecànic. Pel que fa als valors dels paràmetres R, L i K_m dels subsistemes elèctrics, s’assumeixen els mateixos valors per a cadascuna de les dues fases.

La interconnexió dels subsistemes s’il·lustra a la figura 3.1 on les entrades del sistema són els voltatges v_j, i la posició de la càrrega q, la sortida.
3.3 Objectiu del Control

Suposades accessibles totes les variables d’estat \((q, \dot{q}, I_1, i, I_2)\), l’objectiu del control es desenvolupar controladors de seguiment de posició de la càrrega, per a les dinàmiques electromecàniques donades per les equacions (3.1), (3.2) i (3.3). Per a començar el desenvolupament, definim el error de seguiment de posició de la càrrega, \(e(t)\), com:

\[
e = q_d - q \quad (3.4)
\]

on \(q_d(t)\) representa la posició de la càrrega desitjada, i \(q(t)\) fou definida a (3.1). Assumirem que \(q_d(t)\), la seva primera, segona i tercera derivada són funcions variables en el temps i de magnitud afitada. Per simplificar la formulació del control i l’anàlisi d’estabilitat, definim el filtr de l’error de seguiment, \(r(t)\), com:

\[
r = \dot{e} + \alpha \ddot{e} \quad (3.5)
\]

on \(\alpha\) és una constant positiva de control de guany. A l’igual que en el capítol anterior, el filtr de seguiment de l’error permet analitzar la dinàmica del subsistema mecànic de segon ordre de (3.1) com un sistema de primer ordre.

Per a formar el filtr de seguiment de la dinàmica l’error en llaç obert, diferenciem respecte el temps, reordenant els termes ens queda:

\[
\begin{align*}
r & = \dot{e} + \alpha \ddot{e} \\
e & = q_d - q \quad \implies \quad \dot{e} = \dot{q}_d - \dot{q} \\
\end{align*}
\]

\[
\begin{align*}
\dot{r} & = (\ddot{q}_d - \ddot{q}) + \alpha \dddot{e} \\
\end{align*}
\]

\[
\begin{align*}
r = (\ddot{q}_d + \alpha \dddot{e}) - \dddot{q}. \quad (3.6)
\end{align*}
\]

Multiplicant (3.6) per \(M\) i substituint a la dinàmica del subsistema mecànic de (3.1) obtenim el filtr de seguiment de l’error de la forma:

\[
\begin{align*}
M\ddot{r} & = M ((\ddot{q}_d + \alpha \dddot{e}) - \dddot{q}) \\
M\ddot{q} + B\dot{q} + N \sin(q) + K_D \sin(4N, q) & = \sum_{j=1}^{2} - \sin(x_j)I_j \\
\end{align*}
\]

\[
\begin{align*}
M\ddot{r} & = M (\ddot{q}_d + \alpha \dddot{e}) - M\dddot{q} \\
M\ddot{q} & = -B\dot{q} - N \sin(q) - K_D \sin(4N, q) + \sum_{j=1}^{2} \sin(x_j)I_j \\
\end{align*}
\]

\[
M\ddot{r} = M (\ddot{q}_d + \alpha \dddot{e}) + B\dot{q} + N \sin(q) + K_D \sin(4N, q) + \sum_{j=1}^{2} \sin(x_j)I_j. \quad (3.7)
\]

Per a simplificar l’equació algebraica, el cantó dret de (3.7) el reescrivim com:
\[
M \dot{r} = W_r \theta_r + \sum_{j=1}^{2} \sin(x_j) l_j \quad (3.8)
\]
on la matriu de regressió \(W_r(q, \dot{q}, t) \in \mathbb{R}^{1 \times 4} \) i el vector de paràmetres \(\theta_r \in \mathbb{R}^{1 \times 4} \) ve donat per:

\[
W_r = \begin{bmatrix} \dot{q} \quad \alpha \dot{\dot{q}} \quad \sin(q) \quad \sin(4N_t q) \end{bmatrix} \quad (3.9)
\]
\[
\theta_r = \begin{bmatrix} M & B & N & K_d \end{bmatrix}. \quad (3.10)
\]

Degut a l’estructura del sistema electromecànic donat des de (3.1) fins a (3.3), només tenim llibertat per a especificar les dos fases del voltatge, \(v_1 \) i \(v_2 \). En altres paraules, la dinàmica de l’error del subsistema dinàmic manca d’un nivell de control d’entrada de corrent (parell) verdadera. Per aquesta raó, sumarem i restarem un senyal de corrent desitjat \(I_{dj}(t) \), a la dreta de la equació (3.8), obtenint l’expressió:

\[
M \dot{r} = W_r \theta_r + \sum_{j=1}^{2} \sin(x_j) l_j - \sum_{j=1}^{2} \sin(x_j) \eta_j \quad (3.11)
\]
on \(\eta_j \) representa l’error de seguiment de pertorbació de corrent en la dinàmica del subsistema mecànic i té la forma:

\[
\eta_j = I_{dj} - I_j. \quad (3.12)
\]

Si el terme de l’error de seguiment de corrent \(\eta_j \) a (3.11) fos igual a zero, aleshores \(I_{dj} \) podria ser dissenyat per a aconseguir un bon seguiment de la posició de la càrrega emprant tècniques standard de control, amb l’adequada estratègia de commutació. Com que l’error de seguiment de corrent no té perquè ser igual a zero, podem dissenyar entrades de control de voltatge amb \(v_j \), que compensin els efectes de \(\eta_j \) a (3.11). Agafant la derivada en el temps de l’error de seguiment de corrent a (3.12) i després multiplicant el resultat per \(L \) obtenim:

\[
L \ddot{\eta}_j = L \dot{I}_{dj} - L \dot{I}_j. \quad (3.13)
\]

Substituint la part dreta de (3.3) per \(L \dot{I}_j \) a (3.13), la dinàmica de l’error de seguiment de corrent resulta de la forma:

\[
L \ddot{\eta}_j = v_j - R I_j + K_m \dot{q} \sin(x_j) \quad \text{substitutiu int} \quad \rightarrow \quad L \ddot{\eta}_j = L \dot{I}_{dj} - \left[v_j - R I_j + K_m \dot{q} \sin(x_j) \right] \quad \text{arranjant} \quad \rightarrow
\]

\[
L \ddot{\eta}_j = L \dot{I}_{dj} + R I_j - K_m \dot{q} \sin(x_j) - v_j. \quad (3.14)
\]
3.4 Estratègia de Commutació

A diferència del motor amb escombretes *brushed DC* on la commutació dels debanats elèctrics es fa mitjançant un commutador mecànic, (per exemple les escombretes), la commutació del motor *PMS* té que anar incorporada en el disseny del controlador. De tal forma que generi el corrent adequat per a cada fase. Per al motor *PMS*, utilitzarem una estratègia de commutació que sigui diferenciable.

\[I_{dj} = -\tau_d \sin(x_j), \text{ per a } j = 1,2 \quad (3.15) \]

on \(\tau_d \) és el parell desitjat dissenyat per a forçar la càrrega a seguir la posició de la trajectòria desitjada. L’estratègia de commutació a (3.15) s’interpreta com a que les dues fases elèctriques comparteixen la tasca del moviment de la càrrega. Per a il·lustrar l’expressió (3.15) suposem que \(I_j = I_{dj} \). Reescrivint (3.1) tenim:

\[
\begin{align*}
I_j &= I_{dj} \\
M\ddot{q} + B\dot{q} + N \sin(q) + K_D \sin(4N_\eta q) &= \sum_{j=1}^{2} -\sin(x_j) I_{dj} \\
M\ddot{q} + B\dot{q} + N \sin(q) + K_D \sin(4N_\eta q) &= \sum_{j=1}^{2} -\sin(x_j) I_{dj} \\
M\ddot{q} + B\dot{q} + N \sin(q) + K_D \sin(4N_\eta q) &= \tau_d, \quad (3.16)
\end{align*}
\]

després substituint a l’estratègia de commutació proposada a (3.15) dins de (3.16), tenim:

\[
\begin{align*}
I_{dj} &= -\tau_d \sin(x_j), \text{ per a } j = 1,2 \\
M\ddot{q} + B\dot{q} + N \sin(q) + K_D \sin(4N_\eta q) &= \sum_{j=1}^{2} -\sin(x_j) I_{dj} \\
M\ddot{q} + B\dot{q} + N \sin(q) + K_D \sin(4N_\eta q) &= \tau_d, \quad (3.17)
\end{align*}
\]

assumint a (3.17) que el terme \(\sum_{j=1}^{2} \sin^2(x_j) = 1 \). De (3.17), podem veure que la estratègia de commutació ha estat desenvolupada, tal que la trajectòria desitjada del parell vingui a ser l’entrada de control del subsistema mecànic, i per lo tant pot ser dissenyat per a assegurar que la càrrega segueixi la posició de la trajectòria desitjada. és clar que degut a les dinàmiques elèctriques, no podem garantir que \(I_j = I_{dj} \); així doncs, ens veiem obligats a dissenyar les entrades de control de voltatge, per tal de forçar a els corrents actuals a seguir a els corrents per fase desitjats, d’aquesta forma, forçarem a l’error de seguiment de corrents \(\eta_j \) de (3.12) a zero. Finalment, substituïnt (3.15) dins de (3.11) obtenim la dinàmica en llaç obert per al filtre de seguiment de l’error \(r \):
\[I_{dj} = -\tau_d \sin(x_j) \]
\[M \dot{\theta} = W \theta + \sum_{j=1}^{2} \sin(x_j) I_{dj} - \sum_{j=1}^{2} \sin(x_j) \eta_j \]

\[M \dot{\theta} = W \theta - \tau_d - \sum_{j=1}^{2} \sin(x_j) \eta_j \quad (3.18) \]

assumint a (3.18) que el terme \(\sum_{j=1}^{2} \sin^2(x_j) = 1. \)
3.5 Control del Sistema Suposant un Coneixement Exacte dels Paràmetres

Basat en el model exacte conegut del sistema electromecànic i la realimentació plena d’estat, ara dissenyarem un controlador de seguiment de posició per a la dinàmica en llàc obert de (3.18) i (3.14). Com s’ha indicat a la introducció, primer mirarem el motor com una font de parell i dissenyarem el parell desitjat \(\tau_d \) per a assegurar que la càrrega segueix la posició desitjada de la trajectòria. A continuació, a través de l’estratègia de commutació de (3.15), el parell desitjat és transformat en dos trajectòries de corrent desitjades. Finalment, especificarem la entrada de control de voltatge per a fer que els corrents als debanats de l’estator segueixin les trajectòries dels corrents desitjats.

Com hem mencionat en el paràgraf anterior, primer dissenyarem el senyal desitjat de parell per a forçar a la càrrega al llarg de la trajectòria desitjada de la posició. Així, especifiquem el parell desitjat \(\tau_d(t) \) per a conduir \(r(t) \) a zero. Seleccio
tenem \(\tau_d(t) \) com:

\[
\tau_d = W_r \theta_r + k_r r \quad (3.19)
\]

on \(W_r \) i \(\theta_r \) han estat prèviament definides a (3.9) i (3.10), respectivament, \(k_r \) és una constant positiva de guany. Substituint (3.19) a la dinàmica en llàc obert de (3.18) obtenim el filtre final de la dinàmica de seguiment de l’error com a:

\[
M \dot{r} = W_r \theta_r - \tau_d - \sum_{j=1}^{2} \sin(x_j) \eta_j \quad \text{substituint per a obtenir:}
\]

\[
M \dot{r} = W_r \theta_r - (W_r \theta_r + k_r r) - \sum_{j=1}^{2} \sin(x_j) \eta_j \quad \text{arranjant}
\]

\[
M \dot{r} = - k_r r - \sum_{j=1}^{2} \sin(x_j) \eta_j . \quad (3.20)
\]

Donada \(\tau_d \) a (3.19), les corrents de fase desitjades, \(I_{dj} \), poden ser directament recalculeades de l’estratègia de commutació a (3.15). Per a completar la descripció del sistema en llàc obert per a la dinàmica de l’error de seguiment de corrent, ara calcularem el terme \(\dot{I}_{dj} \) necessari a (3.14) agafant la derivada en el temps de (3.15) per a obtenir:

\[
I_{dj} = - \tau_d \sin(x_j) \quad \text{derivant}\rightarrow \dot{I}_{dj} = - \dot{\tau}_d \sin(x_j) - \tau_d \cos(x_j) \dot{N}_j \dot{\dot{q}}
\]

\[
\dot{I}_{dj} = - \dot{\tau}_d \sin(x_j) - \tau_d \cos(x_j) \dot{N}_j \dot{\dot{q}} \quad (3.21)
\]

on \(\dot{\tau}_d \) és trobat de (3.19) com:

\[
\dot{\tau}_d = \dot{W}_r \theta_r + k_r \dot{r} \quad (3.22)
\]

substituint la derivada en el temps de (3.9) i (3.6) dins de la part dreta de (3.22) s’obté:
\[
\begin{align*}
\frac{d}{dt}(W_t) &= [\ddot{q}_d + \alpha \dot{e} \quad \dot{q} \sin(q) \quad \sin(4N,q)] \\
\dot{r} &= (\ddot{q}_d + \alpha \dot{e}) - \dot{q} \\
\frac{d^2}{dt}(e = q_d - q) \\
\dot{\theta}_t &= \dot{W}_t \theta_t + k_r \dot{r} \\
\theta_t &= [M \ B \ N \ K_D]_t^n
\end{align*}
\]

\[
\begin{align*}
\dot{\theta}_t &= [\ddot{q}_d + \alpha \dot{e} \quad \dot{q} \cos(q) \quad 4N,\dot{q} \cos(4N,q)] \\
\dot{r} &= (\ddot{q}_d + \alpha \dot{e}) - \dot{q} \\
\dot{\theta}_t &= \dot{W}_t \theta_t + k_r \dot{r} \\
\theta_t &= [M \ B \ N \ K_D]_t^n
\end{align*}
\]

\[
\dot{\theta}_t = [\ddot{q}_d + \alpha \dot{e} \quad \dot{q} \cos(q) \quad 4N,\dot{q} \cos(4N,q)] [M \ B \ N \ K_D]_t^n + k_r [(\ddot{q}_d + \alpha \dot{e}) - \dot{q}]
\]

\[
\dot{\theta}_t = M(\ddot{q}_d + \alpha(\ddot{q}_d - \dot{q})) + B\dot{q} + N\dot{q} \cos(q) + 4N,\dot{q} K_D \cos(4N,q) + k_r (\ddot{q}_d - \dot{q} + \alpha \dot{e}) \quad (3.23)
\]

\[\dot{\theta}_t(t)\] està expressat en termes d’estats mesurables (és a dir, \(q(t)\) i \(\dot{q}(t)\)), funcions conegudes, paràmetres constants coneguts, i la càrrega d’acceleració no mesurable \(\dot{q}(t)\).

Podem resoldre de (3.1), per a \(\ddot{q}(t)\) de la següent forma:

\[
M\ddot{q} + B\dot{q} + N\sin(q) + K_D \sin(4N,q) = \sum_{j=1}^2 \sin(x_j) I_j \quad \text{operant} \Rightarrow
\]

\[
\ddot{q} = -\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) - \frac{K_D}{M} \sin(4N,q) + \frac{1}{M} \sum_{j=1}^2 \sin(x_j) I_j \quad (3.24)
\]

substituint per \(\ddot{q}\) de la part dreta de l’equació (3.24) a (3.23), podem escriure \(\ddot{I}_m\) en termes d’estats mesurables (és a dir, \(q\), \(\dot{q}\), \(I_1\) i \(I_2\)), funcions conegudes, i paràmetres constants coneguts:
\[
\ddot{q} = -\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) - \frac{K_D}{M} \sin(4N, q) + \frac{1}{M} \sum_{j=1}^{2} - \sin(x_j) I_j
\]

\[
\dot{t}_d = M(\ddot{q}_d + \alpha(\ddot{q}_d - \ddot{q})) + B\ddot{q} + Nq \cos(q) + 4N, \dot{q}K_D \cos(4N, q) + k_s(\ddot{q}_d - \ddot{q} + \alpha e)
\]

\[
\dot{I}_{dj} = -\dot{t}_d \sin(x_j) - \tau_d \cos(x_j) N, \dot{q}
\]

\[
\ddot{q} = -\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) - \frac{K_D}{M} \sin(4N, q) + \frac{1}{M} \sum_{j=1}^{2} - \sin(x_j) I_j
\]

\[
\dot{t}_d = M(\ddot{q}_d + \alpha \ddot{q}_d) + (B - MA + K_s)\ddot{q} + Nq \cos(q) + 4N, \dot{q}K_D \cos(4N, q) + k_s(\ddot{q}_d + \alpha e)
\]

\[
\dot{I}_{dj} = -\dot{t}_d \sin(x_j) - \tau_d \cos(x_j) N, \dot{q}
\]

\[
\dot{t}_d = M(\ddot{q}_d + \alpha \ddot{q}_d) + (B - MA + K_s)\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) - \frac{K_D}{M} \sin(4N, q) + \frac{1}{M} \sum_{j=1}^{2} - \sin(x_j) I_j)
\]

\[
\dot{I}_{dj} = -\dot{t}_d \sin(x_j) - \tau_d \cos(x_j) N, \dot{q}
\]

\[
\dot{I}_{dj} = -\left[M(\ddot{q}_d + \alpha \ddot{q}_d) + Nq \cos(q) + 4N, \dot{q}K_D \cos(4N, q)\right] \sin(x_j) - k_s(\ddot{q}_d + \alpha e) \sin(x_j)
\]

\[
- \tau_d \cos(x_j) N, \dot{q} + \sin(x_j)(B - MA + K_s) \left[\frac{B}{M} \dot{q} + \frac{N}{M} \sin(q) + \frac{K_D}{M} \sin(4N, q)\right]
\]

\[
- \sin(x_j) M^{-1} (B - MA + K_s) \sum_{j=1}^{2} - \sin(x_j) I_j)
\]

(3.25)

Substituint l’expressió per \(\dot{I}_{dj} \) de (3.25) a (3.14) obtenim el model final en llaç obert per l’error de seguiment de corrent de la forma:
\[\dot{I}_d = -\left[M(\ddot{q}_d + \alpha \ddot{q}_d) + N\dot{q} \cos(q) + 4N_i qK_i \cos(4N_i q) \right] \sin(x_j) - k_i (\ddot{q}_d + \alpha \dot{q}) \sin(x_j) - \tau_d \cos(x_j) N_i \dot{q} + \sin(x_j)(B - M\alpha + k_i) \left[\frac{B}{M} \dot{q} + \frac{N}{M} \sin(q) + \frac{K_d}{M} \sin(4N_i q) \right] - \sin(x_j) M^{-1} (B - M\alpha + k_i) \sum_{j=1}^{2} - \sin(x_j) I_j \right] \\
L \ddot{\eta}_j = L \dot{I}_d + RI_j - K_m \dot{q} \sin(x_j) - R_v \frac{3.14}{\pi} \]

\[L \ddot{\eta}_j = -L \left[M(\ddot{q}_d + \alpha \ddot{q}_d) + N\dot{q} \cos(q) + 4N_i qK_i \cos(4N_i q) \right] \sin(x_j) - k_i (\ddot{q}_d + \alpha \dot{q}) \sin(x_j) - \tau_d \cos(x_j) N_i \dot{q} + \sin(x_j)(B - M\alpha + k_i) \left[\frac{B}{M} \dot{q} + \frac{N}{M} \sin(q) + \frac{K_d}{M} \sin(4N_i q) \right] - \sin(x_j) M^{-1} (B - M\alpha + k_i) \sum_{j=1}^{2} - \sin(x_j) I_j \right] + RI_j - K_m \dot{q} \sin(x_j) - R_v \frac{3.14}{\pi} \]

on la variable auxiliar escalar \(w_j(q, \dot{q}, I_1, I_2, t) \) bé donada per:

\[w_j = -L \left[M(\ddot{q}_d + \alpha \ddot{q}_d) + N\dot{q} \cos(q) + 4N_i qK_i \cos(4N_i q) \right] \sin(x_j) + Lk_i (\ddot{q}_d + \alpha \dot{q}) \sin(x_j) - L \tau_d \cos(x_j) N_i \dot{q} + RI_j - K_m \dot{q} \sin(x_j) + L \sin(x_j)(B - M\alpha + k_i) \left[\frac{B}{M} \dot{q} + \frac{N}{M} \sin(q) + \frac{K_d}{M} \sin(4N_i q) \right] + L \sin(x_j) M^{-1} (B - M\alpha + k_i) \sum_{j=1}^{2} - \sin(x_j) I_j \right] \]

Ara dissenyarem les entrades de control de voltatge, \(v_j \), per al sistema en llaç obert de (3.26). Donada l’estructura de (3.26) i (3.20), definim les entrades de control de voltatge com a:

\[v_j = w_j + k_r \eta_j - \sin(x_j) r \quad (3.28) \]
on k_j és una constant positiva de guany. Substituint (3.28) a la dinàmica en llaç obert de (3.26) obtenim la dinàmica de l’error de seguiment de corrent en llaç tancat, segons l’expressió:

$$
\begin{align*}
\dot{v}_j &= w_j + k_j \eta_j - \sin(x_j) r \\
L \dot{\eta}_j &= w_j - v_j
\end{align*}
\begin{align*}
\Rightarrow & \quad \text{substitueixo} \quad L \dot{\eta}_j = k_j \eta_j + \sin(x_j) r \\
& \quad \text{substitueixo} \quad L \dot{\eta}_j - k_j \eta_j + \sin(x_j) r . \\
\end{align*}
(3.29)

La dinàmica donada per (3.20) i (3.29) representa el sistema electromecànic enllaç tancat. Mentre que el controlador donat per (3.19), (3.15), i (3.28) representen l’entrada de control que s’ha implementat als terminals de voltatge del motor. Indicar que les trajectòries de corrent desitjades, I_{ij}, estan intrínseques (amb la variable η_j) dins de les entrades de control de voltatge, v_j.

Un cop explicada la deducció de la llei de control, en el següent apartat passem a mostrar les simulacions realitzades.
3.6 Simulació d’un Control Backstepping del Motor Pas a Pas d’Imants Permanents (PMS)

3.6.1 Introducció

Per tal de simular el motor i el control dissenyat, el software de simulació emprat ha estat el programa Matlab amb l’editor Simulink. Com hem realitzat en el capítol anterior, mitjançant els blocs de codi predefinit s’han implementat les equacions del control en l’espai del Simulink, introduint les equacions del motor i del control descrit, d’acord amb una trajectòria desitjada, obtenim els valors de tensió d’entrada en bornes del motor per tal de que l’error de seguiment de la posició sigui mínim, tal i com veurem a continuació en el apartat l’apartat 3.6.3 on es descriuen els subsistemes dinàmics.

El motor que hem simulat és un motor pas a pas d’imants permenents de la casa Aerotech 310MB3, controlat per un encoder de 1024 línies per a mesurar la posició. Mitjançant les característiques tècniques subministrades pel fabricant s’obtenen tots els valors de les constants del motor, les quals implementarem en les equacions de la simulació.

El 310MB3 té un parell d’arrencada de $2.6 \text{N} \cdot \text{m}$, un índex de corrent de fase de 6A, un angle a pas complert de 1.8°, una càrrega radial màxima de 156N, i un força màxima de 267N. Té el rotor connectat a un braç d’un robot mitjançant una barra i al final d’aquesta una massa esfèrica (càrrega m_0). Els paràmetres M i N en el model del subsistema mecànic de (3.1) son expressats per:

$$M = \frac{J}{K_m} + \frac{m_l^2}{3K_m} + \frac{m_o^2}{K_m} + \frac{2m_0 r_o^2}{5K_m},$$

$$N = \frac{m_l G}{2K_m} + \frac{m_o G}{K_m}, \quad \text{i} \quad B = \frac{B_o}{K_m}, \quad (3.30)$$

on J és la inèrcia del rotor, m_l és la massa puntual, m_o és la càrrega de la massa, l és la longitud de l’enllaç, r_o és el radi de la càrrega, B_o és el coeficient de fricció viscosa mutu, i G és el coeficient de gravetat. Els paràmetres electromecànics del sistema per al model del motor de (3.1) a (3.3) foren obtinguts amb tests i procediments estàndards, i els seus valors són:

$$J = 1.872 \times 10^{-3} \text{Kgm}^2 / \text{rad} \quad m_l = 0.4014 \text{Kg}$$

$$r_o = 0.017 \text{m} \quad m_o = 0.3742 \text{Kg}$$

$$l = 0.305 \text{m} \quad G = 9.81 \text{Kg} - \text{m} / \text{s}^2$$

$$R = 0.9 \Omega \quad B_o = 0.002 \times 10^{-3} \text{Nms} / \text{rad}$$

$$L = 0.7 \text{mH} \quad K_o = 0.176 \text{Nm}$$
La informació de la velocitat requerida pels controladors no lineals fou obtinguda empíricament mitjançant la senyal d’un encoder de posició. Aquesta senyal fou filtrada utilitzant un filtre passa baixos de segon ordre, per tal de filtrar les altes freqüències obtingudes.

L’expressió de la trajectòria desitjada de la posició serà:

\[q_d(t) = \frac{\pi}{2} \sin(2t)(1 - e^{-0.1t}) \text{ rad} \quad (3.31) \]

la qual té la propietat avantatjosa que \(q_d(0) = \dot{q}_d(0) = \ddot{q}_d(0) = \dddot{q}_d(0) = 0 \).

El millor valor de l’error de seguiment de posició obtingut s’ha trobat utilitzant el següents valors de control de guany:

\[k_s = 13, \quad k_i = k_2 = 0.9 \quad \text{i} \quad \alpha = 100. \]

La posició resultant de l’error de seguiment la podem veure més endavant a la figura 3.21.

S’ha aconseguit que el màxim error de seguiment de posició estigui aproximadament entre ± 0.5 graus. El corrent i els voltatges d’entrada a bornes del motor és mostren a les figures 3.11, 3.12 i 3.7, 3.6, respectivament.

Un cop descrits els paràmetres del motor, generem els diferents fitxers del Matlab.
3.6.2 Editor de Matlab

Per tal de facilitar l’anàlisi i execució de les diferents simulacions, s’ha creat l’arxiu `constants_pms.m` a l’editor del Matlab, en el qual s’hi relacionen tots els valors dels paràmetres constants, de les equacions de la dinàmica electromecànica del motor PMS, i l’expressió de la trajectòria desitjada de la càrrega. D’aquesta forma ens és molt còmode afegir, treure o modificar paràmetres per a les diferents proves de simulació.

En la següent figura podem observar l’arxiu editat `constants_pms.m`:

```matlab
% Paràmetres Electromecànics del motor PMS
j=1.872e-4 % Inercia del rotor
B0=0.002 % Coeficient de friccio viscosa mutu
L=0.7e-3 % Induïcència
KD=0.176 % Constant de parell aturat
m=0.4014 % Massa del braç
l=0.305 % Llongitud del braç
R=0.9 % Resistencia del debanat
Kn=0.25 % Constant de parell
m0=0.3742 % Massa de la càrrega
r0=0.017 % Radi de la càrrega
G=9.81 % Coeficient de gravetat
Nr=50 % Número de dents del rotor

a=100 % Control de guany
ks=13 % Control de guany
k1=0.9 % Control de guany
k2=0.9 % Control de guany

% Efectes del coef. de parell constant. Conversió parell-corrent
M=(J/Kn)+((m*l^2)/(2*Kn))+(n0*l^2)/Km+{(2*n0*r0^2)/(5*Kn)}
M=(a*l^2)/|2*Km|+(m0*l^2)/Km
B=B0/Kn

% Posició desitjada de la càrrega
temps=0:0.0001:100;
qd=pi/2*(1-exp(-0.3*temps.^3)).*sin(2*temps);```

Figura 3.2. Editor del Matlab, Arxiu: constants_pms.m
Per comprovar el funcionament del control es crea també l’arxiu `fig_pms.m`. Amb aquest arxiu cridarem a dibuix els gràfics dels paràmetres i variables del control que hi hàgim editat, el que ens permetrà observar el comportament de totes les variables de control desitjades, d’una manera ràpida i pràctica.

En la següent figura podem observar l’arxiu `fig_pms.m` editat:

```matlab
figure
plot(tempsv,v1w,'r')
xlabel('temps(s)')
ylabel('v1')

figure
plot(tempsv,v2w,'r')
xlabel('temps(s)')
ylabel('v2')

figure
plot(tempsv,qv,'b')
xlabel('temps(s)')
ylabel('q')

figure
plot(tempsv,qw,'g')
xlabel('temps(s)')
ylabel('qp')

figure
plot(tempsv,Ilw,'b')
xlabel('temps(s)')
ylabel('Ilw')

figure
plot(tempsv,I2w,'b')
xlabel('temps(s)')
ylabel('I2w')

figure
plot(tempsv,qdw,'b')
xlabel('temps(s)')
ylabel('qd')
```

**Figura 3.3. Editor del Matlab, Arxiu: fig_pms.m**

Durant el desglossament dels diferents subsistemes de control del Simulink, anirem afegint per a cada cas les figures de les gràfiques de les variables d’interès.

Una vegada generats els fitxers, passarem al Simulink a implementar el control.
3.6.3 Simulink de Matlab

En el Simulink del Matlab, implementarem les equacions matemàtiques resultants de l’anàlisi del control. Implementant-ho en diferents subsistemes per tal d’aconseguir que sigui manageable i interpretable. En una primera pantalla veiem tota la realimentació del control de seguiment de posició, formada per tots els diferents subsistemes que formen l’anàlisi:

La figura anterior, figura 3.4, es tornarà a mostrar a plana sencera, com a figura 3.4.bis.

Seguidament es mostra desglossat el conjunt del control de la figura, mostrant subsistema a subsistema els blocs que constitueixen el llac de control. Per a cada subsistema s’enumeren en forma de taula les equacions que hi intervenen, i les variables d’entrada i de sortida.

La descripció dels blocs dels subsistemes que formen el control, està ordenada seguint el guió del desenvolupament matemàtic del controlador. Tal i com s’ha desenvolupat en els apartats anteriors d’aquest capítol. Juntament amb cada subsistema es mostren els gràfics de les variables i paràmetres que tenen interès en el control.
A continuació indiquem el nom dels blocs dels subsistemes que s’han constituït per a simular el llàc de control:

- Model de Sistema Electromecànric del Motor Pas a Pas d’Imants Permanents $PMS$.
- Posició Desitjada de la Càrrega.
- Variables Auxiliars $w_1(t)$ i $w_2(t)$.
- Trajectòria Desitjada dels Corrents, $I_{d1}(t)$ i $I_{d2}(t)$.
- Voltatge de Control d’Entrada al Motor, $v_1(t)$ i $v_2(t)$.

Començarem doncs amb el Subsistema que constitueix el càlcul del model electromecànic del motor $PMS$. 
Figura 3.4_bis. Controlador de Seguiment de Posició en Llaç Tancat del Motor PMS
Model del Sistema Electromecànic del Motor Pas a Pas d’Imants Permanents, Permanent Magnet Stepper (PMS)

Comencem descrivint el bloc del subsistema d’equacions que calcula el model conegut del motor pas a pas d’imants permanents de corrent continu PMS:

\[
\begin{align*}
K \cos(Nq)q & - 2V + mtI - V_1^2 R L + \sum_{j=1}^{n} B_j \sin(Nq)q J \\
K \sin(Nq)q & - 2V + mtI - V_1^2 R L + \sum_{j=1}^{n} B_j \cos(Nq)q \\
\end{align*}
\]

Figura 3.5. Subsistema d’Equacions del Motor Pas a Pas d’Imants Permanents de Corrent Continu PMS DC

<table>
<thead>
<tr>
<th>Variables d’Entrada</th>
<th>( v_1(t) ) i ( v_2(t) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables Sortida</td>
<td>( q(t), \dot{q}(t), \ddot{q}(t), I_1(t) ) i ( I_2(t) )</td>
</tr>
</tbody>
</table>
| Equacions           | \[
M\ddot{q} + B\dot{q} + N \sin(q) + K_D \sin(4Nq)q = \sum_{j=1}^{n} - \sin(x_j)I_j \]  \\
\( x_j = N_j q - (j - 1)\frac{\pi}{2} \)  \\
\( L\dot{I}_j = v_j - RI_j + K_m \dot{q} \sin(x_j) \) |

Taula 3.1. Equacions del Subsistema Motor Pas a Pas d’Imants Permanents de Corrent Continu PMS_DC
A continuació mostrem l’interior del subsistema de càlcul del model del Motor Pas a Pas d’Imants Permanents de Corrent Continu *PMS*:

![Diagrama del subsistema de càlcul del Motor Pas a Pas d’Imants Permanents PMS DC](image)

**Figura 3.6. Desenvolupament del Subsistema del Motor Pas a Pas d’Imants Permanents PMS DC**

Observem, en les figures següents les variables d’entrada i sortida al subsistema. Les entrades de control de voltatge al motor, resultants del control en llàc tancat, $v_1(t)$ i $v_2(t)$, figures 3.7 i 3.8, respectivament, la posició i la velocitat reals de la càrrega, $q(t)$ i $\dot{q}(t)$, figures 3.9 i 3.10, i els corrents per fase d’entrada al motor, $I_1(t)$ i $I_2(t)$, figures 3.11 i 3.12, respectivament.
Variables d’Entrada al Sistema Electromecànico del Motor PMS, $v_1(t)$ i $v_2(t)$:

Gràfic de les tensions d’entrada a bornes del motor $v_1(t)$ i $v_2(t)$:

**Figura 3.7. Voltatge d’Entrada a la Fase 1 del Motor**

**Figura 3.8. Voltatge d’Entrada a la Fase 2 del Motor**
Variables de Sortida del Sistema Electromecànic del Motor \textit{PMS}, \( q(t) \), \( \dot{q}(t) \), \( I_1(t) \), \( I_2(t) \):

Gràfic de la posició de la càrrega en graus, \( q(t) \):

![Gràfic de la posició de la càrrega en graus](image1.png)

\textit{Figura 3.9. Posició de la Càrrega Acoblada}

Gràfic de la velocitat angular de la càrrega en \textit{rad/s}, \( \dot{q}(t) \):

![Gràfic de la velocitat angular de la càrrega en rad/s](image2.png)

\textit{Figura 3.10. Velocitat de la Càrrega Acoblada}
Gràfic dels corrents a les fases del motor $I_1(t)$ i $I_2(t)$:

**Figura 3.11.** Corrent d’Entrada a la Fase 1 del Motor

**Figura 3.12.** Corrent d’Entrada a la Fase 2 del Motor

A continuació el subsistema per a introduir el senyal de consigna de la posició desitjada de la càrrega $q_d(t)$. 
Posició Desitjada de la Càrrega

Com el disseny del controlador requereix els senyals de consigna, en el següent subsistema introduïm l’equació de la posició desitjada de la trajectòria a seguir per la càrrega, \( q_d(t) \), i la seva primera, segona i tercera derivada; o sigui, la velocitat \( \dot{q}_d(t) \), l’acceleració \( \ddot{q}_d(t) \), i la derivada de l’acceleració, \( \dddot{q}_d(t) \), en el control:

FIGURA 3.13. Subsistema de la Posició Desitjada de la Trajectòria de la Càrrega

<table>
<thead>
<tr>
<th>Variables d’Entrada</th>
<th>( q_d(t) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables Sortida</td>
<td>( q_d(t) ), ( \dot{q}_d(t) ), ( \ddot{q}_d(t) ) i ( \dddot{q}_d(t) )</td>
</tr>
<tr>
<td>Equacions</td>
<td>( q_d(t) = \frac{\pi}{2} \sin(2t)(1 - e^{-0.1t^3}) )</td>
</tr>
</tbody>
</table>

Taula 3.2. Equacions del Subsistema de la Posició Desitjada de la Trajectòria de la Càrrega

Observem gràficament les variables d’entrada i sortida del subsistema. La posició de desitjada de la trajectòria de la càrrega, i de la velocitat desitjada de la càrrega, en les figures 3.14 i 3.15:
Variable d’Entrada al Subsistema de la Posició Desitjada de la Càrrega, $q_d(t)$:

Gràfic de la posició desitjada de la càrrega, en graus, $q_d(t)$:

**Figura 3.14. Posició Desitjada de la Càrrega Acoblada**

Variable de Sortida del Subsistema de la Posició Desitjada de la Càrrega, $\dot{q}_d(t)$:

Gràfic de la velocitat angular desitjada de la càrrega en rad/s, $\dot{q}_d(t)$:

**Figura 3.15. Velocitat Desitjada de la Càrrega**
Variables Auxiliars \( w_1(t) \) i \( w_2(t) \)

Aquests subsistemes \( w_1(t) \) i \( w_2(t) \), calculen les variables auxiliars escalars \( w_j(q, \dot{q}, I_1, I_2, t) \), termes que formen part de l’equació (3.28), equació de control de voltatge a l’entrada del motor, \( v_j(t) \). S’ha calculat a banda per a simplificar el diagrama gràfic del control en l’espai del Simulink.

**Figura 3.16. Subsistema de les Variables Auxiliars \( w_j(q, \dot{q}, I_1, I_2, t) \)**

<table>
<thead>
<tr>
<th>Subsistemes de les Variables Auxiliars Escalars ( w_1(t) ) i ( w_2(t) ), ( w_j(q, \dot{q}, I_1, I_2, t) )</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Variables d’entrada</strong></td>
</tr>
<tr>
<td>( \ddot{q}_d(t) ), ( \ddot{q}_d(t) ), ( \ddot{q}_d(t) ), ( q(t) ), ( \dot{q}(t) ), ( I_1(t) ) i ( I_2(t) )</td>
</tr>
<tr>
<td><strong>Variables Sortida</strong></td>
</tr>
<tr>
<td>( w_1(t) ) i ( w_2(t) )</td>
</tr>
<tr>
<td><strong>Equacions</strong></td>
</tr>
</tbody>
</table>
| \( w_j = -L[\ddot{q}_d + \alpha \ddot{q}_d] + N \dot{q} \cos(q) + 4N \dot{q} K_D \cos(4N \dot{q})] \sin(x_j) + Lk_s \ddot{q}_d + \alpha \dot{e} \sin(x_j) - L \tau_d \cos(x_j) N \dot{q} + RI_j - K_m q \sin(x_j) + L \sin(x_j) (B - M \alpha + k_M) \left( \frac{B}{M} \dot{q} + \frac{N}{M} \sin(q) + \frac{K_m}{M} \sin(4N \dot{q}) \right) \]
| \( + L \sin(x_j) M^{-1}(B - M \alpha + k_M) \sum_{j=1}^{3} \sin(x_j) I_j \) |
| (3.27) |
\[ q_d(t) = \frac{\pi}{2} \sin(2t)(1 - e^{-0.1t}) \]  \hspace{1cm} (3.31)

\[ x_j = N_r q - (j - 1) \frac{\pi}{2} \]  \hspace{1cm} (3.2)

\[ \tau_d = W_r \Omega + k_r r \]  \hspace{1cm} (3.19)

\[ W_r = [\dot{q}_d + c \dot{\xi} \xi \sin(q) \sin(4N_r q)] \]  \hspace{1cm} (3.9)

\[ \theta_r = [M \ B \ N \ K_D]^T \]  \hspace{1cm} (3.10)

\[ e = q_d - q, \text{ derivant: } \dot{e} = \dot{q}_d - \dot{q} \]  \hspace{1cm} (3.4)

\[ r = \dot{e} + c \dot{\xi} \]  \hspace{1cm} (3.5)

### Taula 3.3. Equacions del Subsistema de les Variables Auxiliars \( w_j(q, \dot{q}, I_1, I_2, t) \)

L’equació de control de voltatge d’entrada (3.28) \( v_j = w_j + k_j \eta_j - \sin(x_j) r \), la simulem de la següent forma: \( w_j(t) \), l’obtenim de (3.27), terme de les variables auxiliars \( w_j(t) \).

\( \eta_j(t) \) l’obtindrem de (3.12), \( \eta_j = I_{d_j} - I_j \), \( I_j(t) \) és la variable de sortida del subsistema de les equacions del motor.

\( I_{d_j}(t) \), la simulem amb (3.15), \( I_{d_j} = -\tau_d \sin(x_j) \),
A continuació el desenvolupament del subsistema que relaciona les equacions per al càlcul de \( w_1(t) \) i \( w_2(t) \):

![Diagrama del subsistema de les variables auxiliars](image)

**Figura 3.17. Desenvolupament del Subsistema de les Variables Auxiliars \( w_j(q, \dot{q}, I_1, I_2, t) \)**

Ometi’m repetir el desenvolupament del subsistema de càlcul de l’altra fase, l’únic que varia és en funció de l’equació \( x_j = N_j q - (j - 1) \frac{\pi}{2} \).

Per a una major comprensió visual del llàc de control, en la pàgina següent la figura 3.17 està a tota plana.
Figura 3.17_bis. Desenvolupament del Subsistema de les Variables Auxiliars $w_j(q, \dot{q}, I_1, I_2, t)$
Trajectòria Desitjada dels Corrents $I_{dq}(t)$

Els següents subsistemes calculen els corrents desitjats $I_{dq}(t)$ de l’equació (3.15). Aquests corrents estan definits per tal de poder crear controls d’entrada de corrent (parell) al sistema electromecànic del motor, i poder realitzar un bon seguiment de posició, tal i com hem explicat en l’apartat de l’objectiu del control. Estan doncs definits per a que es generi el corrent adequat en cada fase elèctrica, d’acord amb el parell desitjat. Les sortides dels subsistemes són l’entrada de l’equació (3.12), que és l’error de seguiment de pertorbació de corrent $\eta_i(t)$.

**Figura 3.18. Subsistemes dels Corrents Desitjats en Cada Fase**

**Subsistemes dels Corrents Desitjats en Cada Fase, $I_{dq}(t)$**

<table>
<thead>
<tr>
<th>Variables d’Entrada</th>
<th>$q(t)$, $\dot{q}(t)$, $q_d(t)$, $\dot{q}_d(t)$ i $\ddot{q}_d(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables Sortida</td>
<td>$I_{d1}(t)$ i $I_{d2}(t)$</td>
</tr>
<tr>
<td>Equacions</td>
<td>$I_{dq} = -\tau_d \sin(x)$, \hspace{1cm} (3.15)</td>
</tr>
<tr>
<td></td>
<td>$q_d(t) = \frac{\pi}{2} \sin(2t)(1 - e^{-0.04 t})$ \hspace{1cm} (3.31)</td>
</tr>
<tr>
<td></td>
<td>$x_j = N_q q - (j - 1) \frac{\pi}{2}$ \hspace{1cm} (3.2)</td>
</tr>
</tbody>
</table>
\[ \tau_d = W_r \theta + k_r r \quad (3.19) \]

\[ W_r = \left[ \bar{q}_d + \alpha \dot{\theta} \quad \dot{q} \sin(q) \quad \sin(4N_1q) \right] \quad (3.9) \]

\[ \theta_r = \left[ M \quad B \quad N \quad K_D \right] \quad (3.10) \]

\[ e = q_d - q \), derivant: \( \dot{e} = \dot{q}_d - \dot{q} \quad (3.4) \]

\[ r = \dot{e} + \alpha e \quad (3.5) \]

**Taula 3.4. Equacions dels Subsistemes dels Corrents Desitjats en Cada Fase**

A continuació es mostra el desenvolupament del subsistema que inclou les equacions per al càlcul dels corrents desitjats per a cada fase (la representació de la figura correspon a la fase 1, ometí’m repetir el desenvolupament del subsistema de càlcul de l’altra fase, l’únic que varia és en funció de l’equació \( x_j = N_1q - (j - 1) \frac{\pi}{2} \):
Variables de Sortida del Sistema Electromecànic del Motor Brush DC, \( I_{d1}(t) \) i \( I_{d2}(t) \):

Podem observar el gràfic del corrent desitjat a la fase 1, \( I_{d1}(t) \):

![Gràfic del corrent desitjat a la fase 1](image1.png)

**Figura 3.20. Corrent Desitjat a la fase 1**

Podem observar el gràfic del corrent desitjat a la fase 2, \( I_{d2}(t) \):

![Gràfic del corrent desitjat a la fase 2](image2.png)

**Figura 3.21. Corrent Desitjat a la fase 2**
Es mostra també, independentment per a cada fase la superposició dels gràfics dels corrents desitjats i els corrents reals:

Gràfic del corrent desitjat $I_{d1}(t)$ i el corrent real $I_1(t)$ a la fase 1:

![Figura 3.22. Corrent Desitjat i Corrent Real al la Fase 1](image1)

Gràfic del corrent desitjat $I_{d2}(t)$ i el corrent real $I_2(t)$ a la fase 2:

![Figura 3.23. Corrent Desitjat i Corrent Real al la Fase 2](image2)
Així com els errors de seguiment de corrent \( \eta_j(t) = I_{d_j} - I_j \), per a cada fase.

Gràfic de l’error de seguiment de corrent \( \eta_1(t) \):

![Figura 3.24. Error de Seguiment de Corrent a la Fase 1](image1)

Gràfic de l’error de seguiment de corrent \( \eta_2(t) \):

![Figura 3.25. Error de Seguiment de Corrent a la Fase 2](image2)
En els gràfics anteriors es mostren els corrents $I_1(t)$ i $I_{ds1}(t)$ de la fase 1 sobreposats, els corrents $I_2(t)$ i $I_{ds2}(t)$ de la fase 2 sobreposats, l’error de seguiment de corrent $\eta_1(t)$ de la fase 1, i l’error de seguiment de corrent $\eta_2(t)$ de la fase 2, a les figures 3.21, 3.22, 3.23 i 3.24, respectivament.

Ometí’m la representació de les variables d’entrada al subsistema donat que ja foren mostrades en subsistemes anteriors.

Com s’observa $\eta_1(t)$ i $\eta_2(t)$ no són igual a zero. Com s’ha explicat en el desenvolupament del controlador, aquest està dissenyat per tal que compensi aquest fet, lo qual ho fem mitjançant la dinàmica e seguiment de l’error.

Acabarem amb el subsistema de càlcul d’$v(t)$, amb lo que podrem tancar el llaç del control.
Voltatge de Control d’Entrada al Motor

Per a tancar el llaç de control es calcula l’equació (3.28), que correspon al subsistema de l’equació del voltatges de control del motor \( v_1(t) \) i \( v_2(t) \), la qual serà entrada del subsistema d’equacions del model conegut del motor. Dissenyem el subsistema per a calcular el terme \( \sin(x_j)r \) que ens mancava de l’equació (3.28): 

\[ v_j = w_j + k_\eta_j - \sin(x_j)r. \]

**Figura 3.26. Subsistema de \( \sin(x_j)r(t) \)**

<table>
<thead>
<tr>
<th><strong>Subsistema de Càlcul de ( \sin(x_j)r(t) )</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Variables d’Entrada</strong></td>
</tr>
<tr>
<td>( q(t), \dot{q}(t), q_d(t) ) i ( \dot{q}_d(t) )</td>
</tr>
<tr>
<td><strong>Variables Sortida</strong></td>
</tr>
<tr>
<td>( \sin(x_1)r(t) ) i ( \sin(x_2)r(t) )</td>
</tr>
<tr>
<td><strong>Equacions</strong></td>
</tr>
<tr>
<td>( q_d(t) = \frac{\pi}{2} \sin(2t)(1 - e^{-0.1t}) )</td>
</tr>
<tr>
<td>( x_j = N_j q - (j-1) \frac{\pi}{2} )</td>
</tr>
<tr>
<td>( e = q_d - q ), derivant: ( \dot{e} = \dot{q}_d - \dot{q} )</td>
</tr>
<tr>
<td>( r = \dot{e} + \alpha e )</td>
</tr>
</tbody>
</table>

**Taula 3.5. Equacions dels Subsistemes de \( \sin(x_j)r(t) \)**
A continuació el desenvolupament del subsistema que inclou les equacions per al càlcul de $\sin(x_j)r(t)$:

**Figura 3.27. Desenvolupament del Subsistema de $\sin(x_j)r(t)$**
3.7 Conclusions

Especificats i resumits tots els subsistemes que formen les equacions del control, obtenim:

Gràfic de l’error de seguiment de posició de la càrrega $e(t)$:

Figura 3.28. Error de Seguiment de Posició

Gràfic de la posició desitjada i la posició simulada, $q_d(t)$ i $q(t)$, respectivament:

Figura 3.29. Gràfic de la Posició Desitjada i la Posició Simulada
L’error de seguiment de la posició de la càrrega es visualitza gràficament en la *figura* 3.27, expressat en graus, oscil·la en el límit dels ± 0.5°.

El gràfic de la anterior *figura* 3.28, mostra la posició desitjada $q_d(t)$ en color vermell, i la de la posició simulada en el control $q(t)$ en verd, totes dues expressades en escala de graus i superposades en la mateixa finestra de visualització, per tal d’observar les desviacions entre ambdues.
4 Control del Motor de Inducción

4.1 Introducció

El motor d’inducción és un dels accionaments més àmpliament utilitzats per a aplicacions industrials, té una bona durabilitat i un cost relativament baix. Amb lo que la utilització d’aquest motor en aplicacions de seguiment de posició i velocitat, no ha parat d’aumentar en els últims temps i les perspectives són que continui fent-ho.

El motor de inducció complica el problema del control degut a les múltiples entrades no lineals en la dinàmica del seu sistema electromecànic. La dinàmica electromecànica del motor de inducció que mitjançant un braç articulat a l’eix del motor, té en l’extrem acablada una càrrega de massa $m$, conté:

(i) Termes bilineals produïts pel corrent elèctric de l’estator amb el flux del rotor (a l’anomenada equació de transmissió de parell). Equació (4.1).

(ii) Termes bilineals produïts per la velocitat del rotor i el corrent elèctric a l’estator (o flux del rotor), en la dinàmica del subsistema elèctric. Equacions de (4.2) a (4.5).

A més, comparant-ho amb la resta de models dels motors dels capítols anteriors, el motor de inducció posseeix una càrrega addicional d’equacions de la dinàmica del flux del rotor, que també hem de considerar durant el disseny del control.

En aquest capítol utilitzarem i simularem la tècnica de l’integrador backstepping per a dissenyar un controlador de seguiment de posició, per al motor de inducció posicionant una càrrega mecànica segons una trajectòria predefinida.

Com que el motor és una màquina trifàsica, per a simplificar les equacions en el desenvolupament del control, utilitzarem una transformació matemàtica, la qual s’annexa en el capítol 5, per passar d’un sistema elèctric trifàsic a un sistema transformat de dues fases.

Per dissenyar el controlador, primer veurem el motor com una font de parell. Dissenyarem un senyal de parell desitjat per a assegurar que la càrrega segueix la trajectòria de la posició desitjada. A continuació desenvoluparem una entrada de control de voltatge per a forçar al parell del motor a seguir el parell desitjat. D’aquesta forma la dinàmica elèctrica portarà implicita l’objectiu de seguiment de parell, i a la vegada el del control, o sigui l’objectiu de seguiment de posició. Per lo tant, si podem dissenyar el control del voltatge d’entrada per a que el parell segueixi el senyal de parell desitjat, aleshores la posició de la càrrega seguirà la trajectòria desitjada. A més, per a assegurar que totes les variables d’estat electromecàniques romanen afaitades durant el llaç tancat, dissenyarem un control de seguiment del flux del rotor desitjat. Aquest segon objectiu de control, requereix que la magnitud del flux del rotor segueixi una funció positiva, així el control d’entrada de voltatge serà dissenyat també per a garantir que l’error de seguiment del flux del rotor tendeixi a zero.
Com hem indicat, en aquest capítol aplicarem la tècnica de \textit{backstepping} per a obtenir el disseny d’un controlador per a un sistema motor - càrrega on es suposa un coneixement exacte, és a dir, sense incertesa en el model. Així doncs, seguirem els següents passos en el desenvolupament matemàtic del problema:

(i) Model del sistema.

(ii) Objectiu del control: objectiu de seguiment de posició/velocitat i objectiu de seguiment de flux.

(iii) Control del sistema suposant un coneixement exacte dels paràmetres.

Finalment a l’apartat 4.5 \textit{Simulació}, desenvoluparem la implementació del controlador, mitjançant el programa \textit{Matlab}. Utilitzant blocs de codi predefinits s’implementaran les equacions del control en \textit{Simulink}. Obtenint els resultats simulats il·lustrats en el mateix apartat.
4.2 Model del sistema

Resumim el comportament dinàmic d’un motor d’inducció trifàsic equilibrat, en el model electromecànic donat a continuació. Aquest model assumeix que el circuit magnètic és lineal, i és el resultant d’haver realitzant una transformació matemàtica del sistema de tres fases a dues fases:

\[
M \ddot{q} + B \dot{q} + N \sin(q) = \psi_a I_b - \psi_b I_a \quad (4.1)
\]
\[
L_i \dot{I}_a = -R_i I_a + \alpha_1 \psi_a + \alpha_2 \psi_b \dot{q} + V_a \quad (4.2)
\]
\[
L_i \dot{I}_b = -R_i I_b + \alpha_1 \psi_b - \alpha_2 \psi_a \dot{q} + V_b \quad (4.3)
\]
\[
L_i \dot{\psi}_a = -R_i \psi_a - \alpha_3 \dot{q} \psi_a + K_i I_a \quad (4.4)
\]
\[
L_i \dot{\psi}_b = -R_i \psi_b + \alpha_3 \dot{q} \psi_a + K_i I_b \quad (4.5)
\]

on (4.1) representa a la dinàmica mecànica del sistema, com es mostra en la figura 4.1, i de (4.2) a (4.5) representa la dinàmica elèctrica.

\( q(t) \), \( \dot{q}(t) \) i \( \ddot{q}(t) \) representen la posició, velocitat i acceleració de la càrrega.

\( I_a(t) \) i \( I_b(t) \) representen el corrent transformat a l’estator.

\( \psi_a(t) \) i \( \psi_b(t) \) representen el flux transformat al rotor.

\( V_a(t) \) i \( V_b(t) \) representen el voltatge transformat a l’entrada de l’estator.

\( L_i \), \( R_i \), \( K_i \), \( \alpha_1 \), \( \alpha_2 \) i \( \alpha_3 \) són constants positives dels subsistemes elèctrics, i refereixen als paràmetres elèctrics corresponents a les següents equacions:

\[
L_i = L_a - M_c^2 / L_r
\]
\[
K_i = R_c M_c
\]
\[
R_i = (M_c^2 R_c + L_c^2 R_c) / L_r^2
\]
\[
\alpha_1 = M_c R_c / L_r
\]
\[
\alpha_2 = n_p M_c / L_r
\]
\[
\alpha_3 = n_p L_r
\]

En el subsistema mecànic:

\( M \) és una constant positiva relacionada amb la inèrcia mecànica del sistema (inclosa la inèrcia del rotor).

\( N \), és una constant positiva relacionada amb la massa de la càrrega i el coeficient de la gravetat.
$B$, és un coeficient positiu de fricció viscosa.

$R_s$, $R_r$, $n_p$, $L_s$, $L_r$, i $M_e$ són constants positives que representen la resistència de l’estator, la resistència del rotor, el nombre de parells de pols, la inductància de l’estator, la inductància del rotor, i la inductància mútua, respectivament.

Vol a dir que els paràmetres $M$, $B$ i $N$ descrits en la equació (4.1) són definits per a incloure l’efecte del coeficiènt de parell constant $\alpha_2$. Així doncs, aquesta equació ha estat dividida per la constant $\alpha_2$. Les equacions de paràmetres que constitueixen $M$, $B$ i $N$, es mostren a l’apartat 4.5 Simulació, figura (4.49).

![Diagrama Esquemàtic del Sistema Motor / Càrrega de Inducció](image)

**Figura 4.1. Diagrama Esquemàtic del Sistema Motor / Càrrega de Inducció.**
4.3 Objectiu del Control

Suposades accessibles totes les variables d’estat \( (q(t), \dot{q}(t), I_a(t), I_b(t), \psi_a(t) \text{ i } \psi_b(t)) \), l’objectiu del control es desenvolupar controladors de seguiment de posició de la càrrega per a les dinàmiques electromecàniques donades per les equacions del motor, de (4.1) fins a (4.5).

4.3.1 Objectiu de Seguiment Posició / Velocitat

Per començar, definim el error de seguiment de posició de la càrrega, \( e(t) \), com:
\[
e = q_d - q \quad (4.6)
\]
on \( q_d(t) \) representa la posició de la càrrega desitjada. Assumim que \( q_d(t) \) la seva primera, segona i tercera derivada són funcions variables en el temps i de magnitud afità. A més, definim el fílter de seguiment de l’error, \( r(t) \), com:
\[
r = \dot{e} + \alpha e \quad (4.7)
\]
on \( \alpha \) és una constant positiva de control de guany. A l’igual que en els capítols anteriors, el fílter de seguiment de l’error permet analitzar la dinàmica del subsistema mecànic de segon ordre de (4.1) com un sistema de primer ordre, i d’aquesta manera simplificar el desenvolupament del controlador. En conjunt, l’objectiu del control de seguiment serà portar \( r(t) \), i per lo tant \( e(t) \), cap a zero.

Per formar el fílter de seguiment de la dinàmica de l’error en llaç obert, diferenciem (4.7) respecte el temps i arrançem els termes amb lo que ens queda:
\[
\begin{align*}
  r &= \dot{e} + \alpha e \\
  e &= q_d - q \\
  \dot{e} &= \dot{q}_d - \dot{q} \\
  \dot{r} &= (\ddot{q}_d - \dddot{q}) + \alpha \dddot{q} \\
  \dot{r} &= (\dddot{q}_d + \alpha \dddot{q}) - \dddot{q} \quad (4.8).
\end{align*}
\]

Multiplicant (4.8) per \( M \) i substituint a la dinàmica del subsistema mecànic (4.1), la dinàmica del fílter de seguiment de l’error queda com a:
\[
\begin{align*}
  M\ddot{r} &= M((\dddot{q}_d + \alpha \dddot{q}) - \dddot{q}) \\
  M\dddot{q} + B\dddot{q} + N \sin(q) &= \psi_a I_b - \psi_b I_a
\end{align*}
\]
\[
\begin{align*}
  M\dddot{q} &= -B\dddot{q} - N \sin(q) + (\psi_a I_b - \psi_b I_a) \\
  M\dddot{q} &= -B\dddot{q} + N \sin(q) - (\psi_a I_b - \psi_b I_a) \quad (4.9)
\end{align*}
\]
Per a simplificar l’equació algebraica, el cantó dret de (4.9) el reescrivим com:
\[
M\dddot{r} = W_z \theta_z - (\psi_a I_b - \psi_b I_a) \quad (4.10)
\]
d’ón la matriu de regressió \( W_z(q, \dot{q}, t) \in \mathbb{R}^{1 \times 3} \) ve donada per:
\[ W_\tau = \left[ \ddot{\theta}_d + \alpha \dot{\theta}_d \right] \sin(q) \]  \hspace{1cm} (4.11)

i el vector de paràmetres \( \theta_\tau \in \mathbb{R}^{1\times3} \) ve donat per:

\[ \theta_\tau = \begin{bmatrix} M & B & N \end{bmatrix} \hspace{1cm} (4.12) \]

Degut a l’estructura del sistema electromecànic donat per (4.1) fins a (4.5), només tenim llibertat per a especificar els voltatges d’entrada al motor \( V_a(t) \) i \( V_b(t) \). En altes paraules, la dinàmica de l’error del subsistema mecànic manca d’un nivell de control d’entrada de parell verdader. Per aquesta raó, emprant la tècnica de backstepping, sumarem i restarem un senyal de parell desitjat, \( \tau_d(t) \), a la dreta de la equació (4.10) obtenint:

\[ \dot{M}\tau = W_\tau \theta_\tau - \tau_d + \eta_\tau \]  \hspace{1cm} (4.13)

on \( \eta_\tau(t) \) s’utilitza per representar l’error de seguiment de parell i és definit com:

\[ \dot{M}\tau = W_\tau \theta_\tau - \tau_d + \eta_\tau \rightarrow -\tau_d + \eta_\tau = -\left( \psi_a I_b - \psi_b I_a \right) \rightarrow \]

\[ \eta_\tau = \tau_d - \left( \psi_a I_b - \psi_b I_a \right). \hspace{1cm} (4.14) \]

Si el terme de l’erreur de seguiment de parell \( \eta_\tau(t) \) a (4.13) és igual a zero, aleshores \( \tau_d(t) \) podrà ser dissenyat per a aconseguir un bon seguiment de posició de la càrrega utilitzant tècniques de control standard. Com que l’error de seguiment de parell en general no és igual a zero, haurem de dissenyar el control del voltatge d’entrada per a compensar els efectes de \( \eta_\tau(t) \) a (4.13). Per a acomplir aquest objectiu de control addicional, és necessària la dinàmica de l’error de seguiment de parell. Fent la derivada de l’error de seguiment de parell \( \eta_\tau(t) \) a (4.14) i després multiplicant el resultat per \( L_i \) tenim:

\[ \dot{\eta}_\tau = \dot{\tau}_d - \left( \psi_a I_b - \psi_b I_a \right) \rightarrow \dot{\eta}_\tau = \dot{\tau}_d - \psi_a I_b - \psi_b I_a + \psi_a \dot{I}_b + \psi_b \dot{I}_a \rightarrow \]

\[ \dot{\eta}_\tau = \dot{\tau}_d - \left( \psi_a I_b + \psi_a \dot{I}_b + \psi_b I_a + \psi_b \dot{I}_a \right) \rightarrow L_i \dot{\eta}_\tau = L_i \dot{\tau}_d - L_i \left( \psi_a I_b + \psi_b I_a \right) \rightarrow \]

\[ L_i \dot{\eta}_\tau = L_i \dot{\tau}_d - L_i \left( \psi_a I_b + \psi_b I_a \right) + L_i \left( \psi_b I_a + \psi_a I_b \right). \hspace{1cm} (4.15) \]

Substituint a (4.15) la part dreta de les equacions des de (4.2) fins a (4.5), la dinàmica de l’error de seguiment de parell en llaç obert ens queda:

\[
\begin{align*}
L_i \dot{\eta}_\tau &= L_i \dot{\tau}_d - L_i \left( \psi_a I_b + \psi_a \dot{I}_b \right) + L_i \left( \psi_b I_a + \psi_b \dot{I}_a \right) \\
L_i \dot{I}_a &= -R_i I_a + \alpha_1 \psi_a + \alpha_2 \psi_b \dot{q} + V_a \\
L_i \dot{I}_b &= -R_i I_b + \alpha_1 \psi_b + \alpha_2 \psi_a \dot{q} + V_b \\
L_i \psi_a &= -R_i \psi_a - \alpha_3 \dot{q} \psi_b + K_i I_a \\
L_i \psi_b &= -R_i \psi_b + \alpha_3 \dot{q} \psi_a + K_i I_b
\end{align*}
\]

arranjant
podem veure que les entrades de control de voltatge \((V_a(t) \ i \ V_b(t))\) apareixen a la dreta de l’equació \((4.16)\). Més endavant, dissenyarem el control de les entrades de voltatge per tal de forçar a l’error de seguiment de parell, \(\eta_i(t)\), a zero.
4.3.2 Objectiu de Seguiment de Flux

Una sub-tasca important en la recerca de l’objectiu del control de posició és assegurar que tots els senyals del sistema estan limitats durant l’operació en llau tancat. Normalment les limitacions dels senyals de tots els sistemes es poden assegurar basant-se en un ànàlisi d’estabilitat, el qual inclou el filtre de seguiment de l’error i l’error de seguiment de corrent / parell. No obstant, donada la especial naturalesa de la dinàmica del motor, de (4.1) fins a (4.5), aquesta aproximació standard permet la possibilitat de fluxos en el rotor il·limitats. Com a mitjà per a prevenir fluxos en el rotor il·limitats, el flux del rotor es forçat a seguir un senyal limitat. Per a quantificar l’objectiu de seguiment de flux, definim l’error de seguiment de flux, \( \eta_\psi(t) \), com a:

\[
\eta_\psi = \psi_d - \frac{1}{2}(\psi_a^2 + \psi_b^2) \tag{4.17}
\]

on \( \psi_d(t) \) és la magnitud del flux desitjat el qual s’escol·lit per ser diferenciable de segon ordre respecte el temps, en l’apartat 4.5 Simulació tenim la seva equació. Diferenciant (4.17) respecte el temps i multiplicant l’expressió resultant per \( L_\psi \) tenim:

\[
L_\psi \dot{\eta}_\psi = L_\psi \ddot{\psi}_d - L_r(\psi_a \ddot{\psi}_a + \psi_b \ddot{\psi}_b) \tag{4.18}
\]

substituint per \( L_r \ddot{\psi}_a \) i \( L_r \ddot{\psi}_b \) de (4.4) i (4.5) a (4.18), respectivament, la dinàmica de l’error de seguiment de flux queda expressada de la següent forma:

\[
\begin{align*}
L_\psi \dot{\eta}_\psi &= L_r \ddot{\psi}_d - L_r(\psi_a \ddot{\psi}_a + \psi_b \ddot{\psi}_b) \\
L_r \ddot{\psi}_a &= -R_r \ddot{\psi}_a - \alpha_\delta \dot{q} \psi_b + K_I I_a \\
L_r \ddot{\psi}_b &= -R_r \ddot{\psi}_b + \alpha_\delta \dot{q} \psi_a + K_I I_b \\
L_r \dot{\eta}_\psi &= L_r \ddot{\psi}_d - \psi_a (L_r \ddot{\psi}_a) - \psi_b (L_r \ddot{\psi}_b) \\
L_r \ddot{\psi}_a &= -R_r \ddot{\psi}_a - \alpha_\delta \dot{q} \psi_b + K_I I_a \\
L_r \ddot{\psi}_b &= -R_r \ddot{\psi}_b + \alpha_\delta \dot{q} \psi_a + K_I I_b \\
L_r \dot{\eta}_\psi &= L_r \ddot{\psi}_d - R_r \ddot{\psi}_a - \alpha_\delta \dot{q} \psi_a + K_I I_a - \psi_b (-R_r \ddot{\psi}_b + \alpha_\delta \dot{q} \psi_a + K_I I_b) \\
L_r \ddot{\psi}_a &= L_r \ddot{\psi}_d + R_r \ddot{\psi}_a + \alpha_\delta \dot{q} \psi_b - K_I \psi_a I_a + R_r \ddot{\psi}_b - \alpha_\delta \dot{q} \psi_a \psi_b - K_I \psi_b I_b \\
L_r \dot{\eta}_\psi &= L_r \ddot{\psi}_d + R_r (\psi_a^2 + \psi_b^2) - K_I (\psi_a I_a + \psi_b I_b) \tag{4.19}
\end{align*}
\]

dividint en els dos costats de l’equació per \( K_I \) obtenim:
\[
\frac{L_r \dot{\eta}_\psi}{K_I} = \frac{L_r \dot{\psi}_d + R_r (\psi_a^2 + \psi_b^2) - K_I (\psi_a I_a + \psi_b I_b)}{K_I}, \quad \text{operant}
\]

\[
\bar{L}_r \dot{\eta}_\psi = Y_\psi \dot{\theta}_\psi - (\psi_a I_a + \psi_b I_b) \tag{4.20}
\]
on $Y_\psi (\psi_a, \psi_b, t) \in \mathbb{R}^{1 \times 2}$ i $\dot{\theta}_\psi \in \mathbb{R}^{1 \times 2}$ venen donades per:

\[
Y_\psi = \begin{bmatrix} \dot{\psi}_d & \psi_a^2 + \psi_b^2 \end{bmatrix} \text{ i } \dot{\theta}_\psi = \begin{bmatrix} \bar{L}_r & \bar{R}_r \end{bmatrix} \tag{4.21}
\]
on $L_r = \frac{L_r}{K_I}$ i $R_r = \frac{R_r}{K_I}$.

A (4.20), podem veure que la dinàmica de l’error de seguiment de flux manca d’una entrada de control, la qual podria ser utilitzada per a conduir $\eta_\psi (t)$ a zero. Similar al seguiment de l’objectiu de posició, utilitzarem la tècnica de l’integrador backstepping, sumarem i restarem un controlador de flux fictici, $u_\psi (t)$, a (4.20) per a obtenir:

\[
\bar{L}_r \dot{\eta}_\psi = Y_\psi \dot{\theta}_\psi - u_\psi + \eta_\psi \tag{4.22}
\]
on la variable auxiliar de seguiment $\eta_\psi (t)$ ve definida per:

\[
\eta_\psi = u_\psi - (\psi_a I_a + \psi_b I_b). \tag{4.23}
\]

A (4.22), podem veure que si la variable auxiliar $\eta_\psi (t)$ és zero, llavors el controlador fictici de flux $u_\psi (t)$ pot ser fàcilment dissenyat per forçar $\eta_\psi (t)$ a zero. Per assegurar que $\eta_\psi (t)$ va cap a zero, construirem la dinàmica en llac obert per a $\eta_\psi (t)$ i d’aquesta forma introduirem les entrades de control de voltatge en el problema del control del seguiment del flux. La dinàmica en llac obert per a $\eta_\psi (t)$ pot obtenir-se agafant la derivada en el temps de (4.23) i multiplicant en els dos costats de l’equació resultant per $L_r$, obtenint:

\[
\eta_\psi = u_\psi - (\psi_a I_a + \psi_b I_b) \quad \text{derivant} \quad \dot{\eta}_\psi = \dot{u}_\psi - (\psi_a \dot{I}_a + \psi_b \dot{I}_b) - (\psi_a \dot{I}_a + \psi_b \dot{I}_b), \quad \text{per } L_r
\]

\[
L_r \dot{\eta}_\psi = L_r \dot{u}_\psi - L_r (\psi_a I_a + \psi_b I_b) - L_r (\psi_a \dot{I}_a + \psi_b \dot{I}_b) + L_r (\psi_a I_a + \psi_b I_b). \tag{4.24}
\]

Substituint la part dreta de les equacions des de (4.2) fins a (4.5), per $L_r \dot{I}_a$, $L_r \dot{I}_b$, $\psi_a$ i $\psi_b$, respectivament, a (4.24) tenim:

\[
\begin{aligned}
L_r \dot{I}_a &= -R_r I_a + \alpha_1 \psi_a + \alpha_2 \psi_a \dot{I}_a + V_a \\
L_r \dot{I}_b &= -R_r I_b + \alpha_1 \psi_b - \alpha_2 \psi_a \dot{I}_a + V_a \\
L_r \dot{\psi}_a &= -R_r \psi_a - \alpha_3 \dot{I}_a \psi_b + K_I I_a \\
L_r \dot{\psi}_b &= -R_r \psi_b + \alpha_3 \dot{I}_a \psi_a + K_I I_a
\end{aligned}
\]

\[
\begin{aligned}
L_r \dot{\eta}_\psi &= L_r \dot{u}_\psi - L_r (\psi_a I_a + \psi_b I_b) - L_r (\psi_a \dot{I}_a + \psi_b \dot{I}_b)
\end{aligned}
\]
Ara veiem que el control de les entrades de voltatge ha aparegut a la dreta de l’equació (4.25). Més endavant definirem el control de les entrades de voltatge \( V_a(t) \) i \( V_b(t) \) per a forçar \( \eta(t) \) cap a zero.

És important fer esment que tenim dos objectius de seguiment que poden trobar-se, concretament, tenim que conduir \( \eta(t) \) a (4.23) i \( \eta(t) \) a (4.14) a zero. Com que \( V_a(t) \) i \( V_b(t) \) apareixen juntes en les dinàmiques de \( \eta(t) \) i \( \eta(t) \), no és possible independitzar-les assignant una entrada de control de voltatge per a aconseguir un objectiu de seguiment i la segona entrada de control per a aconseguir l’altre objectiu de seguiment. No obstant, podem utilitzar la dinàmica de l’equació (4.16) per a calcular la quantitat necessària de \( \psi_a V_a - \psi_b V_b \) per a que \( \eta(t) \) tendeixi a zero, i per una altra banda, podem utilitzar la dinàmica de l’equació de (4.25) per calcular la quantitat necessària de \( \psi_a V_a + \psi_b V_b \) per a que \( \eta(t) \) tendeixi a zero. Després de completar aquests dos procediments, podrem resoldre el disseny dels voltatges transformats \( V_a(t) \) i \( V_b(t) \).
4.4 Control del Sistema Suposant un Coneixement Exacte dels Paràmetres

Basat en el model exacte conegut del sistema i la realimentació plena d’estat, primer dissenyarem un controlador de seguiment de posició per a la dinàmica en llàc obert de (4.13), (4.16), (4.22) i (4.25). Per facilitar el seguiment de l’anàlisi d’estabilitat, formularem l’error electromecànic del sistema en llàc tancat. Com hem comentat abans, primer dissenyarem el senyal de parell desitjat per tal de forçar a la càrrega a seguir la trajectòria de posició desitjada. Basat en la estructura (4.13) especificuem τ₃(t) com:

\[
\dot{M}r = W_r \dot{\theta}_r - \tau_d + \eta_r \quad \text{(despejant)}
\]

\[
\tau_d = W_r \dot{\theta}_r - M \dot{r} + \eta_r \quad \text{(4.26)}
\]

on \( W_r (\cdot) \) i \( \dot{\theta}_r \) s’han definit prèviament a (4.11) i (4.12), respectivament, i \( k_s \) és una constant de control de guany positiu. Substituint (4.26) en la dinàmica en llàc obert de (4.13) obtenim el filtre de seguiment de la dinàmica de l’error en llàc tancat com a:

\[
\begin{align*}
\tau_d &= W_r \dot{\theta}_r - M \dot{r} + \eta_r \\
\tau_d &= W_r \dot{\theta}_r + k_r r
\end{align*}
\]

(4.27)

De (4.27), podem que si l’error de seguiment de parell \( \eta_r (t) \) fos igual a zero, llavors el filtr de l’error de seguiment \( r(t) \) aniria cap zero exponencialment ràpid. No obstant, en general, això no és cert; i per lo tant hem dissenyar el control de les entrades de voltatge per assegurar que \( \eta_r (t) \) convergeix a zero. Per finalitzar-ho, necessitem completar la descripció del sistema en llàc obert de la dinàmica de \( \eta_r (t) \). Per a aconseguir-ho, calculant el terme \( \ddot{\tau}_d (t) \) a (4.16) i agafant la derivada en el temps de \( \tau_d (t) \) a (4.26) obtenim:

\[
\ddot{\tau}_d = W_r \ddot{\theta}_r + k_r \dot{r} \quad \text{(4.28)}
\]

després substituint la derivada en el temps de (4.11) i (4.8) a la dreta de l’equació de (4.28) obtenim:

\[
\begin{align*}
W_r &= \left[ \ddot{q}_d + \alpha \ddot{q} + \dot{q} \sin(q) \right] \quad \text{(derivant)}
\end{align*}
\]

\[
\begin{align*}
\dot{\theta}_r &= \left[ M \quad B \quad N \right] \quad \text{(4.12)}
\end{align*}
\]

\[
\dot{r} = (\ddot{q}_d + \alpha \ddot{q}) - \dot{q} \quad \text{(4.8)}
\]

\[
e = q_d - q \quad \text{(derivant)}
\]

\[
\ddot{e} = \ddot{q}_d - \dot{q} \quad \text{(derivant)}
\]

\[
\ddot{\tau}_d = W_r \dot{\theta}_r + k_s \dot{r}
\]
\[
\begin{align*}
W_r &= \left[ \ddot{q}_a + \alpha (\dot{q}_a - \dot{q}) \right] \ddot{q} \cos(q) \\
\theta_r &= \left[ M \quad B \quad N \right] \\
\dot{r} &= (\ddot{q}_d + \alpha \ddot{c}) - \dot{q} \\
\dot{\tau}_d &= \dot{W}_r \theta_r + k_r
\end{align*}
\]

\[
\dot{\tau}_d = M (\ddot{q}_d + \alpha (\dot{q}_d - \dot{q})) + B \ddot{q} + N \dddot{q} \cos(q) + k_s (\dot{q}_d - \ddot{q} + \alpha \ddot{c}) \tag{4.29}
\]

que conté estats mesurables (és a dir, \( q(t) \) i \( \dot{q}(t) \)), funcions conegudes, paràmetres constants coneguts, i la càrrega d’acceleració no mesurable \( \ddot{q}(t) \). De (4.1), podem resoldre per a \( \ddot{q}(t) \) de la següent forma:

\[
M \ddot{q} + B \ddot{q} + N \sin(q) = \psi_a I_b - \psi_b I_a \tag{desallotjament 4.1} \rightarrow
\]

\[
\ddot{q} = -\frac{B}{M} \ddot{q} - \frac{N}{M} \sin(q) + \frac{1}{M} (\psi_a I_b - \psi_b I_a) \tag{4.30}
\]

Després substituint per \( \ddot{q}(t) \) de la dreta de l’equació (4.30) a (4.29), podem escriure \( \dot{\tau}_d(t) \) en termes d’estats mesurables (és a dir, \( q(t) \), \( \dot{q}(t) \), \( I_a(t) \), \( I_b(t) \), \( \psi_a(t) \) i \( \psi_b(t) \)), funcions conegudes, i paràmetres constants coneguts de la forma:

\[
\begin{align*}
\dot{\tau}_d &= M (\ddot{q}_d + \alpha (\dot{q}_d - \dot{q})) + B \ddot{q} + N \dddot{q} \cos(q) + k_s (\dot{q}_d - \ddot{q} + \alpha \ddot{c}) \\
\dot{\tau}_d &= M (\ddot{q}_d + \alpha (\dot{q}_d - \dot{q})) + B \ddot{q} - \frac{N}{M} \sin(q) + \frac{1}{M} (\psi_a I_b - \psi_b I_a)) + k_s (\dot{q}_d - \ddot{q} + \alpha \ddot{c}) \\
\dot{\tau}_d &= M \ddot{q}_d + M \alpha \dot{q}_d + M \alpha B \ddot{q} + M \alpha \frac{N}{M} \sin(q) - M \alpha \frac{1}{M} (\psi_a I_b - \psi_b I_a) \\
+ & B(-\frac{B}{M} \ddot{q} - \frac{N}{M} \sin(q) + \frac{1}{M} (\psi_a I_b - \psi_b I_a)) + N \dddot{q} \cos(q) \\
+ & k_s \ddot{q}_d + k_s \frac{B}{M} \ddot{q} + k_s \frac{N}{M} \sin(q) - k_s \frac{1}{M} (\psi_a I_b - \psi_b I_a) + k_s \alpha \ddot{c} \rightarrow \text{agrupant}
\end{align*}
\]

\[
\dot{\tau}_d = M \ddot{q}_d + M \alpha \dot{q}_d + N \dddot{q} \cos(q) + k_s \ddot{q}_d + k_s \alpha \ddot{c} \\
+ & M \alpha \left( \frac{B}{M} \ddot{q} + \frac{N}{M} \sin(q) - \frac{1}{M} (\psi_a I_b - \psi_b I_a) \right) + B(-\frac{B}{M} \ddot{q} - \frac{N}{M} \sin(q) + \frac{1}{M} (\psi_a I_b - \psi_b I_a)) \\
+ & k_s \left( \frac{B}{M} \ddot{q} + \frac{N}{M} \sin(q) - \frac{1}{M} (\psi_a I_b - \psi_b I_a) \right) \rightarrow \text{agrupant}
\]

Pàgina 106 de 208
\[
\begin{align*}
\dot{\tau}_d &= M(\ddot{q}_d + \alpha \dot{q}_d) + N\dot{q}\cos(q) + k_s(\dot{q}_d + \alpha \dot{e}) \\
&+ (B - M\alpha - k_s)(-\frac{B}{M}\dot{q} - \frac{N}{M}\sin(q) + \frac{1}{M}(\psi_a I_b - \psi_b I_a)). \quad (4.31)
\end{align*}
\]

Després substituint l’expressió per \((\dot{\tau}_d, t)\) de (4.31) a (4.16) tenim la dinàmica final en llaç obert de l’error de seguiment de parell \(\eta_t(t)\) de la forma:

\[
L_\tau \ddot{\eta}_t = L_\tau \ddot{\tau} - L_\tau I_r^{-1}_b(-R_r\psi_a - \alpha_s \dot{\psi}_b) + L_\tau I_r^{-1}_a(-R_r\psi_b + \alpha_s \dot{\psi}_a) \\
- \psi_a(-R_rI_b - \alpha_s \psi_a \dot{\psi}_b) + \psi_b(-R_rI_a + \alpha_s \psi_b \dot{\psi}_a) + \psi_b V_a - \psi_a V_b \tag{4.16}
\]

\[
\dot{\tau}_d = M(\ddot{q}_d + \alpha \dot{q}_d) + N\dot{q}\cos(q) + k_s(\dot{q}_d + \alpha \dot{e}) \\
+ (B - M\alpha - k_s)(-\frac{B}{M}\dot{q} - \frac{N}{M}\sin(q) + \frac{1}{M}(\psi_a I_b - \psi_b I_a)) \tag{4.31}
\]

\[
L_\tau \ddot{\eta}_t = L_\tau (M(\ddot{q}_d + \alpha \dot{q}_d) + N\dot{q}\cos(q) + k_s(\dot{q}_d + \alpha \dot{e})) \\
+ L_\tau (B - M\alpha - k_s)(-\frac{B}{M}\dot{q} - \frac{N}{M}\sin(q) + \frac{1}{M}(\psi_a I_b - \psi_b I_a)) \\
- L_\tau I_r^{-1}_b(-R_r\psi_a - \alpha_s \dot{\psi}_b) + L_\tau I_r^{-1}_a(-R_r\psi_b + \alpha_s \dot{\psi}_a) \\
- \psi_a(-R_rI_b - \alpha_s \psi_a \dot{\psi}_b) + \psi_b(-R_rI_a + \alpha_s \psi_b \dot{\psi}_a) + \psi_b V_a - \psi_a V_b
\]

\[
L_\tau \ddot{\eta}_t = L_\tau (M(\ddot{q}_d + \alpha \dot{q}_d) + N\dot{q}\cos(q) + k_s(\dot{q}_d + \alpha \dot{e})) \\
+ L_\tau (B - M\alpha - k_s)(-\frac{B}{M}\dot{q} - \frac{N}{M}\sin(q) + \frac{1}{M}(\psi_a I_b - \psi_b I_a)) \\
- L_\tau I_r^{-1}_b(-R_r\psi_a - \alpha_s \dot{\psi}_b) + L_\tau I_r^{-1}_a(-R_r\psi_b + \alpha_s \dot{\psi}_a) \\
- \psi_a(-R_rI_b - \alpha_s \psi_a \dot{\psi}_b) + \psi_b(-R_rI_a + \alpha_s \psi_b \dot{\psi}_a) + \psi_b V_a - \psi_a V_b
\]

on la variable auxiliar escalar \(w_a(q, \dot{q}, I_a, I_b, \psi_a, \psi_b, t)\) ve donada per:

\[
w_a = L_\tau (M(\ddot{q}_d + \alpha \dot{q}_d) + N\dot{q}\cos(q) + k_s(\dot{q}_d + \alpha \dot{e})) \\
+ L_\tau (B - M\alpha - k_s)(-\frac{B}{M}\dot{q} - \frac{N}{M}\sin(q) + \frac{1}{M}(\psi_a I_b - \psi_b I_a)) \tag{4.33}
\]

De (4.32), podem dissenyar fàcilment el nivell de voltatge de control d’entrada per forçar l’error de seguiment de parell \(\eta_t(t)\) a zero. Especifiquem el voltatge de control d’entrada de la següent forma:
\[ \psi_a V_b - \psi_b V_a = w_a + k_1 \eta_r + r \]  \hspace{1cm} (4.34)

on \( k_1 \) és una constant positiva de control de guany. Substituint la part dreta de l’equació (4.34) a (4.32) obtenim l’error en llaç tancat del sistema per a l’error de seguiment de parell \( \eta_r(t) \) com a:

\[
\begin{align*}
L_1 \dot{\eta}_r &= w_a - (\psi_a V_b - \psi_b V_a) \\
\psi_a V_b - \psi_b V_a &= w_a + k_1 \eta_r + r \\
\end{align*}
\]

\[ L_1 \dot{\eta}_r = w_a - (w_a + k_1 \eta_r + r) \]  \hspace{1cm} (operant)

\[ L_1 \dot{\eta}_r = -k_1 \eta_r - r . \]  \hspace{1cm} (4.35)

Com hem assenyalat anteriorment, un objectiu secundari del control és forçar a l’error de seguiment de flux \( \eta_\psi(t) \) a zero. Basat en la estructura de la dinàmica en llaç obert per a l’error de seguiment de flux \( \eta_\psi(t) \) de (4.22), dissenyem el controlador fictici de flux \( u_I(t) \) com a:

\[
\begin{align*}
\bar{L}_\psi \dot{\eta}_\psi &= Y_\psi \theta_\psi - u_I + \eta_I \\
\end{align*}
\]

\[ u_I = Y_\psi \theta_\psi + k_2 \eta_\psi \]  \hspace{1cm} (4.36)

on \( k_2 \) és una constant positiva de control de guany, i \( Y_\psi \) i \( \theta_\psi \) estan definides a (4.21). Substituint \( u_I(t) \) de (4.36) a (4.22), obtindrem la dinàmica de l’error en llaç tancat per a l’error de seguiment de flux \( \eta_\psi(t) \) com a:

\[
\begin{align*}
\bar{L}_\psi \dot{\eta}_\psi &= Y_\psi \theta_\psi - u_I + \eta_I \\
\end{align*}
\]

\[ \bar{L}_\psi \dot{\eta}_\psi = Y_\psi \theta_\psi - (Y_\psi \theta_\psi + k_2 \eta_\psi) + \eta_I \]  \hspace{1cm} (operant)

\[ \bar{L}_\psi \dot{\eta}_\psi = -k_2 \eta_\psi + \eta_I \]  \hspace{1cm} (4.37)

on \( \eta_I(t) \) fou definida a (4.23). De (4.37), podem veure que si la variable auxiliar de seguiment d’error \( \eta_I(t) \) fos igual a zero, llavors l’error de seguiment de flux \( \eta_\psi(t) \) convergiria cap a zero exponencialment ràpid. No obstant, per a assegurar que \( \eta_I(t) \) va cap a zero, s’ha de dissenyar un controlador de nivell de voltatge d’entrada. Per acabar, completem la descripció per a la dinàmica de \( \eta_I(t) \) en llaç obert a (4.25). Per a aconseguir-ho, a (4.36), la derivada en el temps de \( u_I(t) \) resulta de la forma:

\[ u_I = Y_\psi \theta_\psi + k_2 \eta_\psi \]  \hspace{1cm} (4.38)

Després diferenciant (4.21), podem escriure (4.38):
\[
Y_{\psi} = \left[ \psi_d \; \psi^2 + \psi^3 \right] \quad \text{diferenciant}_\text{4.21} \quad \hat{Y}_{\psi} = \left[ \psi_d \; 2\psi_d \psi_a + 2\psi_d \psi_b \right] \]
\[
\theta_{\psi} = \left[ I_r \; R_r \right] \quad \text{operant} \quad \theta_{\psi} = \left[ I_r \; R_r \right] \]
\[
\dot{u}_t = \hat{Y}_{\psi} \theta_{\psi} + k_2 \dot{\psi}_{\psi}. \quad (4.39)
\]

Multiplicant (4.39) per \( L_r \) i substituint (4.4) i (4.5) per \( \psi_a \) i \( \psi_b \), respectivament, obtenim:
\[
\dot{u}_t = L_r \hat{Y}_{\psi} + 2R_r (\psi_a \psi_a + \psi_b \psi_b) + k_2 \dot{\psi}_{\psi}. \quad (4.40)
\]

Després substituint la part dreta de (4.20) a (4.40) per \( \dot{\psi}_{\psi}(t) \), tenim:
\[
L_t \dot{u}_t = L_t L_r \hat{Y}_{\psi} + 2L_t L_r^2 R_r \psi_a (\psi_a \psi_a + \psi_b \psi_b) + L_t L_r^2 (\psi_a \psi_a + \psi_b \psi_b) \]
\[
+ k_2 L_r \dot{\psi}_{\psi} \quad \text{operant} \quad (4.41)
\]

Continuem substituint (4.41) a (4.25), i completem la dinàmica en llàc obert per a \( n_1(t) \) de la forma:
\[
L_i \dot{u}_i = \overline{L}_i L_i \dot{\psi}_d + 2L_i L_i^{-1} \overline{R}_i \psi_a (-R, \psi_a - \alpha_i \dot{\psi}_a + K_i I_a) \\
+ 2L_i L_i^{-1} \overline{R}_i \psi_b (-R, \psi_b + \alpha_i \dot{\psi}_b + K_i I_b) \\
+ k_2 L_i \overline{L}_i^{-1} (Y_\theta \theta (\psi_a I_a + \psi_b I_b)) \\
\]

\[
L_i \dot{\eta}_i = \overline{L}_i L_i \dot{\psi}_d + 2L_i L_i^{-1} \overline{R}_i \psi_a (-R, \psi_a - \alpha_i \dot{\psi}_a + K_i I_a) \\
+ 2L_i L_i^{-1} \overline{R}_i \psi_b (-R, \psi_b + \alpha_i \dot{\psi}_b + K_i I_b) \\
+ k_2 L_i \overline{L}_i^{-1} (Y_\theta \theta (\psi_a I_a + \psi_b I_b)) \\
\]

\[
L_i \dot{\eta}_i = \overline{L}_i L_i \dot{\psi}_d \\
+ 2L_i L_i^{-1} \overline{R}_i \psi_a (-R, \psi_a - \alpha_i \dot{\psi}_a + K_i I_a) \\
+ 2L_i L_i^{-1} \overline{R}_i \psi_a (-R, \psi_a - \alpha_i \dot{\psi}_a + K_i I_a) \\
+ k_2 L_i \overline{L}_i^{-1} (Y_\theta \theta (\psi_a I_a + \psi_b I_b)) \\
+ k_2 L_i \overline{L}_i^{-1} (Y_\theta \theta (\psi_a I_a + \psi_b I_b)) \\
\]

\[
L_i \dot{\eta}_i = \overline{L}_i L_i \dot{\psi}_d \\
+ 2L_i L_i^{-1} \overline{R}_i \psi_b (-R, \psi_b + \alpha_i \dot{\psi}_b + K_i I_b) \\
+ 2L_i L_i^{-1} \overline{R}_i \psi_b (-R, \psi_b + \alpha_i \dot{\psi}_b + K_i I_b) \\
+ k_2 L_i \overline{L}_i^{-1} (Y_\theta \theta (\psi_a I_a + \psi_b I_b)) \\
+ k_2 L_i \overline{L}_i^{-1} (Y_\theta \theta (\psi_a I_a + \psi_b I_b)) \\
\]

\[
L_i \dot{\eta}_i = \overline{L}_i L_i \dot{\psi}_d + L_i^{-1} (2L_i \overline{R}_i \psi_a - L_i I_a) (-R, \psi_a - \alpha_i \dot{\psi}_a + K_i I_a) \\
+ k_2 L_i \overline{L}_i^{-1} (Y_\theta \theta (\psi_a I_a + \psi_b I_b)) \\
+ L_i^{-1} (2L_i \overline{R}_i \psi_b - L_i I_b) (-R, \psi_b + \alpha_i \dot{\psi}_b + K_i I_b) \\
- \psi_a (-R, I_a + \alpha_i \psi_a) - \psi_b (-R, I_b + \alpha_i \psi_b) \\
- (\psi_a V_a + \psi_b V_b) \\
\]

\[
L_i \dot{\eta}_i = w_b - (\psi_a V_a + \psi_b V_b) \quad (4.42)
\]

on la variable auxiliar escalar \( w_b (\dot{\psi}, I_a, I_b, \psi_a, \psi_b, t) \) ve donada per:
\[ w_b = L_r L_1 \ddot{\psi}_d + L_r^{-1} (2 L_r \overline{R}_r \psi_a - L_1 I_a)(-R_r \psi_a - \alpha_\gamma \dot{\psi}_b + K_1 I_a) \]
\[ + k_2 L_r L_1^{-1} (Y_\psi \dot{\theta}_\psi - (\psi_a I_a + \psi_b I_b)) \]
\[ + L_r^{-1} (2 L_r \overline{R}_r \psi_b - L_1 I_b)(-R_r \psi_b + \alpha_\gamma \dot{\psi}_a + K_1 I_b) \]
\[ - \psi_a (-R_r I_a + \alpha_\gamma \psi_a) - \psi_b (-R_r I_b + \alpha_\gamma \psi_b) \] (4.43)

De l’estructura (4.42), proposem el seguiment del voltatge de control d’entrada per tal de conduir \( n_1(t) \) a zero:

\[ \psi_a V_a + \psi_b V_b = w_b + k_3 \eta_I + \eta_\psi \] (4.44)

on \( k_3 \) és una constant positiva de control de guany. Substituint la part dreta de l’equació (4.44) a (4.42), obtenim la descripció en llaç tancat per a \( n_1(t) \) com:

\[ \begin{align*}
L_r \dot{\eta}_I &= w_b - (\psi_a V_a + \psi_b V_b) \\
\psi_a V_a + \psi_b V_b &= w_b + k_3 \eta_I + \eta_\psi
\end{align*} \] substituint a \( L_r \dot{\eta}_I = w_b - (w_b + k_3 \eta_I + \eta_\psi) \) operant

\[ L_r \dot{\eta}_I = -k_3 \eta_I - \eta_\psi \] (4.45)

Donat (4.34) i (4.44), per als controls dels voltatges d’entrada transformats \( V_a \) i \( V_b \), podem resoldre com a controlador de la dinàmica de l’error del sistema com a:

\[ \begin{align*}
\psi_a V_a - \psi_b V_a &= w_a + k_3 \eta_I + r \\
\psi_a V_a + \psi_b V_b &= w_b + k_3 \eta_I + \eta_\psi
\end{align*} \] matricialment

\[ \begin{bmatrix} V_a \\ V_b \end{bmatrix} = C^{-1} \begin{bmatrix} w_a + k_3 \eta_I + r \\ w_b + k_3 \eta_I + \eta_\psi \end{bmatrix} \] (4.46)

on \( C \) ve donada per:

\[ C = \begin{bmatrix} -\psi_b & \psi_a \\ \psi_a & \psi_b \end{bmatrix} \in \mathbb{R}^{2 \times 2}. \] (4.47)

El determinant de la matrícula \( C \) a (4.47) ve donat per:

\[ \det(C) = -(\psi_a^2 + \psi_b^2) \] (4.48)

De (4.48), podem observar que el determinant de la matrícula \( C \) és igual a zero únicament quan \( \psi_a = \psi_b = 0 \). És a dir, el controlador de (4.46) no està previst per a \( \psi_a = \psi_b = 0 \). Aquesta singularitat del flux del rotor es presenta en condicions inicials zero, quan el motor arrenca, perquè és precisament en aquest punt de treball quan el flux del rotor és igual a zero. De fet, és aquesta singularitat del flux el rotor la que motiva a dissenyar la magnitud desitjada de flux (es a dir, \( \eta_\psi(t) \)) com a una funció escalar positiva. D’aquesta manera, si l’error de seguiment del flux del rotor definit a \([4.17] \Rightarrow \eta_\psi = \psi_d - \frac{1}{2} (\psi_a^2 + \psi_b^2) \]
és “petit” i \( \psi_d(t) \) és “gran”, podem estar segurs que la condició d’operació \( \psi_a = \psi_b = 0 \) és sempre evitable. No obstant, és obvi que en l’arrencada del motor, podem utilitzar expressament algun mètode per a assegurar que la singularitat del flux del rotor sigui evitada.

Les dinàmiques donades per: (4.27), (4.35), (4.37) i (4.45):

\[
\begin{align*}
Mr &= -kr + \eta_r \left< 4.27 \\
L_i \dot{\eta}_i &= -k_i \eta_i - r \left< 4.35 \\
L_r \dot{\eta}_r &= -k_r \eta_r + \eta_i \left< 4.37 \\
L_t \dot{\eta}_t &= -k_t \eta_t - \eta_r \left< 4.45
\end{align*}
\]

representen el sistema electromecànic en llaç tancat, mentre el model exacte conegut dels controladors les donen les dinàmiques:

\[
\begin{align*}
\tau_d &= W_r \theta_r + kr \left< 4.26 \\
\tau_f &= Y_r \theta_r + k_r \eta_r \left< 4.36 \\
\psi_a V_b - \psi_b V_a &= w_a + k_i \eta_i + r \left< 4.34 \\
\psi_a V_a + \psi_b V_b &= w_b + k_i \eta_i + \eta_a \left< 4.44 \\
\begin{bmatrix} V_a \\ V_b \end{bmatrix} &= C^{-1} \begin{bmatrix} w_a + k_i \eta_i + r \\ w_b + k_i \eta_i + \eta_a \end{bmatrix} \left< 4.46
\end{align*}
\]

les quals representen les entrades de control que han estat implementades als terminals de voltatge del motor. Comentar que el senyal del parell desitjat \( \tau_f(t) \) i el controlador de flux fictici \( u_f(t) \) estan inclosos (en la forma de les variables \( \eta_i(t) \) i \( \eta_f(t) \)) dins de les entrades de control de voltatge \( V_a(t) \) i \( V_b(t) \).

Un cop explicada la deducció de la llei de control, en el següent apartat passem a mostrar les simulacions realitzades.

A continuació mostrem els blocs corresponents a les dinàmiques mencionades, els quals han servir per tal de simular-ho.
4.5 Simulació d’un Control Backstepping del Motor d’Inducció

4.5.1 Introducció

Per tal de simular el motor i el control dissenyat, el software de simulació emprat ha estat el programa Matlab amb l’editor Simulink. Com venim fent en els capítols anteriors, mitjançant els blocs de codi predefinit s’han implementat les equacions del control en l’espai del Simulink, introduint les equacions del motor i del control descrit, d’acord amb una trajectòria desitjada, obtenim els valors de tensió d’entrada en bornes del motor per tal de que l’error de seguiment de la posició sigui mínim, tal i com veurem a continuació en el apartat l’apartat 4.5.3 on es descriuen els subsistemes dinàmics.

Els paràmetres que utilitzem en la simulació corresponen a un motor d’inducció Baldor model M3541 de dos pols, velocitat nominal de 3450 rpm, i voltagge d’entrada de 230V. Mitjançant les característiques tècniques subministrades pel fabricant s’obtenen tots els valors de les constants del motor, les quals implementarem en les equacions de la simulació.

El motor té l’eix del rotor connectat a un una barra metàl·lica o braç, a mode d’un robot d’un enllaç únic, i al final del braç porta una càrrega puntual esfèrica (càrrega \( m_0 \)). Amb tot, els paràmetres \( M \) i \( N \) poden ser expressats com:

\[
M = \frac{J}{\alpha_2} + \frac{mL_0^2}{3\alpha_2}, \\
N = \frac{mGL_0}{2\alpha_2}, \\
B = \frac{B_0}{\alpha_2}
\]

on \( J \) és la inèrcia del rotor, \( m \) és la càrrega del punt, \( L_0 \) és la longitud del braç, \( B_0 \) és el coeficient de fricció viscossa mutu, i \( G \) és el coeficient de gravetat.

Els valors dels paràmetres del sistema electromecànico descrits a les equacions (4.1), (4.2), (4.3), (4.4) i (4.5) són:

\[
R_r = 3.05\Omega, \quad R_c = 2.12\Omega, \quad L_z = 0.243H, \\
L_r = 0.306H, \quad M_c = 0.225H, \quad J = 2.1\times10^{-4}Kg - m^2, \\
n_p = 1, \quad L_0 = 0.305m, \quad m = 0.401Kg \\
B_0 = 0.015Nm - sec/ rad, \quad G = 9.81Kg - m / s^2
\]

La trajectòria desitjada de la posició de la càrrega segueix l’equació:
\[ q_d = \frac{\pi}{2} \sin(5t)(1 - e^{-0.1t^2}) \text{ rad} \quad (4.50) \]

la qual acompleix la propietat desitjada \( q_d(0) = \dot{q}_d(0) = \ddot{q}_d(0) = \dddot{q}_d(0) = 0 \). La trajectòria desitjada de la posició està representada a la figura 4.16 en l’apartat 4.5.3 Simulink del Matlab.

La trajectòria desitjada de la magnitud ve representada per l’expressió:

\[ \psi_d = 2(1 - e^{-\xi^2}) + 1 \text{ Wb} \cdot \text{Wb} \quad (4.51) \]

i ve representada a la figura 4.27 en l’apartat 4.5.3 Simulink del MatLab.

Un cop descrits els paràmetres del motor, generem els diferents fitxers del Matlab.
4.5.2 Editor de Matlab

Per tal de facilitar l’anàlisi i execució de les diferents simulacions, s’ha creat l’arxiu `constants_mi.m` a l’editor del Matlab, en el qual s’hi relacionen tots els valors dels paràmetres constants, de les equacions de la dinàmica electromecànica del motor de Inducció, així com l’expressió de la trajectòria desitjada de la càrrega i del valor del flux desitjat. D’aquesta forma ens és molt còmode afegir, treure o modificar paràmetres per a les diferents proves de simulació.

En la següent figura podem observar l’arxiu editat `constants_mi.m`:

```matlab
% Paràmetres Electromecànics del motor PM3
Rs=3.05 % Resistencia de l'Estator
Pr=2.12 % Resistencia del Rotor
Lo=0.243 % Inductancia de l'Estator
Lr=0.306 % Inductancia del Rotor
Me=0.225 % Inductancia Mutua
np=1 % Número de Polels de l'Estator
J=2.1e-4 % Inercia del Rotor
Ld=0.305 % Longitud del Barç
m=0.401 % Massa de la Càrrega
D0=0.015 % Coeficient de Friccio Viscosa Mutu
G=9.81 % Coeficient de Gravetat

% Constants Positives del Sistema Electric
Ld=Ls-(Me^2/Lc)
K1=Pr*Me
R1=(Me^2*Pr+Lu^2*Rs)/Lr^2
a1=(Me*Pr/Lr)^2
a2=np*Me/Lr
a3=np*Lr

% Efetges del coef. de perell constant. Conversio perell-corrent
N=(J/a2)+(a*L0^2/2*a2)
N=a*G*10^2/2*a2
B=E0/a2

k1=20 % Control de Guany
k2=20 % Control de guany
k3=20 % Control de guany
k4=20 % Control de guany
a=60 % Control de guany

% Trajectoria desitjada de la carrega
temp=0:0.001:10;
qu=1/2*(1-exp(-0.1*temps).*temps.*temps).*temps.*temps).*sin(5*temps); % Equació de Flux Desitjat
tempsl=0:0.001:10;
f1d=2*(1-exp(-tempsl.*tempsl))+1;
```

Figura 4.2. Editor del Matlab, Arxiu: constants_mi.m
Per comprovar el funcionament del control es crea també l’arxiu `fig_mi.m`. Amb aquest arxiu cridarem a dibuix els gràfics dels paràmetres i variables del control que hi hàgim editat, el que ens permetrà observar el comportament de totes les variables de control desitjades, d’una manera ràpida i pràctica.

En la següent figura podem observar l’arxiu `fig_mi.m` editat:

```matlab
figure
plot(tempsw,ru,'k1')
xlabel('temps(s)')
ylabel('r')

figure
plot(tempsw,qw,'k1')
xlabel('temps(s)')
ylabel('q(*)')

figure
plot(tempsw,qdw,'k1')
xlabel('temps(s)')
ylabel('qd')

figure
plot(tempsw,qdw,'k1',tempsw,qdw,'b')
xlabel('temps(s)')
ylabel('verd q(*)',blue qd(*))

figure
plot(tempsw,qdw-qw,'b')
xlabel('temps(s)')
ylabel('Error(deg)')

figure
plot(tempsw,vaw,'k1')
xlabel('temps(s)')
ylabel('Vb (V)')
```

**Figura 4.3. Editor del Matlab, Arxiu: fig_mi.m**

Durant el desglossament dels diferents subsistemes de control del Simulink, anirem afegint per a cada cas les figures de les gràfiques de les variables d’interès.

Una vegada generats els fitxers, passarem al Simulink a implementar el control.
4.5.3 Simulink de Matlab

En el Simulink del Matlab, implementarem les equacions matemàtiques resultants de l’anàlisi del control. Agrupant-ho en diferents subsistemes aconseguim que sigui manejable i interpretable. En una primera pantalla veiem tota la realimentació del control de seguiment de posició, formada per tots els diferents subsistemes que formen l’anàlisi:

La figura anterior, figura 4.4, es tornarà a mostrar a plana sencera, com a figura 4.4.bis.

Seguidament es mostra desglossat el conjunt del control de la figura, mostrant subsistema a subsistema els blocs que constitueixen el llac de control. Per a cada subsistema s’enumberen en forma de taula les equacions que hi intervenen, i les variables d’entrada i de sortida.

La descripció dels blocs dels subsistemes que formen el control, està ordenada seguint el guió del desenvolupament matemàtic del controlador. Tal i com s’ha desenvolupat en els apartats anteriors d’aquest capítol. Juntament amb cada subsistema es mostren els gràfics de les variables i paràmeters que tenen interess en el control.
A continuació indiquem el nom dels blocs dels subsistemes que s’han constituït per a simular el llaç de control:

- Model del Sistema Electromecànic del Motor d’Inducció.
- Posició Desitjada de la Càrrega.
- Part Dreta de l’Equació de Control de Voltatge d’Entrada $\psi_a V_b - \psi_b V_a = w_a + k_i \eta_r + r$.
- Filtre de Seguiment de l’Error de Seguiment de Posició $r(t)$.
- Variable Auxiliar $w_a (q, \dot{q}, I_a, I_b, \psi_a, \psi_b, t)$.
- Seguiment de l’Error de Parell.
- Producte de la Matriu $W_r (q, \dot{q}, t) \in \mathbb{R}^{1 \times 3}$ Vector $\Theta_r \in \mathbb{R}^{1 \times 3}$.
- Magnitud de Flux Desitjada.
- Part Dreta de l’Equació de Control de Voltatge d’Entrada $\psi_a V_a + \psi_b V_b = w_b + k_i \eta_l + \eta_r$.
- Seguiment de l’Error de Flux $\eta_r(t)$.
- Variable Auxiliar $w_b (\dot{q}, I_a, I_b, \psi_a, \psi_b, t)$.
- Producte de la Matriu $Y_r (\psi_a, \psi_b, t) \in \mathbb{R}^{1 \times 2}$ Vector $\Theta_r = \begin{bmatrix} I_r & R_r \end{bmatrix}^T$.
- Variable Auxiliar de Seguiment de Flux $\eta_l(t)$.
- Voltatge Transformat $V_a(t)$ de Control d’Entrada al Motor.
- Determinant de $C$.
- Voltatge Transformat $V_b(t)$ de Control d’Entrada al Motor.

Començarem doncs amb el Subsistema que constitueix el càlcul del model electromecànic del motor d’inducció.
Figura 4.4_bis. Controlador de Seguiment de Posició en Llaç Tancat del Motor de Inducció
Model del Sistema Electromecànic del Motor d’InduCCIó

Comencem creant el bloc del subsistema d’equacions de la dinàmica del model sense incertesa paramètrica del motor d’induCCIó:

**Figura 4.5. Subsistema d’Equacions del Motor de InduCCIó**

### Taula 4.1. Equacions del Subsistema del Motor de InduCCIó

<table>
<thead>
<tr>
<th>Equacions</th>
<th>Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M \ddot{q} + B \dot{q} + N \sin(q) = \psi_a I_b - \psi_b I_a$</td>
<td>(5.1)</td>
</tr>
<tr>
<td>$L_i \dot{I}_a = -R_i I_a + \alpha_1 \dot{\psi}_a + \alpha_2 \dot{\psi}_b + \dot{V}_a$</td>
<td>(5.2)</td>
</tr>
<tr>
<td>$L_i \dot{I}_b = -R_i I_b + \dot{\psi}_a - \alpha_2 \dot{\psi}_a + \dot{V}_b$</td>
<td>(5.3)</td>
</tr>
<tr>
<td>$L_i \dot{\psi}_a = -R_i \dot{\psi}_a - \alpha_3 \dot{q} \psi_b + K_i I_a$</td>
<td>(5.4)</td>
</tr>
<tr>
<td>$L_i \dot{\psi}_b = -R_i \dot{\psi}_b + \alpha_3 \dot{q} \psi_a + K_i I_b$</td>
<td>(5.5)</td>
</tr>
</tbody>
</table>
L’anterior subsistema correspon a les equacions del model sense incertesa del motor d’inducció acoblat a una càrrega, segons la figura ja coneguda, \( \text{figura 4.1} \):

\[
\begin{align*}
\Psi_a & \quad R_i \quad L_i \\
K_i I_i & \quad \alpha_2 \Psi_b \dot{q} \\
I_b & \quad R_i \quad L_i \quad \alpha_1 \Psi_a \\
V & \quad -\alpha_2 \Psi_b \dot{q} \\
I_a & \quad R_i \quad L_i \quad \alpha_1 \Psi_b \\
V & \quad \alpha_2 \Psi_a \dot{q} \\
\Psi_b & \quad R_i \quad L_i \\
K_i I_i & \quad -\alpha_3 \Psi_a \dot{q}
\end{align*}
\]

\( \text{Figura 4.1.bis. Diagrama Esquemàtic del Sistema Motor / Càrrega de Inducció.} \)
A continuació mostrem el desenvolupament del Subsistema de càlcul del model del Motor de Inducció:

**Figura 4.6. Desenvolupament del Subsistema d’Equacions del Motor de Inducció**

Observem en les figures següents les variables d’entrada i sortida al subsistema. Les entrades de voltatges transformatos a bornes de l’estator del motor, la posició i la velocitat reals de la càrrega, els corrents transformatos d’entrada al motor, i els fluxos transformatos. *Figures 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13 i 4.14*, respectivament.
Variables d’Entrada al Sistema Electromecànic del Motor d’Inducció, \( v_a(t) \) i \( v_b(t) \):

Gràfic de les tensions d’entrada a bornes de l’estator del motor \( v_a(t) \) i \( v_b(t) \):

Figura 4.7. Voltatge Transformat d’Entrada \( v_a(t) \) a l’Estator del Motor de Inducció

Figura 4.8. Voltatge Transformat d’Entrada \( v_b(t) \) a l’Estator del Motor de Inducció

Variables de Sortida del Sistema Electromecànic del Motor d’Inducció, \( q(t) \), \( \dot{q}(t) \), \( I_a(t) \), \( I_b(t) \), \( \psi_a(t) \) i \( \psi_b(t) \):
Gràfic de la posició de la càrrega en graus, \( q(t) \):

Figura 4.9. Posició de la Càrrega Acoblada

Gràfic de la velocitat angular de la càrrega en \( rad/s \) \( \dot{q}(t) \):

Figura 4.10. Velocitat de la Càrrega Acoblada
Gràfic dels corrents transformat de l’estator del motor de Inducció, $I_a(t)$ i $I_b(t)$:

**Figura 4.11.** Corrent Transformat $I_a(t)$ a l’Estator del Motor de Inducció

**Figura 4.12.** Corrent Transformat $I_b(t)$ a l’Estador del Motor de Inducció
Gràfics dels fluxos transformat del rotor motor de Inducció, $\psi_a(t)$ i $\psi_b(t)$:

**Figura 4.13.** Flux Transformat $\psi_a(t)$ al Rotor del Motor de Inducció

**Figura 4.14.** Flux Transformat $\psi_b(t)$ al Rotor del Motor de Inducció
Posició Desitjada de la Càrrega

Com el disseny del controlador requereix els senyals de consigna, en el següent subsistema introduïm l’equació de la posició desitjada de la trajectòria a seguir per la càrrega, \( q_d(t) \), i la seva primera, segona i tercera derivada; o sigui, la velocitat \( \dot{q}_d(t) \), l’acceleració \( \ddot{q}_d(t) \), i la derivada de l’acceleració, \( \dddot{q}_d(t) \), en el control:

\[
q''(t), q' (t), q(t)
\]

**Figura 4.15. Subsistema de la Posició Desitjada de la Trajectòria de la Càrrega**

<table>
<thead>
<tr>
<th>Variables d’Entrada</th>
<th>( q_d(t) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables Sortida</td>
<td>( q_d(t), \dot{q}_d(t), \ddot{q}_d(t) ) i ( \dddot{q}_d(t) )</td>
</tr>
<tr>
<td>Equacions</td>
<td>( q_d = \frac{\pi}{2} \sin(5t)(1 - e^{-0.1t}) ) (4.50)</td>
</tr>
</tbody>
</table>

**Taula 4.2. Equacions del Subsistema de la Posició Desitjada de la Trajectòria de la Càrrega**

A continuació observar gràficament les variables d’entraida i sortida al subsistema. La posició desitjada de la trajectòria de la càrrega, i la velocitat desitjada de la càrrega, en les figures 4.16 i 4.17:
Variable d’Entrada al Subsistema de la Posició Desitjada de la Càrrega:

Gràfic de la posició desitjada de la càrrega, en graus, \( q_d(t) \):

![Figura 4.16. Posició Desitjada de la Càrrega Acoblada](image)

Variable de Sortida del Subsistema de la Posició Desitjada de la Càrrega:

Gràfic de la velocitat angular desitjada de la càrrega en rad/s, \( \dot{q}_d(t) \):

![Figura 4.17. Velocitat Desitjada de la Càrrega](image)
Part Dreta de l’Equació de Control de Voltatge d’Entrada

\[ \psi_a V_b - \psi_b V_a = w_a + k_i \eta_e + r \]

Aquest subsistema calcula la \( w_a + k_i \eta_e + r \), part dreta de l’equació (4.34), que a la vegada està format per d’altres subsistemes en els quals s’hi calcula, la variable auxiliar escalar \( w_a(t) \), l’error de seguiment de parell \( \eta_e(t) \), i el filtre de l’error de seguiment de posició de la trajectòria desitjada de la càrrega \( r(t) \):

\[ \begin{align*}
q &= q(t) \\
q' &= q'(t) \\
q'' &= q''(t) \\
q''' &= q'''(t) \\
q'''' &= q''''(t) \\
q''''' &= q'''''(t) \\
q'''''' &= q''''''(t) \\
q''''''' &= q'''''''(t) \\
q'''''''' &= q''''''''(t) \\
q''''''' &= q'''''''(t) \\
q'''''' &= q''''''(t) \\
q'''' &= q''''(t) \\
q''' &= q'''(t) \\
q'' &= q''(t) \\
q' &= q'(t) \\
q &= q(t) \\
q' &= q'(t) \\
q'' &= q''(t) \\
q''' &= q'''(t) \\
q'''' &= q''''(t) \\
q''' &= q'''(t) \\
q'' &= q''(t) \\
q &= q(t) \\
\eta_e &= \eta_e(t) \\
r &= r(t)
\end{align*} \]

**Figura 4.18. Subsistema de Càlcul de \( w_a + k_i \eta_e + r \)**

**Subsistema de Càlcul de la Part Dreta de l’Equació (4.34)**

<table>
<thead>
<tr>
<th>Variables d’Entrada</th>
<th>( q_a(t) ), ( \dot{q}_a(t) ), ( \ddot{q}_a(t) ), ( \dddot{q}_a(t) ), ( q(t) ), ( \dot{q}(t) ), ( I_a(t) ), ( I_b(t) ), ( \psi_a(t) ) i ( \psi_b(t) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables Sortida</td>
<td>( w_a + k_i \eta_e + r )</td>
</tr>
<tr>
<td>Equacions</td>
<td>( r = \dot{\dot{e}} + \alpha e )</td>
</tr>
</tbody>
</table>
\[ w_a = L_1(M(\ddot{q}_d + \alpha \dot{q}_d) + N\dot{q}\cos(q) + k_i(\ddot{q}_d + \alpha \dot{q} + \alpha \dot{q})) \]
\[ + L_i(B-M\alpha - k_i)(-\frac{B}{M}\dot{q} - \frac{N}{M}\sin(q) + \frac{1}{M}(\psi_a I_b - \psi_b I_a)) \]
\[ - L_iL_e^{-1}I_b(-R_1\psi_a - \alpha_2\dot{q}\psi_a) + L_iL_e^{-1}I_a(-R_1\psi_a + \alpha_3\dot{q}\psi_a) \]
\[ - \psi_a(-R_1I_b - \alpha_2\dot{q}\dot{q}) + \psi_b(-R_1I_a + \alpha_3\dot{q}\dot{q}) \]
\]
\[ \eta_e = \tau_d - (\psi_a I_b - \psi_b I_a) \]
\[ \psi_a V_b - \psi_b V_a = w_a + k_i \eta_e + r \]

**Taula 4.3. Equacions del Subsistema de Càlcul de \( w_a + k_i \eta_e + r \)**

A continuació, en la figura 4.19 de la pàgina següent es mostra el desenvolupament del subsistema que inclou els subsistemes de les variables per al càlcul de \( w_a + k_i \eta_e + r \):
Seguidament descriurem els subsistemes que formen el subsistema de càlcul de \( w_a + k_1 \eta_e + r \), part dreta de l’equació (4.34), segons l’ordre del dibuix, de d’alt a baix són:

El fílter de l’error de seguiment de posició de la trajectòria desitjada de la càrrega \( r(t) \), la variable auxiliar escalars \( w_a(t) \), i l’error de seguiment de parell \( \eta_e(t) \).
**Filtre de Seguiment de l’Error de Posició \( r(t) \)**

El present és el subsistema de càlcul del filtre de l’error de seguiment de posició \( r(t) \), que forma part de la part dreta de l’equació de control de voltatge d’entra\( \psi V_b - \psi V_a = w_a + k_i \eta + r \), (4.34):

\[
\eta = q \psi
\]

**Figura 4.20.** Subsistema del Filtre de Seguiment de l’Error de Posició \( r(t) \)

<table>
<thead>
<tr>
<th>Variables d’Entrada</th>
<th>( q(t) , \dot{q}(t) , q_d(t) ) i ( \dot{q}_d(t) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables Sortida</td>
<td>( r(t) )</td>
</tr>
<tr>
<td>Equacions</td>
<td>( e = q_d - q ) i la seva derivada: ( \dot{e} = \dot{q}_d - \dot{q} ) ( (4.6) )</td>
</tr>
<tr>
<td></td>
<td>( r = \dot{e} + \alpha e ) ( (4.7) )</td>
</tr>
</tbody>
</table>

**Taula 4.4. Equacions del Subsistema del Filtre de Seguiment de l’Error de Posició \( r(t) \)**

Observar, que per al càlcul del filtre de l’error de seguiment \( r(t) \), no s’ha derivat en cap moment l’error de seguiment de posició \( e(t) \), això es degut a que si ho haguéssim fet amplificaríem els valors del mateix, lo que faria menys precis el control i per lo tant el seu objectiu.
Ometí’m la representació de les variables d’entrada al subsistema donat que ja foren mostrades en subsistemes anteriors.

**Variable de Sortida del Subsistema del Filtre de Seguiment de l’Error de Posició:**

A continuació es mostra el gràfic del filtre de l’error de seguiment de la posició de la trajectòria desitjada de la càrrega, $r(t)$:

![Gràfic del filtre de seguiment de l’error de posició](image)

*Figura 4.21. Filtre de Seguiment de l’Error de Posició $r(t)$*
**Variable Auxiliar** \( w_a(q, \dot{q}, I_a, I_b, \psi_a, \psi_b, t) \)

A continuació el subsistema de càlcul de l’equació de la variable auxiliar escalar \( w_a(q, \dot{q}, I_a, I_b, \psi_a, \psi_b, t) \), que forma part de la part dreta de l’equació de control de voltatge d’entrada \( \psi_a V_b - \psi_b V_a = w_a + k_i \eta_r + r \), (4.34):

\[
\begin{align*}
q^* &= q(t) \\
\ddot{q} &= \ddot{q}(t) \\
\dddot{q} &= \dddot{q}(t) \\
\dot{q} &= \dot{q}(t) \\
q &= q(t) \\
I_a(t) &= I_a(t) \\
I_b(t) &= I_b(t) \\
\psi_a(t) &= \psi_a(t) \\
\psi_b(t) &= \psi_b(t)
\end{align*}
\]

**Figura 4.22. Subsistema de Càlcul de \( w_a(q, \dot{q}, I_a, I_b, \psi_a, \psi_b, t) \)**

<table>
<thead>
<tr>
<th><strong>Subsistema de l’Equació de la Variable Auxiliar Escalar</strong> ( w_a(q, \dot{q}, I_a, I_b, \psi_a, \psi_b, t) )</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Variables d’Entrada</strong></td>
</tr>
<tr>
<td><strong>Variables Sortida</strong></td>
</tr>
</tbody>
</table>
| **Equacions** | \[
\begin{align*}
\dot{w}_a &= L_i (\dddot{q}_d + \alpha \dddot{q}_d) + N \dddot{q} \cos(q) + k_v (\dddot{q}_d + \alpha \dddot{q}) \\
&+ L_i (B - M \alpha - k_v) (-B \dot{q} - \frac{N}{M} \sin(q) + \frac{1}{M} (\psi_a I_b - \psi_b I_a)) \\
&- L_i L_r^{-1} I_b (-R \psi_a - \alpha \dddot{q} \psi_b) + L_i L_r^{-1} I_a (-R \psi_b + \alpha \dddot{q} \psi_a) \\
&- \psi_a (-R \dot{I}_b - \alpha \dddot{q} \dot{q}) + \psi_b (-R \dot{I}_a + \alpha \dddot{q} \dot{q}) \\
\end{align*}
\] |

**Taula 4.5. Equacions del Subsistema de Càlcul de \( w_a(q, \dot{q}, I_a, I_b, \psi_a, \psi_b, t) \)**
Desenvolupament del subsistema de càlcul de l’equació de la variable auxiliar escalar \( w_a(q, \dot{q}, I_a, I_b, \psi_a, \psi_b, t) \): 

\[ w_a(q, \dot{q}, I_a, I_b, \psi_a, \psi_b, t) \]

Figura 4.23. Desenvolupament del Subsistema de Càlcul de \( w_a(q, \dot{q}, I_a, I_b, \psi_a, \psi_b, t) \)

Per a acabar la descripció del subsistema de càlcul de \( w_a + k \eta_r + r \), part dreta de l’equació (4.34), a continuació descrivим l’últim que ens manca, l’error de seguiment de parell \( \eta_r(t) \).
Seguiment de l’Error de Parell

El present subsistema calcula l’equació del seguiment de l’error de parell, \( \eta_r(t) \), que forma part de la part dreta de l’equació de control de voltatge d’entra\( \psi_a V_b - \psi_b V_a = w_a + k_\eta \eta_r + r \), (4.34):

\[
\eta_r = \tau_d - (\psi_a I_b - \psi_b I_a)
\]

(4.14)

\[
\tau_d = W_r \theta_r + k_\tau r
\]

(4.26)

\[
r = \dot{\theta} + \alpha \epsilon
\]

(4.7)

\[
W_r = [\dot{\eta}_d + \alpha \epsilon \dot{\theta} \sin(q)]
\]

(4.11)

\[
\theta_r = [M \ B \ N]^T
\]

(4.12)

\textbf{Figura 4.24. Subsistema de Càlcul del Seguiment de l’Error de Parell}

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{Variables d’Entrada} & \( q_d(t), \dot{q}_d(t), \ddot{q}_d(t), q(t), \dot{q}(t), I_a(t), I_b(t), \psi_a(t) \) i \( \psi_b(t) \) \\
\hline
\textbf{Variables Sortida} & \( \eta_r(t) \) \\
\hline
\textbf{Equacions} & \\
\hline
\( \eta_r = \tau_d - (\psi_a I_b - \psi_b I_a) \) & \( (4.14) \) \\
\hline
\( \tau_d = W_r \theta_r + k_\tau r \) & \( (4.26) \) \\
\hline
\( r = \dot{\theta} + \alpha \epsilon \) & \( (4.7) \) \\
\hline
\( W_r = [\dot{\eta}_d + \alpha \epsilon \dot{\theta} \sin(q)] \) & \( (4.11) \) \\
\hline
\( \theta_r = [M \ B \ N]^T \) & \( (4.12) \) \\
\hline
\end{tabular}
\caption{Taula 4.6. Equacions del Subsistema de Càlcul del Seguiment de l’Error de Parell}
\end{table}
La figura següent és el desenvolupament del subsistema de càlcul de l’equació del seguiment de l’error de parell, $\eta_c(t)$:

![Diagrama de l’equació del seguiment de l’error de parell](image)

**Figura 4.25. Desenvolupament del Subsistema de Càlcul del Seguiment de l’Error de Parell**

En la pàgina següent veiem el gràfic de la figura 4.26, que correspon a l’error de seguiment de parell $\eta_c(t)$:
A l’igual que per al filtre de seguiment de l’error de posició, ometí’m la representació de les variables d’entrada al subsistema donat que ja foren mostrades en subsistemes anteriors.

**Variable de Sortida del Subsistema del Seguiment de l’ Error de Parell:**

Gràfic de l’error de seguiment de parell $\eta_r(t)$, en $kg \frac{m}{s^2}$:

![Error de Seguiment de Parell](image)

**Figura 4.26. Error de Seguiment de Parell $\eta_r(t)$**

Donat que el subsistema de càlcul del seguiment de l’error de parell, inclou dos subsistemes: $W_r \theta_r$ i el filtre de seguiment de l’error de posició $r(t)$; a continuació desenvoluparem el subsistema de càlcul de $W_r \theta_r$, mentre que $r$ ja l’hem desenvolupat anteriorment.
**Producte de la Matrícula** $W_r(q, \dot{q}, t) \in \mathbb{R}^{3 \times 3}$  **Vector** $\theta_z \in \mathbb{R}^{1 \times 3}$

El següent subsistema calcula el producte de les equacions (4.11) i (4.12), producte de la matrícula de regressió $W_r(q, \dot{q}, t) \in \mathbb{R}^{3 \times 3}$ i el vector de paràmetres $\theta_z \in \mathbb{R}^{1 \times 3}$, respectivament. Aquest forma part del seguiment de l’error de parell $\eta_z(t)$, i a la vegada de la part dreta de l’equació de control de voltatge d’entrada $\psi_a V_b - \psi_b V_a = w_a + k_i \eta_z + r$, (4.34):

**Figura 4.27. Subsistema de Càlcul de $W_r \cdot \theta_z$**

<table>
<thead>
<tr>
<th><strong>Subsistema del Producte</strong> $W_r \cdot \theta_z$</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Variables d’Entrada</strong></td>
</tr>
<tr>
<td><strong>Variables Sortida</strong></td>
</tr>
<tr>
<td><strong>Equacions</strong></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

**Taula 4.7. Equacions del Subsistema de Càlcul de $W_r \cdot \theta_z$**

Finalitzat el desenvolupament dels subsistemes de càlcul de $w_a + k_i \eta_z + r$, part dreta de l’equació de control de voltatge d’entrada $V_a$, (4.34), continuem la descripció de la construcció del llac de control:
Magnitud de Flux Desitjada

L’altre senyal de consigna que s’ha d’introduir al control és la magnitud de flux desitjada, \( \psi_d(t) \). El següent subsistema introdueix el senyal de la magnitud de flux desitjada, \( \psi_d(t) \), magnitud dissenyada per a forçar als fluxos a seguir uns valors afitats, la seva primera i segona derivada, \( \dot{\psi}_d(t) \) i \( \ddot{\psi}_d(t) \), respectivament.

**Figura 4.28. Subsistema de la Magnitud de Flux Desitjada**

<table>
<thead>
<tr>
<th>Subsistema motor PMS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Variables d’entrada</strong></td>
</tr>
<tr>
<td><strong>Variables Sortida</strong></td>
</tr>
<tr>
<td><strong>Equacions</strong></td>
</tr>
</tbody>
</table>

**Taula 4.8. Equacions del Subsistema de la Magnitud de Flux Desitjat**

A continuació en la figura 4.29, el gràfic de la magnitud de flux desitjat.
Variable d’Entrada i Sortida al Subsistema de la Magnitud de Flux Desitjat:

Gràfic de la trajectòria de la magnitud de flux desitjat $\psi_d(t)$:

**Figura 4.29. Trajectòria de Flux Desitjat**
Part Dreta d’Equació de Control de Voltatge d’Entrada

Aquest subsistema calcula \( w_b + k_3 \eta_f + \eta_{\phi} \), part dreta de l’equació (4.44), que a la vegada està format per d’altres subsistemes en els quals s’hi calcula, la variable auxiliar escalar \( w_b(t) \), l’error de seguiment de flux \( \eta_{\phi}(t) \), i la variable auxiliar de seguiment de flux \( \eta_f(t) \):

\[
\psi_a V_a + \psi_b V_b = w_b + k_3 \eta_f + \eta_{\phi} \tag{4.44}
\]

**Figura 4.30.** Subsistema de Càlcul de \( w_b + k_3 \eta_f + \eta_{\phi} \)

<table>
<thead>
<tr>
<th>Subsistema de Càlcul de la Part Dreta de l’Equació (4.44)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Variables d’Entrada</strong></td>
</tr>
<tr>
<td><strong>Variables Sortida</strong></td>
</tr>
<tr>
<td><strong>Equacions</strong></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
\[ w_b = \overline{L}_r L_r \dot{\psi}_a + L_r^{-1} (2L_r \overline{R} \psi_a - L_r I_a) (-R_i \psi_a - \alpha_s \dot{\psi}_b + K_i I_a) \\
+ k_2 L_t L_r^{-1} (\psi_a \theta - (\psi_a I_a + \psi_b I_b)) \\
+ L_r^{-1} (2L_r \overline{R} \psi_b - L_r I_b) (-R_i \psi_b + \alpha_s \dot{\psi}_a + K_i I_b) \\
- \psi_a (-R_i I_a + \alpha_s \psi_a) - \psi_b (-R_i I_b + \alpha_s \psi_b) \] 

(4.43)

\[ \eta_1 = u_1 - (\psi_a I_a + \psi_b I_b) \] 

(4.23)

**Taula 4.9. Equacions del Subsistema de Càlcul de** \( w_b + k_3 \eta_1 + \eta_\psi \)

A continuació, en la figura 4.20 de la pàgina següent es mostra el desenvolupament del subsistema que inclou els subsistemes de les variables per al càlcul de \( w_b + k_i \eta_1 + r \).
Ometí'm la representació de les variables d’entrada al subsistema donat que ja foren mostrades en subsistemes anteriors.

A continuació, de la figura 4.31, de dalt a baix anirem desenvolupant els subsistemes que formen el subsistema de càlcul de \( w_h + k_3 \eta_l + \eta_\nu \), part dreta de l’equació (4.44):

L’error de seguiment de flux \( \eta_\nu (t) \), la variable auxiliar escalar \( w_h (t) \), i la variable auxiliar de seguiment de flux \( \eta_l (t) \).
Seguiment de l’Error de Flux $\eta_\psi(t)$

El present subsistema calcula l’error de seguiment de flux $\eta_\psi(t)$, que forma part de la part dreta de l’equació de control de voltatge d’entrada $\psi_aV_a + \psi_bV_b = w_b + k_l\eta_l + \eta_\psi$, (4.17):

![Diagrama de flux](image.png)

**Figura 4.32. Subsistema de Càlcul de l’Error de Seguiment de Flux**

<table>
<thead>
<tr>
<th>Variables d’Entrada</th>
<th>$\psi_a(t)$, $\psi_a(t)$ i $\psi_b(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables Sortida</td>
<td>$\eta_\psi(t)$</td>
</tr>
<tr>
<td>Equacions</td>
<td>$\psi_t = 2(1-e^{-t}) + 1$</td>
</tr>
<tr>
<td></td>
<td>$\eta_\psi = \psi_t - \frac{1}{2}(\psi_a^2 + \psi_b^2)$</td>
</tr>
</tbody>
</table>

**Taula 4.10. Equacions del Subsistema de Càlcul de l’Error de Seguiment de Flux**

A continuació es mostra el gràfic de l’error de seguiment de flux, $\eta_\psi(t)$:

Ometi’m la representació de les variables d’entrada al subsistema donat que ja foren mostrades en subsistemes anteriors.
Variable de Sortida del Subsistema del Seguiment de l’Error de Flux:

Gràfic de l’error de seguiment de flux, $\eta_\psi(t)$, en $\text{Wb} \cdot \text{Wb}$:

*Figura 4.33. Error de Seguiment de Flux $\eta_\psi(t)$*
Variable Auxiliar \( w_b(\dot{q}, I_a, I_b, \psi_a, \psi_b, t) \)

A continuació el subsistema de càlcul de l’equació de la variable auxiliar escalar \( w_b(\dot{q}, I_a, I_b, \psi_a, \psi_b, t) \), que forma part de la part dreta de l’equació de control de voltatge d’entrada \( \psi_v V_a + \psi_b V_b = w_b + k_3 \eta_I + \eta_v \), (4.17):

\[
\begin{align*}
\psi_v V_a + \psi_b V_b &= w_b + k_3 \eta_I + \eta_v, \\
(4.17)
\end{align*}
\]

**Figura 4.34. Subsistema de la Variable Auxiliar \( w_b(\dot{q}, I_a, I_b, \psi_a, \psi_b, t) \)**

<table>
<thead>
<tr>
<th>Subsistema de l’Equació de la Variable Auxiliar Escalar ( w_b(\dot{q}, I_a, I_b, \psi_a, \psi_b, t) )</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Variables d’Entrada</strong></td>
</tr>
<tr>
<td><strong>Variables Sortida</strong></td>
</tr>
<tr>
<td><strong>Equacions</strong></td>
</tr>
<tr>
<td>( w_b = L_2 \ddot{\psi}_d + L_3^{-1} (2L_1 \bar{R}_a \psi_a - L_1 I_a) (-R \psi_a - \alpha_5 \dot{q} \psi_b + K_1 I_a) )</td>
</tr>
<tr>
<td>+ ( k_2 L_1 \bar{L}_3^{-1} (Y_v \psi_v - (\psi_a I_a + \psi_b I_b)) )</td>
</tr>
<tr>
<td>+ ( L_3^{-1} (2L_1 \bar{R}_a \psi_a - L_1 I_a) (-R \psi_b + \alpha_5 \dot{q} \psi_a + K_1 I_b) )</td>
</tr>
<tr>
<td>( \psi_a(-R \dot{I}_a + \alpha_4 \psi_a) - \psi_b(-R \dot{I}_b + \alpha_4 \psi_b) )</td>
</tr>
<tr>
<td>(4.43)</td>
</tr>
</tbody>
</table>

**Taula 4.11. Equacions del Subsistema de la Variable Auxiliar \( w_b(\dot{q}, I_a, I_b, \psi_a, \psi_b, t) \)**
Desenvolupament del subsistema de càlcul de l’equació de la variable auxiliar escalar \( w_b(\dot{q}, I_a, I_b, \psi_a, \psi_b, t) \):

\[ \psi \]

Figura 4.35. Desenvolupament del Subsistema de la Variable Auxiliar \( w_b(\dot{q}, I_a, I_b, \psi_a, \psi_b, t) \)

Ometi’m la representació de les variables d’entrada al subsistema donat que ja foren mostrades en subsistemes anteriors, i passem a descriure el subsistema de càlcul de \( Y_v \cdot \theta_v \), que forma part del subsistema de càlcul de \( w_b(\dot{q}, I_a, I_b, \psi_a, \psi_b, t) \).

\[ \theta \]
Producte de la Matriu $Y_{\psi}(\psi_{a}, \psi_{b}, t) \in \mathbb{R}^{1 \times 2}$ Vector $\theta_{\psi} = \begin{bmatrix} L_{\psi} & R_{\psi} \end{bmatrix}^T$

Subsistema de càlcul del producte de les equacions de (4.21), producte de la matriu de regressió $Y_{\psi}(\psi_{a}, \psi_{b}, t) \in \mathbb{R}^{1 \times 2}$ i el vector de paràmetres $\theta_{\psi} = \begin{bmatrix} L_{\psi} & R_{\psi} \end{bmatrix}^T$, respectivament. El present subsistema forma part del subsistema de càlcul de $w_{b}(\dot{q}, I_{a}, I_{b}, \psi_{a}, \psi_{b}, t)$, que a la vegada forma part de la part dreta de l’equació de control de voltatge d’entrada $\psi_{a} V_{a} + \psi_{b} V_{b} = w_{b} + k_{s} \eta_{s} + \eta_{v}$, (4.17):

![Diagrama](image)

**Figura 4.36. Subsistema de Càlcul de $Y_{\psi} \cdot \theta_{\psi}$**

<table>
<thead>
<tr>
<th>Subsistema del Producte $Y_{\psi} \cdot \theta_{\psi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Variables d’Entrada</strong></td>
</tr>
<tr>
<td><strong>Variables Sortida</strong></td>
</tr>
<tr>
<td><strong>Equacions</strong></td>
</tr>
<tr>
<td>$Y_{\psi} = \begin{bmatrix} \dot{\psi}<em>{d} &amp; \psi</em>{a}^2 + \psi_{b}^2 \end{bmatrix}$</td>
</tr>
<tr>
<td>$\theta_{\psi} = \begin{bmatrix} L_{\psi} &amp; R_{\psi} \end{bmatrix}^T$</td>
</tr>
<tr>
<td>$L_{\psi} = \frac{I_{\psi}}{K_{I}}$</td>
</tr>
<tr>
<td>$R_{\psi} = \frac{R_{\psi}}{K_{I}}$</td>
</tr>
</tbody>
</table>

**Taula 4.12. Equacions del Subsistema de Càlcul de $Y_{\psi} \cdot \theta_{\psi}$**
**Variable Auxiliar de Seguiment de Flux \( \eta_i(t) \)**

Per acabar amb la descripció del subsistema de càlcul de \( w_b(\dot{q}_a, I_a, I_b, \psi_a, \psi_b, t) \), mostrem el subsistema de càlcul de la variable auxiliar de seguiment de flux \( \eta_i(t) \), que forma part de la part dreta de l’equació de control de voltatge \( \psi_a V_a + \psi_b V_b = w_b + k_3 \eta_1 + \eta_{\psi} \), (4.17):

**Figura 4.37. Subsistema de Càlcul de \( \eta_i(t) \)**

| **Subsistema de la Variable Auxiliar de Seguiment de Flux \( \eta_i(t) \)** |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| **Variables d’Entrada** | \( \psi_d(t) \) , \( \psi_a(t) \) , \( I_a(t) \) , \( I_b(t) \) , \( \psi_a(t) \) i \( \psi_b(t) \) |
| **Variables Sortida** | \( \eta_i(t) \) |
| **Equacions** | \( \eta_i = u_i - (\psi_a I_a + \psi_b I_b) \) |
| | \( u_i = Y_\psi \theta_{\psi} + k_3 \eta_{\psi} \) |
| | \( \eta_{\psi} = \psi_a - \frac{1}{2}(\psi_a^2 + \psi_b^2) \) |
| | \( \bar{L} \dot{\eta}_{\psi} = Y_\psi \theta_{\psi} - (\psi_a I_a + \psi_b I_b) \) |

**Taula 4.13. Equacions del Subsistema de Càlcul de \( \eta_i(t) \)**
Desenvolupament del subsistema de càlcul de la variable auxiliar de seguiment de flux \( \eta_i(t) \):

**Figura 4.38. Desenvolupament del Subsistema de Càlcul de \( \eta_i(t) \)**

Ometi’m la representació de les variables d’entrada al subsistema donat que ja foren mostrades en subsistemes anteriors.

En la pàgina següent veiem el gràfic de la figura 4.39, que correspon a la variable auxiliar de seguiment de flux \( \eta_i(t) \):
Variable de Sortida del Subsistema de la Variable Auxiliar de Seguiment de Flux:

Gràfic de la variable auxiliar de seguiment de flux \( \eta_I(t) \), en \( Wb \cdot Wb \):

![Gràfic de \( \eta_I(t) \)]

**Figura 4.39. Variable Auxiliar de Seguiment de Flux \( \eta_I(t) \)**

Ja acabant l’implementació i descripció dels subsistemes de càlcul de les equacions del controlador, passem a desenvolupar les equacions del control dels voltatges transformats d’entrada del motor, equació (4.46) amb lo que tancarem el llac de control.
Voltatge Transformat $V_a(t)$ de Control d’Entrada al Motor

Acabant, el present subsistema calcula la tensió transformada d’entrada a bornes de l’estator del motor, $V_a(t)$, amb lo que es tanca el llaç de control per a aquest voltatge:

**Subsistema de la Tensió Transformada d'Entrada al Motor, $V_a(t)$**

<table>
<thead>
<tr>
<th>Variables d'Entrada</th>
<th>$w_a(q, \dot{q}, I_a, I_b, \psi_a, \psi_b, t)$, $\psi_a(t)$, $\psi_b(t)$ i $w_b(q, I_a, I_b, \psi_a, \psi_b, t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables Sortida</td>
<td>$V_a(t)$</td>
</tr>
</tbody>
</table>
| Equacions | \[
\begin{bmatrix}
V_a \\
V_b
\end{bmatrix} = C^{-1}
\begin{bmatrix}
w_a + k_1 \eta_r + r \\
w_b + k_3 \eta_l + \eta
\end{bmatrix}
\tag{4.46}
\]
|  | $C = \begin{bmatrix}
-\psi_b & \psi_a \\
\psi_a & -\psi_b
\end{bmatrix} \in \mathbb{R}^{2 \times 2}$ \tag{4.47} |

**Taula 4.14. Equacions del Subsistema de la Tensió Transformada d’Entrada al Motor, $V_a(t)$**

Ometí’m la representació de les variables d’entrada i sortida al subsistema donat que ja foren mostrades en subsistemes anteriors.
Determinant de \( C \)

Amb aquest subsistema calculem el determinant de la matríu \( C \), \( \det(C) \), que pertany a l’equació (4.46), on es relacionen les dues equacions dels voltatges transformats de control d’entrada al motor, \( V_a(t) \) i \( V_b(t) \), respectivament:

\[ \begin{align*}
\text{Figura 4.41. Subsistema de Càlcul del Determinant de la Matrícula C} \\
\end{align*} \]

<table>
<thead>
<tr>
<th>Subsistema de Càlcul de ( \frac{1}{\det(C)} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables d’Entrada</td>
</tr>
<tr>
<td>Variables Sortida</td>
</tr>
<tr>
<td>Equacions</td>
</tr>
</tbody>
</table>

\[ \begin{align*}
\text{Taula 4.15. Equacions del Subsistema de Càlcul del Determinant de la Matrícula C} \\
\end{align*} \]
**Voltatge Transformat** $V_a(t)$ de Control d’Entrada al Motor

Finalment el present subsistema calcula la tensió transformada d’entrada a bornes de l’estator del motor, $V_a(t)$, amb lo que es tanca el llàc de control per a aquest voltatge:

**Figura 4.42. Subsistema de la Tensió Transformada d’Entrada al Motor, $V_a(t)$**

### Subsistema de la Tensió Transformada d’Entrada al Motor, $V_a(t)$

| Variables d’Entrada | $w_a(q, \dot{q}, I_a, I_b, \psi_a, \psi_b, t)$, $\psi_a(t)$, $\psi_b(t)$ i $w_b(q, I_a, I_b, \psi_a, \psi_b, t)$ |
| Variables Sortida | $V_a(t)$ |

**Equacions**

$$
\begin{bmatrix}
V_a \\
V_b
\end{bmatrix} = C^{-1} \begin{bmatrix}
w_a + k_1 \eta_t + r \\
w_b + k_3 \eta_l + \eta
\end{bmatrix}
$$

(4.46)

$$
C = \begin{bmatrix}
-\psi_b \\
\psi_a
\end{bmatrix} \in \mathbb{R}^{2\times2}
$$

(4.47)

**Taula 4.16. Equacions del Subsistema de la Tensió Transformada d’Entrada al Motor, $V_a(t)$**
4.6 Conclusions

Una vegada introduïdes les tensions d’entrada a bornes del motor \( V_a(t) \) i \( V_b(t) \), comparem \( q(t) \) en color verd, posició que segueix la càrrega, i \( q_d(t) \) en color blau, posició desitjada de la trajectòria de la càrrega, expressades en graus, observant el bon funcionament del controlador dissenyat:

Gràfic de la posició desitjada i la posició real, \( q_d(t) \) i \( q(t) \), respectivament:

\[ \text{Figura 4.43. Gràfic de la Posició Desitjada i la Posició Simulada} \]

En els gràfics de la pàgina següent s’observa l’error de seguiment de posició \( e(t) \), de mostrant l’èxit aconseguit amb el controlador dissenyat, ja que els valor màxims de l’error són de l’entorn de ± 0.14°.
Observeu que l’error de seguiment de posició de la càrrega $e = q_d - q$ (en graus), està afiat en $\pm 0.14^\circ$:

**Figura 4.44.** Error de Seguiment de Posició

En el següent gràfic es mostra el detall dels límits de l’error:

**Figura 4.45.** Detall de l’Error de Seguiment de Posició
L’altre objectiu del control era introduir una magnitud de flux afitada, i forçar a seguir l’objectiu, lo qual ha estat també aconseguit amb èxit:

Gràfic de l’error de seguiment de flux, $\eta_\psi(t)$, en $Wb \cdot Wb$:

**Figura 4.46. Error de Seguiment de Flux $\eta_\psi(t)$**
5 Annex

5.1 Transformació d’un Sistema de Trifàsic de Corrent Altern

A continuació es mostra el desenvolupament matemàtic de la transformació d’un sistema trifàsic a un sistema de dues fases, en anglès *Stator-Fixed Transformation*. El sistema transformat resultant ens ha estat de gran ajut per a simplificar el desenvolupament matemàtic del control del motor d’inducció, en el capítol 4, ja que reduïm notoriament la càrrega matemàtica.

Suposant que un motor d’inducció està alimentat elèctricament per tres fases simètriques, per tant, podem expressar les equacions del voltatge de la següent forma:

\[ V_{123s} = R_s I_{123s} + \psi_{123s} \quad (5.13) \]

\[ V_{123r} = R_r I_{123r} + \psi_{123r} \quad (5.14) \]

on el subíndex *s* indica que els paràmetres i variables estan associats al circuit de l’estator, i el subíndex *r* al del rotor. \( R_s \) és la resistència de l’estator, \( R_r \) la resistència del rotor, \( V_{123s} \in \mathbb{R}^3 \) són les tensions als terminals de l’estator \( V_{123s} = [V_{1s} \ V_{2s} \ V_{3s}]^T \), \( V_{123r} \in \mathbb{R}^3 \) són les tensions del rotor \( V_{123r} = [V_{1r} \ V_{2r} \ V_{3r}]^T \), \( I_{123s} \in \mathbb{R}^3 \) són els corrents a l’estator \( I_{123s} = [I_{1s} \ I_{2s} \ I_{3s}]^T \), \( I_{123r} \in \mathbb{R}^3 \) són els corrents al rotor \( I_{123r} = [I_{1r} \ I_{2r} \ I_{3r}]^T \), \( \psi_{123s} \in \mathbb{R}^3 \) són els fluxos a l’estator \( \psi_{123s} = [\psi_{1s} \ \psi_{2s} \ \psi_{3s}]^T \), i \( \psi_{123r} \in \mathbb{R}^3 \) són els fluxos al rotor \( \psi_{123r} = [\psi_{1r} \ \psi_{2r} \ \psi_{3r}]^T \).

Basat en l’assumpció de la linealitat del circuit magnètic, els fluxos generats poden ser expressats com:

\[ \begin{bmatrix} \psi_{123s} \\ \psi_{123r} \end{bmatrix} = \begin{bmatrix} L_s & L_{sr} \\ (L_{sr})^T & L_r \end{bmatrix} \begin{bmatrix} I_{123s} \\ I_{123r} \end{bmatrix} \quad (5.15) \]

on les matrius de les inductàncies als debanats \( L_s \in \mathbb{R}^{3 \times 3} \), \( L_r \in \mathbb{R}^{3 \times 3} \), i \( L_{sr} \in \mathbb{R}^{3 \times 3} \) venen donades per:

\[
L_s = \begin{bmatrix}
L_{ss} + L_{ms} & -\frac{1}{2}L_{ms} & -\frac{1}{2}L_{ms} \\
-\frac{1}{2}L_{ms} & L_{ss} + L_{ms} & -\frac{1}{2}L_{ms} \\
-\frac{1}{2}L_{ms} & -\frac{1}{2}L_{ms} & L_{ss} + L_{ms}
\end{bmatrix} \quad (5.16)
\]
on \( L_{ls} \) i \( L_{mr} \) són les fugues i inductàncies magnetitzants dels debanats de l’estator respectivament. \( L_{ir} \) i \( L_{mr} \) són les fugues i inductàncies magnetitzants dels debanats del rotor, respectivament, \( L_{sd} \) és la inductància mútua entre els debanats del rotor i de l’estator, i \( \theta_r \) és l’angle elèctric de desplaçament del rotor respecte la fase \( 1 \) fixa a l’estator.

Sota l’assumPCIó d’una inducció simètrica del motor i igual inductància mútua, tenim:

\[
L_{ms} = L_{mr} = L_{sd} \tag{5.19}
\]

i

\[
\theta_r = n_p q \tag{5.20}
\]

on \( n_p \) és el nombre de parell de pols i \( q \) és la posició del rotor.

Ara transformarem les variables de l’estator i del rotor en un marc de referència arbitrari. Les inicials \( q, d, i, o \) representen la quadratura hipotètica, directa, i el punt d’origen axial respectivament. I s’assumeix que el desplaçament angular de l’eix \( q \) respecte la fase \( 1 \), fixada a l’estator, és \( \theta \). Per lo tant l’estructura \( qdo \) està rodant amb una velocitat angular \( \dot{\theta} \). D’aquí que en general, tenim:

\[
V_{qdo} = TV_{123}, \quad I_{qdo} = TI_{123}, \quad \psi_{qdo} = T\psi_{123}, \tag{5.21}
\]

on \( T \in \mathbb{R}^{3 \times 3} \) significa la matrícia de transformació amb la qual transformem les variables de la màquina a l’estructura \( qdo \), \( V_{qdo} \in \mathbb{R}^{3 \times 3} \) representa el voltatge transformat \( V_{qdo} = \left[ V_q \ V_d \ V_o \right]^T \), \( I_{qdo} \in \mathbb{R}^{3 \times 3} \) representa el corrent transformat \( I_{qdo} = \left[ I_q \ V_d \ I_o \right]^T \), i \( \psi_{qdo} \in \mathbb{R}^{3 \times 3} \) representa el flux transformat \( \psi_{qdo} = \left[ \psi_q \ V_d \ \psi_o \right]^T \).

Ara considerarem la transformació de l’estator: \( T_e \) és la matrícia de transformació de les variables de l’estator al marc de referència arbitraria \( qdo \). Seleccio nem la matrícia de transformació de l’estator com:
\[
T_s = \sqrt{\frac{2}{3}} \begin{bmatrix}
\cos(\theta) & \cos(\theta - \frac{2}{3}\pi) & \cos(\theta + \frac{2}{3}\pi) \\
\sin(\theta) & \sin(\theta - \frac{2}{3}\pi) & \sin(\theta + \frac{2}{3}\pi) \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{bmatrix} \in \mathbb{R}^{3\times3}
\] (5.22)

on \(\theta\) és el desplaçament angular de la referència de l’eix \(q\) respecte la fase 1 fixada a l’estator. Indicar que donada l’estructura de (5.22), tenim \(T_s^{-1} = T_s^T\).

Ara la transformació del rotor. La matriu de transformació de les variables del rotor \(T_r\), la seleccionem de la forma:

\[
T_r = \sqrt{\frac{2}{3}} \begin{bmatrix}
\cos(\beta) & \cos(\beta - \frac{2}{3}\pi) & \cos(\beta + \frac{2}{3}\pi) \\
\sin(\beta) & \sin(\beta - \frac{2}{3}\pi) & \sin(\beta + \frac{2}{3}\pi) \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{bmatrix} \in \mathbb{R}^{3\times3}
\] (5.23)

on \(\beta = \theta - \theta_r\).

Indicar que donada l’estructura de (5.23), tenim \(T_r^{-1} = T_r^T\). De (5.15) i (5.21) obtenim les variables de flux de l’estator expressades en l’estructura \(qdo\) de la forma:

\[
\psi_{qdos} = G_{1s} \psi_{qdos} + G_{2s} \psi_{qdo},
\] (5.24)

d’on basat en (5.16), (5.18), (5.22) i (5.23),

\[
G_{1s} = T_s L_s T_s^{-1} = \begin{bmatrix}
L_{ts} + M_e & 0 & 0 \\
0 & L_{ts} + M_e & 0 \\
0 & 0 & L_{ts}
\end{bmatrix} \in \mathbb{R}^{3\times3}
\] (5.25)

i

\[
G_{2s} = T_s L_{ss} T_s^{-1} = \begin{bmatrix}
M_e & 0 & 0 \\
0 & M_e & 0 \\
0 & 0 & 0
\end{bmatrix} \in \mathbb{R}^{3\times3}
\] (5.26)

on \(M_e = \frac{2}{3} L_{ms}\). Emprant (5.21), els voltatges de l’estator de (5.13) els podem expressar en l’estructura \(qdo\) com:

\[
V_{qdos} = R_s \psi_{qdos} + G_{3s} \psi_{qdos} + \psi_{qdos}
\] (5.27)

on
\[ G_{3_{\text{r}}} = T_s \dot{T}_s^{-1} = \begin{bmatrix} 0 & \dot{\theta} & 0 \\ -\dot{\theta} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 3}. \quad (5.28) \]

Ara considerarem la transformació de les variables del rotor. De (5.21), l’expressió del flux del rotor de (5.15) la podem reescriure a l’estructura \( qdo \) de la forma:

\[ \psi_{qdo} = G_{1r} I_{qdo} + G_{2r} I_{qdo}, \quad (5.29) \]

on

\[ G_{1r} = T_r L_r T_s^{-1} = \begin{bmatrix} L_{tr} + M_e & 0 & 0 \\ -\dot{\theta} & L_{tr} + M_e & 0 \\ 0 & 0 & L_{tr} \end{bmatrix} \in \mathbb{R}^{3 \times 3}. \quad (5.30) \]

i

\[ G_{2r} = T_r L_r^T T_s^{-1} = \begin{bmatrix} M_e & 0 & 0 \\ 0 & M_e & 0 \\ 0 & 0 & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 3}. \quad (5.31) \]

Anàlogament, la equació de voltatge del rotor de (5.14) la podem expressar també en la estructura \( qdo \) de la forma:

\[ V_{qdo} = R_{qdo} + G_{3r} \psi_{qdo} + \psi_{qdo}, \quad (5.32) \]

on

\[ G_{3r} = T_r \dot{T}_r^{-1} = \begin{bmatrix} 0 & \left( \dot{\theta} - \dot{\theta}_r \right) & 0 \\ \left( \dot{\theta} - \dot{\theta}_r \right) & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 3}. \quad (5.33) \]

Indicar que les equacions de voltatge donades per (5.27) i (5.32) són l’\textit{standard qdo} per al model del motor d’inducció.

D’acord en l’anterior desenvolupament, podem trobar el model elèctric del motor d’inducció descrit en el capítol 4, de (4.2) a (4.5). Com que les variables d’estat són \( \psi_{qr}, \psi_{dr}, I_{qs}, i I_{ds} \), necessitem resoldre per \( \psi_{qs}, \psi_{ds}, I_{qr}, i I_{dr} \) de (5.27) i (5.32) en termes de \( \psi_{qr}, \psi_{dr}, I_{qs}, i I_{ds} \). De (5.29), tenim:

\[ I_{qr} = \frac{1}{L_{tr} + M_e} \psi_{qr} - \frac{M_e}{L_{tr} + M_e} I_{qs}, \quad (5.34) \]

i
\[ I_{dr} = \frac{1}{L_{tr} + M_e} \psi_{dr} - \frac{M_e}{L_{tr} + M_e} I_{ds} \]  
(5.35)

Substituint (5.34) i (5.35) a (5.24) obtenim:

\[ \psi_{qs} = (L_{tr} + M_e) I_{qs} + \frac{M_e}{L_{tr} + M_e} \psi_{qr} - \frac{M_e^2}{L_{tr} + M_e} I_{qs} \]  
(5.36)

i

\[ \psi_{ds} = (L_{tr} + M_e) I_{ds} + \frac{M_e}{L_{tr} + M_e} \psi_{dr} - \frac{M_e^2}{L_{tr} + M_e} I_{ds} \]  
(5.37)

Substituint (5.34) i (5.37) a les equacions del voltatge de (5.27) i (5.32) obtenim:

\[
\begin{aligned}
V_{qs} &= R_s I_{qs} + \frac{\dot{\psi}_{qs}}{L_{tr} + M_e} + (\dot{\psi}_{dr} + \frac{\dot{M}_e L_{tr}}{L_{tr} + M_e}) I_{ds} \\
&\quad + \frac{M_e}{L_{tr} + M_e} \psi_{qr} + (L_{ds} + \frac{M_e L_{tr}}{L_{tr} + M_e}) \frac{\dot{I}_{qs}}{L_{tr} + M_e} 
\end{aligned}
\]  
(5.38)

\[
\begin{aligned}
V_{ds} &= R_s I_{ds} + \frac{\dot{\psi}_{ds}}{L_{tr} + M_e} + (\dot{\psi}_{dr} + \frac{\dot{M}_e L_{tr}}{L_{tr} + M_e}) I_{qs} \\
&\quad + \frac{M_e}{L_{tr} + M_e} \psi_{dr} + (L_{ds} + \frac{M_e L_{tr}}{L_{tr} + M_e}) \frac{\dot{I}_{ds}}{L_{tr} + M_e} 
\end{aligned}
\]  
(5.39)

\[
\begin{aligned}
V_{qr} &= \frac{R_s}{L_{tr} + M_e} \psi_{qr} + \frac{M_e R_s}{L_{tr} + M_e} I_{qs} + (\dot{\psi}_{dr} + \dot{M}_e L_{tr}) \psi_{qr} \\
&\quad + (\dot{\psi}_{dr} + \frac{\dot{M}_e L_{tr}}{L_{tr} + M_e}) \psi_{ds}, 
\end{aligned}
\]  
(5.40)

\[
\begin{aligned}
V_{dr} &= \frac{R_s}{L_{tr} + M_e} \psi_{dr} + \frac{M_e R_s}{L_{tr} + M_e} I_{ds} + (\dot{\psi}_{qr} + \frac{\dot{M}_e L_{tr}}{L_{tr} + M_e}) \psi_{dr}, 
\end{aligned}
\]  
(5.41)

i

\[
\begin{aligned}
V_{qs} &= R_s I_{qs} + \psi_{qs}; \\
V_{ds} &= R_s I_{ds} + \psi_{ds}. 
\end{aligned}
\]  
(5.42)

Com que no hi han voltatges d’entrada a les equacions del rotor de (5.40) i (5.41), tenim \( V_{qr} = V_{dr} = 0 \). Per lo tant, podem resoldre de \( \psi_{qr} \) i \( \psi_{dr} \) de (5.40) i (5.41), respectivament, i després substituir l’expressió resultant a (5.38) i (5.39) per a obtenir:
Si la referència de la estructura està fixada a l’estator (es a dir $\dot{\theta} = 0$) i definim:

$$L_r = L_{ip} + M_e, \quad L_s = L_{ts} + M_e, \quad L_i = L_s - \frac{M_r^2}{L_r},$$  \hspace{1cm} (5.45)$$

podem obtenir el model del motor descrit en les equacions de (4.2) fins a (4.5) amb senzillament intercanviant els subíndex $q$ per $b$, i $d$ per $a$, a (5.40), (5.41), (5.43), i (5.44).

El parell d’ acoblament electromecànic el podem obtenir emprant el principi de *co-energy*, com es mostra a continuació:

$$\tau = n_p (I_{123})^T \frac{\partial}{\partial \theta_r} [L_{sr}]_{123r}. \hspace{1cm} (5.46)$$

A l’estructura $qdo$, (5.46) esdevé:

$$\tau = n_p (I_{qdos})^T T_s^{-T} \frac{\partial}{\partial \theta_r} [L_{sr}] T_r^{-1} I_{qdos}, \hspace{1cm} (5.47)$$

emprant (5.21) i (5.22).

Operant algebraicament arribem a la igualtat:
\[ T_s^{-1} \frac{\partial}{\partial \theta_r} [L_{sr}] T_r^{-1} = \begin{bmatrix} 0 & M_e & 0 \\ -M_e & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 3}, \quad (5.48) \]

i amb tot, emprant (5.48), (5.47) podem escriure:

\[ \tau = n_p M_e (I_{qr} I_{dr} - I_{dr} I_{qr}) \cdot (5.49) \]

Substituint \( I_{qr} \) i \( I_{dr} \) per (5.34) i (5.35) a (5.49) i substituïnt els subíndex \( q \) per \( b \) i \( d \) per \( a \), obtenim l’equació de parell descrita a (4.1).
### 5.1.1 Taula de Fórmules

S’adjunta relació de totes les fórmules utilitzades en la demostració de la transformació matemàtica d’un sistema trifàsic a bifàsic a l’annex 5.2:

<table>
<thead>
<tr>
<th>Pàg</th>
<th>Núm.</th>
<th>Fórmula i descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>159</td>
<td>(5.13)</td>
<td>( V_{123r} = R_r I_{123r} + \psi_{123r} )</td>
</tr>
<tr>
<td>159</td>
<td>(5.14)</td>
<td>( V_{123r} = R_r I_{123r} + \psi_{123r} )</td>
</tr>
</tbody>
</table>
| 159 | (5.15) | \[
\begin{pmatrix}
\psi_{123r} \\
\psi_{123r}
\end{pmatrix} = \begin{bmatrix}
L_s & L_{sr} \\
(L_{sr})^T & L_r
\end{bmatrix} \begin{pmatrix}
I_{123s} \\
I_{123r}
\end{pmatrix}
\] |
| 159 | (5.16) | \[
L_s = \begin{bmatrix}
L_{ls} + L_{ms} & -\frac{1}{2} L_{ms} & -\frac{1}{2} L_{ms} \\
-\frac{1}{2} L_{ms} & L_{ls} + L_{ms} & -\frac{1}{2} L_{ms} \\
-\frac{1}{2} L_{ms} & -\frac{1}{2} L_{ms} & L_{ls} + L_{ms}
\end{bmatrix}
\] |
| 160 | (5.17) | \[
L_r = \begin{bmatrix}
L_{lr} + L_{mr} & -\frac{1}{2} L_{mr} & -\frac{1}{2} L_{mr} \\
-\frac{1}{2} L_{mr} & L_{lr} + L_{mr} & -\frac{1}{2} L_{mr} \\
-\frac{1}{2} L_{mr} & -\frac{1}{2} L_{mr} & L_{ls} + L_{lr}
\end{bmatrix}
\] |
| 160 | (5.18) | \[
L_{sr} = L_{sl} \begin{bmatrix}
\cos(\theta_r) & \cos(\theta_r + \frac{2}{3} \pi) & \cos(\theta_r - \frac{2}{3} \pi) \\
\cos(\theta_r - \frac{2}{3} \pi) & \cos(\theta_r) & \cos(\theta_r + \frac{2}{3} \pi) \\
\cos(\theta_r + \frac{2}{3} \pi) & \cos(\theta_r - \frac{2}{3} \pi) & \cos(\theta_r)
\end{bmatrix}
\] |
<p>| 160 | (5.19) | ( L_{ms} = L_{mr} = L_{sl} ) |
| 160 | (5.20) | ( \theta_r = n_p q ) |
| 160 | (5.21) | ( V_{qdo} = TV_{123} ), ( I_{qdo} = TI_{123} ), ( \psi_{qdo} = T\psi_{123} ) |</p>
<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>161 (5.22)</td>
<td>[ T_s = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos(\theta) &amp; \cos(\theta - \frac{2\pi}{3}) &amp; \cos(\theta + \frac{2\pi}{3}) \ \sin(\theta) &amp; \sin(\theta - \frac{2\pi}{3}) &amp; \sin(\theta + \frac{2\pi}{3}) \ \frac{1}{\sqrt{2}} &amp; \frac{1}{\sqrt{2}} &amp; \frac{1}{\sqrt{2}} \end{bmatrix} \in \mathbb{R}^{3 \times 3} ]</td>
</tr>
<tr>
<td>161 (5.23)</td>
<td>[ T_r = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos(\beta) &amp; \cos(\beta - \frac{2\pi}{3}) &amp; \cos(\beta + \frac{2\pi}{3}) \ \sin(\theta) &amp; \sin(\theta - \frac{2\pi}{3}) &amp; \sin(\theta + \frac{2\pi}{3}) \ \frac{1}{\sqrt{2}} &amp; \frac{1}{\sqrt{2}} &amp; \frac{1}{\sqrt{2}} \end{bmatrix} \in \mathbb{R}^{3 \times 3} ]</td>
</tr>
<tr>
<td>161 (5.24)</td>
<td>[ \psi_{qdos} = G_{1s} I_{qdos} + G_{2s} I_{qdor} ]</td>
</tr>
<tr>
<td>161 (5.25)</td>
<td>[ G_{1s} = T_s L_s T_s^{-1} = \begin{bmatrix} L_{ts} + M_e &amp; 0 &amp; 0 \ 0 &amp; L_{ts} + M_e &amp; 0 \ 0 &amp; 0 &amp; L_{tr} \end{bmatrix} \in \mathbb{R}^{3 \times 3} ]</td>
</tr>
<tr>
<td>161 (5.26)</td>
<td>[ G_{2s} = T_s L_s T_s^{-1} = \begin{bmatrix} M_e &amp; 0 &amp; 0 \ 0 &amp; M_e &amp; 0 \ 0 &amp; 0 &amp; 0 \end{bmatrix} \in \mathbb{R}^{3 \times 3} ]</td>
</tr>
<tr>
<td>161 (5.27)</td>
<td>[ V_{qdos} = R_s I_{qdos} + G_{3s} \psi_{qdos} + \psi_{qdos} ]</td>
</tr>
<tr>
<td>162 (5.28)</td>
<td>[ G_{3s} = T_s \dot{T}_s^{-1} = \begin{bmatrix} 0 &amp; \dot{\theta} &amp; 0 \ -\dot{\theta} &amp; 0 &amp; 0 \ 0 &amp; 0 &amp; 0 \end{bmatrix} \in \mathbb{R}^{3 \times 3} ]</td>
</tr>
<tr>
<td>162 (5.29)</td>
<td>[ \psi_{qdor} = G_{3r} I_{qdor} + G_{2r} I_{qdos} ]</td>
</tr>
<tr>
<td>162 (5.30)</td>
<td>[ G_{3r} = T_r L_r T_r^{-1} = \begin{bmatrix} L_{tr} + M_e &amp; 0 &amp; 0 \ -\dot{\theta} &amp; L_{tr} + M_e &amp; 0 \ 0 &amp; 0 &amp; L_{tr} \end{bmatrix} \in \mathbb{R}^{3 \times 3} ]</td>
</tr>
<tr>
<td>Equation</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>(5.31)</td>
<td>$G_{2r} = T_r L_{qr} T_r^{-1} = \begin{bmatrix} M_e &amp; 0 &amp; 0 \ 0 &amp; M_e &amp; 0 \ 0 &amp; 0 &amp; 0 \end{bmatrix} \in \Re^{3x3}$</td>
</tr>
<tr>
<td>(5.32)</td>
<td>$V_{qdor} = R_s I_{qdor} + G_{3r} \psi_{qdor} + \psi_{qdor}$</td>
</tr>
<tr>
<td>(5.33)</td>
<td>$G_{3r} = T_r \hat{T}_r^{-1} = \begin{bmatrix} 0 &amp; (\hat{\theta} - \hat{\theta}_r) &amp; 0 \ - (\hat{\theta} - \hat{\theta}_r) &amp; 0 &amp; 0 \ 0 &amp; 0 &amp; 0 \end{bmatrix} \in \Re^{3x3}$</td>
</tr>
<tr>
<td>(5.34)</td>
<td>$I_{qr} = \frac{1}{L_{ir} + M_e} \psi_{qr} - \frac{M_e}{L_{ir} + M_e} I_{qs}$</td>
</tr>
<tr>
<td>(5.35)</td>
<td>$I_{dr} = \frac{1}{L_{ir} + M_e} \psi_{dr} - \frac{M_e}{L_{ir} + M_e} I_{ds}$</td>
</tr>
<tr>
<td>(5.36)</td>
<td>$\psi_{qs} = (L_{ir} + M_e) I_{qs} + \frac{M_e}{L_{ir} + M_e} \psi_{qr} - \frac{M_e^2}{L_{ir} + M_e} I_{qs}$</td>
</tr>
<tr>
<td>(5.37)</td>
<td>$\psi_{ds} = (L_{ir} + M_e) I_{ds} + \frac{M_e}{L_{ir} + M_e} \psi_{dr} - \frac{M_e^2}{L_{ir} + M_e} I_{ds}$</td>
</tr>
<tr>
<td>(5.38)</td>
<td>$V_{qs} = R_s I_{qs} + \frac{\dot{M}<em>e}{L</em>{ir} + M_e} \psi_{dr} + (\dot{\theta}<em>L + \frac{\dot{M}<em>e L</em>{ir}}{L</em>{ir} + M_e}) I_{ds}$ $+ \frac{M_e}{L_{ir} + M_e} \psi_{qr} + (L_{ir} + \frac{M_e L_{ir}}{L_{ir} + M_e}) \dot{i}_{qs}$</td>
</tr>
<tr>
<td>(5.39)</td>
<td>$V_{ds} = R_s I_{ds} + \frac{\dot{M}<em>e}{L</em>{ir} + M_e} \psi_{qr} + (\dot{\theta}<em>L + \frac{\dot{M}<em>e L</em>{ir}}{L</em>{ir} + M_e}) I_{qs}$ $+ \frac{M_e}{L_{ir} + M_e} \psi_{dr} + (L_{ir} + \frac{M_e L_{ir}}{L_{ir} + M_e}) \dot{i}_{ds}$</td>
</tr>
<tr>
<td>(5.40)</td>
<td>$V_{qr} = \frac{R_s}{L_{ir} + M_e} \psi_{qr} + \frac{M_e R_s}{L_{ir} + M_e} I_{qs} + (\dot{\theta}<em>r + \hat{\theta}<em>r) \psi</em>{dr} + \psi</em>{qr}$</td>
</tr>
<tr>
<td>(5.41)</td>
<td>$V_{dr} = \frac{R_s}{L_{ir} + M_e} \psi_{dr} + \frac{M_e R_s}{L_{ir} + M_e} I_{ds} - (\dot{\theta}<em>r + \hat{\theta}<em>r) \psi</em>{qr} + \psi</em>{dr}$</td>
</tr>
<tr>
<td>163 (5.42)</td>
<td>( V_{as} = R_s I_{as} + \dot{\psi}<em>{as} ); ( V</em>{ar} = R_r I_{ar} + \dot{\psi}_{ar} )</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 164 (5.43) | \[
V_{qs} = R_s I_{qs} + \frac{\dot{\psi}_{qs}}{L_{tr} + M_e} I_{qs} + (\dot{\psi}_{qs} + \frac{\dot{M}_e}{L_{tr} + M_e} + \dot{\theta}) I_{ds} \\
+ (L_{ts} + \frac{M_e L_{tr}}{L_{tr} + M_e}) I_{qs} + \frac{M_e}{L_{tr} + M_e} (\dot{\theta} - \dot{\theta}_r) I_{qr} \\
+ \frac{M_e^2 R_e}{(L_{tr} + M_e)^2} I_{qs} - \frac{M_e R_e}{(L_{tr} + M_e)^2} \psi_{qr} - \frac{M_e}{L_{tr} + M_e} \psi_{qr} \]
| 164 (5.44) | \[
V_{ds} = R_s I_{ds} + \frac{\dot{\psi}_{ds}}{L_{tr} + M_e} I_{qs} + (\dot{\psi}_{qs} + \frac{\dot{M}_e}{L_{tr} + M_e} + \dot{\theta}) I_{qs} \\
+ (L_{ts} + \frac{M_e L_{tr}}{L_{tr} + M_e}) I_{ds} + \frac{M_e}{L_{tr} + M_e} (\dot{\theta} - \dot{\theta}_r) I_{qr} \\
+ \frac{M_e^2 R_e}{(L_{tr} + M_e)^2} I_{ds} - \frac{M_e R_e}{(L_{tr} + M_e)^2} \psi_{dr} - \frac{M_e}{L_{tr} + M_e} \psi_{dr} \]
| 164 (5.45) | \( L_r = L_{ts} + M_e \); \( L_s = L_{ts} + M_e \); \( L_t = L_s - \frac{M_e^2}{L_r} \)
| 164 (5.46) | \( \tau = n_p (I_{123r})^T \frac{\partial}{\partial \theta_r} [L_{sr}] I_{123r} \)
| 164 (5.47) | \( \tau = n_p (I_{qds})^T T_s^{-T} \frac{\partial}{\partial \theta_r} [L_{sr}] T_r^{-1} I_{qdr} \)
| 165 (5.48) | \[
T_s^{-T} \frac{\partial}{\partial \theta_r} [L_{sr}] T_r^{-1} \in \mathbb{R}^{3 \times 3} \\
\begin{bmatrix}
0 & M_e & 0 \\
-M_e & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
| 165 (5.49) | \( \tau = n_p M_e (I_{qs} I_{dr} - I_{ds} I_{qr}) \)
### 5.1.2 Taula de Funcions

S’adjunta relació de les funcions utilitzades en la demostració de la transformació matemàtica d’un sistema trifàsic a bifàsic, de l’annex 5.2:

<table>
<thead>
<tr>
<th>F. Var.</th>
<th>Descripció</th>
<th>Núm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{123s}$</td>
<td>Tensions trifàsiques a bornes de l’estator</td>
<td>(5.13)</td>
</tr>
<tr>
<td>$I_{123s}$</td>
<td>Corrents a l’estator</td>
<td>(5.13)</td>
</tr>
<tr>
<td>$\psi_{123s}$</td>
<td>Fluxos a l’estator</td>
<td>(5.13)</td>
</tr>
<tr>
<td>$V_{123r}$</td>
<td>Tensions trifàsiques del rotor</td>
<td>(5.14)</td>
</tr>
<tr>
<td>$I_{123r}$</td>
<td>Corrents al rotor</td>
<td>(5.14)</td>
</tr>
<tr>
<td>$\psi_{123r}$</td>
<td>Fluxos al rotor</td>
<td>(5.14)</td>
</tr>
<tr>
<td>$\theta_r$</td>
<td>Angle elèctric de desplaçament del rotor respecte la fase 1 fixa a l’estator</td>
<td>(5.18)</td>
</tr>
<tr>
<td>$q$</td>
<td>Posició de l’eix del rotor</td>
<td>(5.20)</td>
</tr>
<tr>
<td>$V_{qdo}$</td>
<td>Voltatge transformat</td>
<td>(5.21)</td>
</tr>
<tr>
<td>$I_{qdo}$</td>
<td>Corrent transformat</td>
<td>(5.21)</td>
</tr>
<tr>
<td>$\psi_{qdo}$</td>
<td>Fluxos transformats</td>
<td>(5.21)</td>
</tr>
<tr>
<td>$T$</td>
<td>Matriu de transformació de variables</td>
<td>(5.21)</td>
</tr>
<tr>
<td>$T_s$</td>
<td>Matriu de transformació de variables de l’estator</td>
<td>(5.22)</td>
</tr>
<tr>
<td>$\theta$</td>
<td>Desplaçament de l’eix $q$ respecte la fase 1 fixada</td>
<td>(5.22)</td>
</tr>
<tr>
<td>$T_r$</td>
<td>Matriu de transformació de variables del rotor</td>
<td>(5.23)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Equation</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>$\beta$</td>
<td>Diferència entre $\theta$ i $\theta_r$</td>
<td>(5.23)</td>
</tr>
<tr>
<td>$\psi_{qdo}$</td>
<td>Fluxos transformats a l’estator</td>
<td>(5.24)</td>
</tr>
<tr>
<td>$I_{qdo}$</td>
<td>Corrents transformats a l’estator</td>
<td>(5.24)</td>
</tr>
<tr>
<td>$I_{qdo}$</td>
<td>Corrents transformats al rotor.</td>
<td>(5.24)</td>
</tr>
<tr>
<td>$\psi_{qdo}$</td>
<td>Fluxos transformats al rotor</td>
<td>(5.29)</td>
</tr>
<tr>
<td>$V_{qdo}$</td>
<td>Tensions transformades al rotor</td>
<td>(5.32)</td>
</tr>
<tr>
<td>$\tau$</td>
<td>Parell d’acoblament electromecànic</td>
<td>(5.46)</td>
</tr>
</tbody>
</table>
5.1.3 **Taula de Constants**

S’adjunta la relació de totes les constants que intervenen en la demostració de la transformació matemàtica d’un sistema trifàsic a bifàsic, de l’annex 5.2:

<table>
<thead>
<tr>
<th>Const.</th>
<th>Descripció</th>
<th>Núm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_s$</td>
<td>Resistència de l’estator</td>
<td>(5.13)</td>
</tr>
<tr>
<td>$R_r$</td>
<td>Resistència del rotor</td>
<td>(5.14)</td>
</tr>
<tr>
<td>$L_s$</td>
<td>Inductància de l’estator</td>
<td>(5.15)</td>
</tr>
<tr>
<td>$L_r$</td>
<td>Inductància del rotor</td>
<td>(5.15)</td>
</tr>
<tr>
<td>$L_{sr}$</td>
<td>Inductància mútua entre l’estator i el rotor</td>
<td>(5.15)</td>
</tr>
<tr>
<td>$L_{ls}$</td>
<td>Inductància de fuga de l’estator</td>
<td>(5.16)</td>
</tr>
<tr>
<td>$L_{ms}$</td>
<td>Inductància magnetitzant de l’estator</td>
<td>(5.16)</td>
</tr>
<tr>
<td>$L_{lr}$</td>
<td>Inductància de fuga del rotor</td>
<td>(5.17)</td>
</tr>
<tr>
<td>$L_{mr}$</td>
<td>Inductància magnetitzant del rotor</td>
<td>(5.17)</td>
</tr>
<tr>
<td>$n_p$</td>
<td>Nombre de parell de pols</td>
<td>(5.20)</td>
</tr>
</tbody>
</table>
### 5.2 Formulari i Figures del Capítol d'Introducció

#### 5.2.1 Taula de Fórmules

S’adjunta relació de totes les fórmules del capítol 1 d’introducció.

<table>
<thead>
<tr>
<th>Pàg</th>
<th>Núm.</th>
<th>Fórmula i descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(1.1)</td>
<td>$\dot{x} = Ax + Bu$</td>
</tr>
<tr>
<td>7</td>
<td>(1.2)</td>
<td>$\dot{x}_1 = f_1(x_1, x_2)$</td>
</tr>
<tr>
<td>7</td>
<td>(1.3)</td>
<td>$\dot{x}_2 = x_3 + f_2(x_1, x_2)$</td>
</tr>
<tr>
<td>7</td>
<td>(1.4)</td>
<td>$\dot{x}_3 = u + f_3(x_1, x_2, x_3)$</td>
</tr>
<tr>
<td>7</td>
<td>(1.5)</td>
<td>$f_1(z_1, z_2 + \alpha_i(z_1)) = f_1(z_1, \alpha_i(z_1)) + z_2 \varphi_i(z_1, z_2)$</td>
</tr>
<tr>
<td>8</td>
<td>(1.6)</td>
<td>$\dot{z}_1 = f_1(z_1, \alpha_i(z_1)) + z_2 \varphi_i(z_1, z_2)$</td>
</tr>
<tr>
<td>8</td>
<td>(1.7)</td>
<td>$\dot{z}_2 = x_3 + f_2(z_1, z_2 + \alpha_i(z_1)) - \alpha_i$</td>
</tr>
<tr>
<td>8</td>
<td>(1.8)</td>
<td>$\dot{\alpha}_i = \frac{\partial \alpha_i}{\partial x_1} \dot{x}_1 = \frac{\partial \alpha_i}{\partial x_1} f_1(x_1, x_2) = \frac{\partial \alpha_i}{\partial z_1} f_1(z_1, z_2 + \alpha_i(z_1)) \equiv \beta_i(z_1, z_2)$</td>
</tr>
<tr>
<td>8</td>
<td>(1.9)</td>
<td>$V_2(z_1, z_2) = V_1(z_1) + \frac{1}{2} z_2^2$</td>
</tr>
<tr>
<td>8</td>
<td>(1.10)</td>
<td>$\dot{V}_2 = \frac{\partial V_1}{\partial z_1} f_1(z_1, \alpha_i(z_1)) + z_2 \left( \frac{\partial V_1}{\partial z_1} \varphi_i(z_1, z_2) + \alpha_2 + f_2(z_1, z_2 + \alpha_i(z_1)) \right)$</td>
</tr>
<tr>
<td>9</td>
<td>(1.11)</td>
<td>$\alpha_3(z_1, z_2) = -z_2 - \frac{\partial V_1}{\partial z_1} \varphi_i(z_1, z_2) - f_3(z_1, z_2 + \alpha_i(z_1)) + \beta_i(z_1, z_2)$</td>
</tr>
<tr>
<td>9</td>
<td>(1.12)</td>
<td>$\dot{V}_2 = \frac{\partial V_1}{\partial z_1} f_1(z_1, \alpha_i(z_1)) - z_2^2 + z_2 z_3$</td>
</tr>
<tr>
<td>9</td>
<td>(1.13)</td>
<td>$\dot{z}_1 = f_1(z_1, \alpha_i(z_1)) + z_2 \varphi_i(z_1, z_2)$</td>
</tr>
<tr>
<td>Equation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>(1.14)</td>
<td>( \ddot{z}_2 = z_3 + \alpha_2(z_1, z_2) + f_2(z_1, z_2) + \alpha_1(z_1) - \beta_1(z_1, z_2) )</td>
<td></td>
</tr>
<tr>
<td>(1.15)</td>
<td>( \ddot{z}_3 = u + f_3(z_1, z_2 + \alpha_1(z_1), z_1 + \alpha_2(z_1, z_2)) - \beta_2(z_1, z_2, z_3) )</td>
<td></td>
</tr>
<tr>
<td>(1.16)</td>
<td>( \ddot{V}_3 = \dddot{z}_2 \dddot{z}_3 = \frac{\partial V}{\partial z_1} f_1(z_1, \alpha_1(z_1)) - z_2^2 + z_2 z_3 + z_3(u + f_3 - \beta_2) )</td>
<td></td>
</tr>
<tr>
<td>(1.17)</td>
<td>( u = -z_3 - f_3(z_1, z_2 + \alpha_1, z_1 + \alpha_2) + \beta_2(z_1, z_2, z_3) - z_2 )</td>
<td></td>
</tr>
<tr>
<td>(1.18)</td>
<td>( \dot{x}_1 = x_1 x_2^3 )</td>
<td></td>
</tr>
<tr>
<td>(1.19)</td>
<td>( \dot{x}_2 = u )</td>
<td></td>
</tr>
<tr>
<td>(1.20)</td>
<td>( \frac{\theta(s)}{E_a(s)} = \frac{K}{s(R_a I_s + R_a f + K K_b)} = \frac{K_m}{s(T_m s + 1)} )</td>
<td></td>
</tr>
<tr>
<td>(1.21)</td>
<td>( T_m = \frac{R_a J}{R_a f + K K_b} ) si ( f \ll K K_b ); ( T_m = \frac{R_a J}{K K_b} )</td>
<td></td>
</tr>
<tr>
<td>(1.22)</td>
<td>( n_{\text{sin.c}} = \frac{120 f_e}{P} )</td>
<td></td>
</tr>
<tr>
<td>(1.23)</td>
<td>( e_{\text{ind}} = (v \times B) l )</td>
<td></td>
</tr>
<tr>
<td>(1.24)</td>
<td>( n_{\text{lliscament}} = n_{\text{sin.c}} - n_m )</td>
<td></td>
</tr>
<tr>
<td>(1.25)</td>
<td>( s = \frac{n_{\text{sin.c}} - n_m}{n_{\text{sin.c}}} )</td>
<td></td>
</tr>
<tr>
<td>(1.26)</td>
<td>( n_m = (1 - s) n_{\text{sin.c}} )</td>
<td></td>
</tr>
<tr>
<td>(1.27)</td>
<td>( f_r = \frac{n_{\text{sin.c}} - n_m}{n_{\text{sin.c}}} f_e )</td>
<td></td>
</tr>
<tr>
<td>(1.28)</td>
<td>( f_r = \frac{P}{120} (n_{\text{sin.c}} - n_m) )</td>
<td></td>
</tr>
</tbody>
</table>
### 5.2.2 Taula de Funcions

S’adjunta descripció de totes les funcions que apareixen en el capítol 1 d’introducció:

<table>
<thead>
<tr>
<th>F.Var.</th>
<th>Descripció</th>
<th>Núm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \dot{x} )</td>
<td>Variable d’estat</td>
<td>(1.1)</td>
</tr>
<tr>
<td>( u )</td>
<td>Entrada de control</td>
<td>(1.1)</td>
</tr>
<tr>
<td>( \theta(s) )</td>
<td>Desplaçament angular</td>
<td>(1.20)</td>
</tr>
<tr>
<td>( E_a(s) )</td>
<td>Força electromotriu d’armadura</td>
<td>(1.20)</td>
</tr>
<tr>
<td>( I_s )</td>
<td>Corrent a l’estator</td>
<td>(1.20)</td>
</tr>
<tr>
<td>( T_m )</td>
<td>Parell del motor</td>
<td>(1.20)</td>
</tr>
<tr>
<td>( n_{sinc} )</td>
<td>Velocitat de rotació del camp magnètic</td>
<td>(1.22)</td>
</tr>
<tr>
<td>( e_{ind} )</td>
<td>Voltatge induït en una barra del rotor</td>
<td>(1.23)</td>
</tr>
<tr>
<td>( v )</td>
<td>Velocitat de les barres del rotor en relació al camp ( B )</td>
<td>(1.23)</td>
</tr>
<tr>
<td>( B )</td>
<td>Camp magnètic rotatori</td>
<td>(1.23)</td>
</tr>
<tr>
<td>( n_{lissament} )</td>
<td>Velocitat de llissament</td>
<td>(1.24)</td>
</tr>
<tr>
<td>( n_m )</td>
<td>Velocitat del motor</td>
<td>(1.24)</td>
</tr>
<tr>
<td>( s )</td>
<td>Llissament</td>
<td>(1.25)</td>
</tr>
<tr>
<td>( f_r )</td>
<td>Freqüència del rotor</td>
<td>(1.27)</td>
</tr>
</tbody>
</table>
5.2.3 Taula de Constants

S’adjunta la relació de totes les constants que apareixen en el capítol 1 d’introducció:

<table>
<thead>
<tr>
<th>Const.</th>
<th>Descripció</th>
<th>Núm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A$</td>
<td>Matriu d’estat</td>
<td>(1.1)</td>
</tr>
<tr>
<td>$B$</td>
<td>Matriu d’entrada</td>
<td>(1.1)</td>
</tr>
<tr>
<td>$K_m$</td>
<td>Constant del motor</td>
<td>(1.20)</td>
</tr>
<tr>
<td>$R_a$</td>
<td>Resistència d’armadura</td>
<td>(1.20)</td>
</tr>
<tr>
<td>$f$</td>
<td>Força fregament del motor</td>
<td>(1.20)</td>
</tr>
<tr>
<td>$K$</td>
<td>Constant de conversió electromecànica</td>
<td>(1.20)</td>
</tr>
<tr>
<td>$K_b$</td>
<td>Coeficient constant de la força contraelectromotriu</td>
<td>(1.20)</td>
</tr>
<tr>
<td>$J$</td>
<td>Inèrcia del motor</td>
<td>(1.21)</td>
</tr>
<tr>
<td>$f_e$</td>
<td>Freqüència de la xarxa elèctrica</td>
<td>(1.22)</td>
</tr>
<tr>
<td>$P$</td>
<td>Pols del motor d’Inducció</td>
<td>(1.22)</td>
</tr>
<tr>
<td>$l$</td>
<td>Longitud de la barra del rotor</td>
<td>(1.23)</td>
</tr>
</tbody>
</table>
### Taula de Figures

A continuació es nombren i relacionen totes les figures del capítol 1 d’introducció.

<table>
<thead>
<tr>
<th>Pàg</th>
<th>Núm.</th>
<th>Fórmula i Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1.1</td>
<td>Diagrama de Representació d’un Motor Pas a Pas de 2 Pols i 8 Fases</td>
</tr>
<tr>
<td>15</td>
<td>1.2</td>
<td>Diagrama de Representació d’un Motor d’Inducció Trifàsic</td>
</tr>
</tbody>
</table>
5.3 Formulari i Figures del Motor de Corrent Continu *Brushed DC (PMBDC)*

5.3.1 Taula de Fòrmules

A continuació s’adjunta relació de totes les fórmules necessàries en el disseny del control de posició del motor *Brush DC*, capítol 2:

<table>
<thead>
<tr>
<th>Pàg</th>
<th>Núm.</th>
<th>Fórmula i descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>(2.1)</td>
<td>$M\ddot{q} + B\dot{q} + N\sin(q) = I$, DC Brush, dinàmica mecànica de la posició depenent d’una càrrega</td>
</tr>
<tr>
<td>20</td>
<td>(2.2)</td>
<td>$L\dot{I} = v - RI - K_d\dot{q}$, DC Brush, dinàmica elèctrica</td>
</tr>
<tr>
<td>22</td>
<td>(2.3)</td>
<td>$e = q_d - q$, Error de seguiment de posició de la càrrega</td>
</tr>
<tr>
<td>22</td>
<td>(2.4)</td>
<td>$r = \dot{e} + \alpha e$, Filtre de l’error de seguiment</td>
</tr>
<tr>
<td>22</td>
<td>(2.5)</td>
<td>$\dot{r} = (\ddot{q}_d + \alpha\dot{e}) - \dot{q}$</td>
</tr>
<tr>
<td>22</td>
<td>(2.6)</td>
<td>$M\ddot{r} = M(\ddot{q}_d + \alpha\dot{e}) + B\dot{q} + N\sin(q) - I$</td>
</tr>
<tr>
<td>22</td>
<td>(2.7)</td>
<td>$M\ddot{r} = W_r\theta_z - I$</td>
</tr>
<tr>
<td>22</td>
<td>(2.8)</td>
<td>$W_r = [\ddot{q}_d + \alpha \dot{e} : \dot{q} : \sin(q)]$</td>
</tr>
<tr>
<td>23</td>
<td>(2.9)</td>
<td>$\theta_z = [M : B : N]^T$</td>
</tr>
<tr>
<td>23</td>
<td>(2.10)</td>
<td>$M\ddot{r} = W_r\theta_z - I_d + \eta_i$</td>
</tr>
<tr>
<td>23</td>
<td>(2.11)</td>
<td>$\eta_i = I_d - I$, Error de pertorbació de parell / Error de seguiment de corrent</td>
</tr>
<tr>
<td>23</td>
<td>(2.12)</td>
<td>$L\dot{\eta}_i = L\dot{I}_d - L\dot{I}$</td>
</tr>
<tr>
<td>23</td>
<td>(2.13)</td>
<td>$L\dot{\eta}_i = L\dot{I}_d + RI + K_d\dot{q} - v$</td>
</tr>
<tr>
<td>Equation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>(2.14)</td>
<td>( I_d = W_r \dot{\theta}_r + k_s r ), Trajectòria de corrent desitjada</td>
<td></td>
</tr>
<tr>
<td>(2.15)</td>
<td>( M \dot{r} = -k_s r + \eta_l ), Filtre de seguiment de l’error</td>
<td></td>
</tr>
<tr>
<td>(2.16)</td>
<td>( \dot{I}_d = \dot{W}_r \dot{\theta}_r + k_s \dot{r} )</td>
<td></td>
</tr>
<tr>
<td>(2.17)</td>
<td>( \dot{I}_d = M(\ddot{q}_d + \alpha(\ddot{q}_d - \ddot{q})) + B \dot{q} + N \dot{q} \cos(q) + k_s(\ddot{q}_d - \ddot{q}) + \alpha \dot{\varepsilon} )</td>
<td></td>
</tr>
<tr>
<td>(2.18)</td>
<td>( \ddot{q} = -\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M} )</td>
<td></td>
</tr>
<tr>
<td>(2.19)</td>
<td>( \dot{I}_d = M(\ddot{q}_d + \alpha \ddot{q}_d) + N \dot{q} \cos(q) + (k_s \ddot{q}_d + \alpha \dot{\varepsilon}) ) + ( B - M \alpha - k_s \left( -\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M} \right) )</td>
<td></td>
</tr>
<tr>
<td>(2.20)</td>
<td>( L \dot{\eta}_r = w_c - v ), Error de seguiment de corrent en llaç obert.</td>
<td></td>
</tr>
<tr>
<td>(2.21)</td>
<td>( w_c = L \left[ M(\ddot{q}_d + \alpha \ddot{q}_d) + N \dot{q} \cos(q) + (k_s \ddot{q}_d + \alpha \dot{\varepsilon}) \right] + RI + K_p \dot{q} ) + ( L(B - M \alpha - k_s) \left( -\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{I}{M} \right) )</td>
<td></td>
</tr>
<tr>
<td>(2.22)</td>
<td>( v = w_c + k_s \eta_l + r ), Voltatge d’entrada</td>
<td></td>
</tr>
<tr>
<td>(2.23)</td>
<td>( L \dot{\eta}_r = w_c - k_s \eta_l - r ), Error de seguiment de corrent en llaç tancat</td>
<td></td>
</tr>
<tr>
<td>(2.24)</td>
<td>( M = \frac{J}{K_r} + \frac{m_l l^2}{3 K_r} + \frac{m_q l^2}{K_r} + \frac{2 m_p l^2}{5 K_r} ), Constant global d’inèrcia</td>
<td></td>
</tr>
<tr>
<td>(2.24)</td>
<td>( N = \frac{m_l G}{2 K_r} + \frac{m_q G}{K_r} ), Constant global de la càrrega</td>
<td></td>
</tr>
<tr>
<td>(2.24)</td>
<td>( B = \frac{B_o}{K_r} ), Constant del coeficient de fricció</td>
<td></td>
</tr>
<tr>
<td>(2.26)</td>
<td>( q_d(t) = \frac{\pi}{2} \left( 1 - e^{-0.1 t} \right) \sin \left( \frac{8 \pi}{5} t \right) ), Trajectòria de la posició desitjada de la càrrega</td>
<td></td>
</tr>
</tbody>
</table>
### 5.3.2 Taula de Funcions Variables

Seguidament es relacionen totes les funcions variables implicades en el disseny del control de posició del motor Brush, capítol 2:

<table>
<thead>
<tr>
<th>F. Var.</th>
<th>Descripció</th>
<th>Núm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q(t)$</td>
<td>Posició angular de la càrrega</td>
<td>(2.1)</td>
</tr>
<tr>
<td>$\dot{q}(t)$</td>
<td>Velocitat angular de la càrrega</td>
<td>(2.1)</td>
</tr>
<tr>
<td>$\ddot{q}(t)$</td>
<td>Acceleració angular de la càrrega</td>
<td>(2.1)</td>
</tr>
<tr>
<td>$I(t)$</td>
<td>Corrent l’estator</td>
<td>(2.1)</td>
</tr>
<tr>
<td>$V(t)$</td>
<td>Voltatge de control a l’entrada de l’estator</td>
<td>(2.2)</td>
</tr>
<tr>
<td>$e(t)$</td>
<td>Error de seguiment de posició de la càrrega</td>
<td>(2.3)</td>
</tr>
<tr>
<td>$r(t)$</td>
<td>Filtre de l’error de seguiment de posició</td>
<td>(2.4)</td>
</tr>
<tr>
<td>$\eta_r(t)$</td>
<td>Error de seguiment de parell / corrent</td>
<td>(2.11)</td>
</tr>
<tr>
<td>$w_{e}(t)$</td>
<td>Variable auxiliar escalar, $w_{a}(q,\dot{q},I,t)$</td>
<td>(2.21)</td>
</tr>
<tr>
<td>$I_d(t)$</td>
<td>Corrent desitjada a l’estator</td>
<td>(2.14)</td>
</tr>
</tbody>
</table>
5.3.3 Taula de Funcions Constants

A continuació les funcions constants emprades en el disseny del control del capítol 2:

<table>
<thead>
<tr>
<th>F.Cons.</th>
<th>Descripció</th>
<th>Núm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_d(t))</td>
<td>Trajectòria de la posició desitjada de la càrrega</td>
<td>(2.26)</td>
</tr>
</tbody>
</table>

5.3.4 Taula de Constants

S’adjunta la relació de totes les constants que intervenen en el disseny del control, de posició del motor Brush DC, capítol 2:

<table>
<thead>
<tr>
<th>Const.</th>
<th>Descripció</th>
<th>Núm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>Constant positiva relacionada amb la inèrcia mecànica del sistema</td>
<td>(2.1)</td>
</tr>
<tr>
<td>(B)</td>
<td>Coeficient positiu de fricció</td>
<td>(2.1)</td>
</tr>
<tr>
<td>(N)</td>
<td>Constant positiva relacionada amb la massa de la càrrega i el coeficient de la gravetat</td>
<td>(2.1)</td>
</tr>
<tr>
<td>(L)</td>
<td>Inductància del rotor</td>
<td>(2.2)</td>
</tr>
<tr>
<td>(R)</td>
<td>Constant de resistència del rotor</td>
<td>(2.2)</td>
</tr>
<tr>
<td>(K_B)</td>
<td>Constant del coeficient de la força contraelectromotriu</td>
<td>(2.2)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Constant positiva de control de guany</td>
<td>(2.4)</td>
</tr>
<tr>
<td>(k_s)</td>
<td>Constant positiva de control de guany</td>
<td>(2.14)</td>
</tr>
<tr>
<td>(k_e)</td>
<td>Constant positiva de control de guany</td>
<td>(2.22)</td>
</tr>
<tr>
<td>( J )</td>
<td>Inèrcia del rotor</td>
<td>(2.25)</td>
</tr>
<tr>
<td>( m_i )</td>
<td>Massa del braç</td>
<td>(2.25)</td>
</tr>
<tr>
<td>( l )</td>
<td>Longitud del braç</td>
<td>(2.25)</td>
</tr>
<tr>
<td>( m_0 )</td>
<td>Massa de la càrrega</td>
<td>(2.25)</td>
</tr>
<tr>
<td>( r_0 )</td>
<td>Radi de la càrrega</td>
<td>(2.25)</td>
</tr>
<tr>
<td>( B_0 )</td>
<td>Coeficient de fricció viscosa mutu</td>
<td>(2.25)</td>
</tr>
</tbody>
</table>
5.3.5 **Taula de Figures**

Seguidament es nombren i relacionen totes les figures del capítol 2, del disseny del control de posició del motor *Brush DC*.

<table>
<thead>
<tr>
<th>Pàg</th>
<th>Núm.</th>
<th>Fórmula i Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>2.1</td>
<td>Diagrama de Blocs per als Sistemes Dinàmics de Control de Motors</td>
</tr>
<tr>
<td>21</td>
<td>2.2</td>
<td>Diagrama Esquemàtic del BDC Sistema Motor/Càrrega</td>
</tr>
<tr>
<td>35</td>
<td>2.2_bis</td>
<td>Diagrama Esquemàtic del BDC Sistema Motor/Càrrega</td>
</tr>
<tr>
<td>31</td>
<td>2.3</td>
<td>Editor del Matlab, Arxiu: constants_brushdc.m</td>
</tr>
<tr>
<td>33</td>
<td>2.4</td>
<td>Editor del Matlab, Arxiu: fig_brushdc.m</td>
</tr>
<tr>
<td>33</td>
<td>2.5</td>
<td>Controlador de Seguiment de Posició en Llaç Tancat del Motor Brush DC</td>
</tr>
<tr>
<td>37</td>
<td>2.5_bis</td>
<td>Controlador de Seguiment de Posició en Llaç Tancat del Motor Brush DC</td>
</tr>
<tr>
<td>36</td>
<td>2.6</td>
<td>Subsistema de les Equacions del Motor Brush DC</td>
</tr>
<tr>
<td>38</td>
<td>2.7</td>
<td>Tensió d’Entrada al Rotor del Motor Brush DC</td>
</tr>
<tr>
<td>38</td>
<td>2.8</td>
<td>Posició de la Càrrega acoblada</td>
</tr>
<tr>
<td>39</td>
<td>2.9</td>
<td>Velocitat de la Càrrega acoblada</td>
</tr>
<tr>
<td>39</td>
<td>2.10</td>
<td>Corrent al Rotor del Motor Brush DC</td>
</tr>
<tr>
<td>40</td>
<td>2.11</td>
<td>Subsistema de la Posició Desitjada de la Trajectòria de la Càrrega</td>
</tr>
<tr>
<td>41</td>
<td>2.12</td>
<td>Posició Desitjada de la Càrrega</td>
</tr>
<tr>
<td>41</td>
<td>2.13</td>
<td>Velocitat Desitjada de la Càrrega</td>
</tr>
<tr>
<td>42</td>
<td>2.14</td>
<td>Subsistema de la Velocitat i Derivades de la Càrrega</td>
</tr>
<tr>
<td>Pàgina</td>
<td>Núm.</td>
<td>Títol</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>43</td>
<td>2.15</td>
<td>Subsistema de la Variable Auxiliar $w_c(t)$</td>
</tr>
<tr>
<td>44</td>
<td>2.16</td>
<td>Desenvolupament del Subsistema de la Variable Auxiliar $w_c(t)$</td>
</tr>
<tr>
<td>45</td>
<td>2.17</td>
<td>Subsistema del Filtre de l’Error de Seguiment de Posició</td>
</tr>
<tr>
<td>46</td>
<td>2.18</td>
<td>Filtre de l’Error de Seguiment de Posició</td>
</tr>
<tr>
<td>47</td>
<td>2.19</td>
<td>Bloc Principal del Subsistema del corrent desitjat al rotor</td>
</tr>
<tr>
<td>48</td>
<td>2.20</td>
<td>Desenvolupament del Subsistema del Corrent Desitjat al Rotor</td>
</tr>
<tr>
<td>48</td>
<td>2.21</td>
<td>Corrent Desitjat al Rotor</td>
</tr>
<tr>
<td>49</td>
<td>2.22</td>
<td>Subsistema de l’Error de Pertorbació de Parell / Error de Seguiment de Corrent</td>
</tr>
<tr>
<td>50</td>
<td>2.23</td>
<td>Corrent Desitjat i Corrent Real al Rotor</td>
</tr>
<tr>
<td>50</td>
<td>2.24</td>
<td>Error de Seguiment de Corrent</td>
</tr>
<tr>
<td>51</td>
<td>2.25</td>
<td>Subsistema de la Tensió d’Entrada al Motor Brush DC</td>
</tr>
<tr>
<td>52</td>
<td>2.26</td>
<td>Gràfic de la Posició Desitjada i la Posició Simulada</td>
</tr>
<tr>
<td>53</td>
<td>2.27</td>
<td>Error de Seguiment de Posició</td>
</tr>
</tbody>
</table>
### 5.3.6 Taula de Taules

A continuació es nombren i relacionen totes les taules corresponents al disseny del control de posició del motor *Brush DC*, capítol 2:

<table>
<thead>
<tr>
<th>Pàg</th>
<th>Núm.</th>
<th>Fórmula i Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>2.1</td>
<td>Equacions del Subsistema del Motor Brush DC</td>
</tr>
<tr>
<td>40</td>
<td>2.2</td>
<td>Equacions del Subsistema de la Posició Desitjada de la Trajectòria de la Càrrega</td>
</tr>
<tr>
<td>42</td>
<td>2.3</td>
<td>Equacions del Subsistema de la Velocitat i Derivades de la Càrrega</td>
</tr>
<tr>
<td>43</td>
<td>2.4</td>
<td>Equacions del Subsistema de Variable Auxiliar $w_e(t)$</td>
</tr>
<tr>
<td>45</td>
<td>2.5</td>
<td>Equacions del Subsistema del Filtre de l’Error de Seguiment de Posició</td>
</tr>
<tr>
<td>47</td>
<td>2.6</td>
<td>Equacions del Subsistema del Corrent Desitjat al Rotor</td>
</tr>
<tr>
<td>49</td>
<td>2.7</td>
<td>Equacions del Subsistema de l’Error de Pertorbació de Parell / Error de Seguiment de Corrent</td>
</tr>
<tr>
<td>51</td>
<td>2.8</td>
<td>Equacions del Subsistema de la Tensió d’Entrada al Motor Brush DC</td>
</tr>
</tbody>
</table>
5.4 Formulari i Figures del Motor Pas a Pas d’Imants Permanents, PMS

5.4.1 Taula de Fórmules

S’adjunta relació de totes les fórmules necessàries per al control de posició del motor PMS, capítol 3:

<table>
<thead>
<tr>
<th>Pàg</th>
<th>Núm.</th>
<th>Fórmula i Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>(3.1)</td>
<td>[ M\ddot{q} + B\dot{q} + N \sin(q) + K_D \sin(4N_jq) = \sum_{j=1}^{2} -\sin(x_j)I_j ]</td>
</tr>
<tr>
<td>57</td>
<td>(3.2)</td>
<td>[ x_j = N_jq - (j-1)\frac{\pi}{2} ]</td>
</tr>
<tr>
<td>57</td>
<td>(3.3)</td>
<td>[ L\dot{I}_j = v_j - RI_j + K_m \dot{q} \sin(x_j), \ j = 1,2 ]</td>
</tr>
<tr>
<td>58</td>
<td>(3.4)</td>
<td>[ e = q_d - q ]</td>
</tr>
<tr>
<td>58</td>
<td>(3.5)</td>
<td>[ r = \dot{e} + \alpha e ]</td>
</tr>
<tr>
<td>58</td>
<td>(3.6)</td>
<td>[ \dot{r} = (\ddot{q}_d + \alpha \dot{e}) - \dot{q} ]</td>
</tr>
<tr>
<td>58</td>
<td>(3.7)</td>
<td>[ M\dot{r} = M(\ddot{q}<em>d + \alpha \dot{e}) + B\dot{q} + N \sin(q) + K_D \sin(4N_jq) + \sum</em>{j=1}^{2} \sin(x_j)I_j ]</td>
</tr>
<tr>
<td>59</td>
<td>(3.8)</td>
<td>[ M\dot{r} = W_r\theta_z + \sum_{j=1}^{2} \sin(x_j)I_j ]</td>
</tr>
<tr>
<td>59</td>
<td>(3.9)</td>
<td>[ W_r = \left[ \ddot{q}_d + \alpha \dot{e} \quad \dot{q} \quad \sin(q) \quad \sin(4N_jq) \right] ]</td>
</tr>
<tr>
<td>59</td>
<td>(3.10)</td>
<td>[ \theta_z = \begin{bmatrix} M &amp; B &amp; N &amp; K_D \end{bmatrix}^T ]</td>
</tr>
<tr>
<td>59</td>
<td>(3.11)</td>
<td>[ M\dot{r} = W_r\theta_z + \sum_{j=1}^{2} \sin(x_j)I_{dj} - \sum_{j=1}^{2} \sin(x_j)\eta_j ]</td>
</tr>
<tr>
<td>59</td>
<td>(3.12)</td>
<td>[ \eta_j = I_{dj} - I_j ]</td>
</tr>
<tr>
<td>Page</td>
<td>Equation Number</td>
<td>Equation</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>59</td>
<td>(3.13)</td>
<td>$L \dot{\eta}<em>j = L \dot{I}</em>{dj} - L \dot{I}_j$</td>
</tr>
<tr>
<td>59</td>
<td>(3.14)</td>
<td>$L \dot{\eta}<em>j = L \dot{I}</em>{dj} + RI_j - K_m \dot{q} \sin(x_j) - v_j$</td>
</tr>
<tr>
<td>60</td>
<td>(3.15)</td>
<td>$I_{dj} = -\tau_d \sin(x_j)$, per a ( j = 1,2 )</td>
</tr>
<tr>
<td>60</td>
<td>(3.16)</td>
<td>$M \ddot{q} + B \dot{q} + N \sin(q) + K_D \sin(4N,q) = \sum_{j=1}^{2} \sin(x_j)I_{dj}$</td>
</tr>
<tr>
<td>60</td>
<td>(3.17)</td>
<td>$M \ddot{q} + B \dot{q} + N \sin(q) + K_D \sin(4N,q) = \tau_d$</td>
</tr>
<tr>
<td>61</td>
<td>(3.18)</td>
<td>$\dot{r} = W_\tau \theta_\tau - \tau_d - \sum_{j=1}^{2} \sin(x_j)\eta_j$</td>
</tr>
<tr>
<td>62</td>
<td>(3.19)</td>
<td>$\tau_d = W_\tau \theta_\tau + k_r \dot{r}$</td>
</tr>
<tr>
<td>62</td>
<td>(3.20)</td>
<td>$\dot{r} = W_\tau \theta_\tau - k_r \dot{r} - \sum_{j=1}^{2} \sin(x_j)\eta_j$</td>
</tr>
<tr>
<td>62</td>
<td>(3.21)</td>
<td>$\dot{I}_{dj} = -\dot{\tau}<em>d \sin(x_j) - \tau_d \cos(x_j)N</em>\tau \dot{q}$</td>
</tr>
<tr>
<td>62</td>
<td>(3.22)</td>
<td>$\dot{\tau}<em>d = W</em>\tau \theta_\tau + k_r \dot{r}$</td>
</tr>
<tr>
<td>63</td>
<td>(3.23)</td>
<td>$\ddot{q} = \frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) - \frac{K_D}{M} \sin(4N,q) + \frac{1}{M} \sum_{j=1}^{2} \sin(x_j)I_j$</td>
</tr>
<tr>
<td>64</td>
<td>(3.24)</td>
<td>$\dot{I}_{dj} = -\left[ M(\ddot{q}_d + \alpha \ddot{\eta}<em>d) + N \dot{q} \cos(q) + 4N</em>\tau \dot{q} K_D \cos(4N,q) \right] \sin(x_j)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-k_r(\ddot{q}_d + \alpha \ddot{\eta}_d) \sin(x_j)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-\tau_d \cos(x_j)N_\tau \dot{q} \sin(x_j) \left( M \alpha + k_r \right) \left{ \frac{B}{M} \dot{q} + \frac{N}{M} \sin(q) + \frac{K_D}{M} \sin(4N,q) \right}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-\sin(x_j)M^{-1}(B - M \alpha + k_r) \sum_{j=1}^{2} \sin(x_j)I_j$</td>
</tr>
<tr>
<td>Equation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>(65) (3.26)</td>
<td>(L \dot{\eta}_j = w_j - v_j)</td>
<td></td>
</tr>
<tr>
<td>(65) (3.27)</td>
<td>(w_j = -L[M(\ddot{q}_d + \alpha \dot{q}_d) + N\dot{q}\cos(q) + 4N,\dot{q}K_D \cos(4N,q)]\sin(x_j) + Lk_j(\ddot{q}_d + \alpha \dot{q}<em>d)\sin(x_j) - L \tau_d \cos(x_j)N,\dot{q} + RI_j - K_m \dot{q}\sin(x_j) + L \sin(x_j)(B - M\alpha + k_j) \left[ \frac{B}{M} \dot{q} + \frac{N}{M} \sin(q) + \frac{K_D}{M} \sin(4N,q) \right] + L \sin(x_j)M^{-1}(B - M\alpha + k_j) \sum</em>{j=1}^{2} \sin(x_j)I_j )</td>
<td></td>
</tr>
<tr>
<td>(65) (3.28)</td>
<td>(v_j = w_j + k_j \eta_j - \sin(x_j)r)</td>
<td></td>
</tr>
<tr>
<td>(66) (3.29)</td>
<td>(L \dot{\eta}_j - k_j \eta_j + \sin(x_j)r)</td>
<td></td>
</tr>
<tr>
<td>(67) (3.30)</td>
<td>(M = \frac{J}{K_m} + \frac{m_l l^2}{3K_m} + \frac{m_o l^2}{K_m} + \frac{2m_o r_o^2}{5K_m})</td>
<td></td>
</tr>
<tr>
<td>(67) (3.30)</td>
<td>(N = \frac{m_l G}{2K_m} + \frac{m_o G}{K_m})</td>
<td></td>
</tr>
<tr>
<td>(67) (3.30)</td>
<td>(B = \frac{B_o}{K_m})</td>
<td></td>
</tr>
<tr>
<td>(68) (3.31)</td>
<td>(q_d(t) = \frac{\pi}{2} \sin(2t)(1 - e^{-0.1t}) \text{ rad})</td>
<td></td>
</tr>
</tbody>
</table>
### 5.4.2 Taula de Funcions Variables

Seguidament es relacionen i descriuen breument totes les funcions variables implicades en el disseny del control de posició del motor PMS, capítol 3:

<table>
<thead>
<tr>
<th>F.Var.</th>
<th>Descripció</th>
<th>Núm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q(t)$</td>
<td>Posició angular de la càrrega</td>
<td>(3.1)</td>
</tr>
<tr>
<td>$\dot{q}(t)$</td>
<td>Velocitat angular de la càrrega</td>
<td>(3.1)</td>
</tr>
<tr>
<td>$\ddot{q}(t)$</td>
<td>Acceleració angular de la càrrega</td>
<td>(3.1)</td>
</tr>
<tr>
<td>$I_J(t)$</td>
<td>Corrent d’una fase a l’estator</td>
<td>(3.1)</td>
</tr>
<tr>
<td>$v(t)$</td>
<td>Voltatge d’entrada d’una fase a l’estator</td>
<td>(3.3)</td>
</tr>
<tr>
<td>$e(t)$</td>
<td>Error de seguiment de posició de la càrrega</td>
<td>(3.4)</td>
</tr>
<tr>
<td>$r(t)$</td>
<td>Filtre de l’error de seguiment de posició</td>
<td>(3.5)</td>
</tr>
<tr>
<td>$\eta_J(t)$</td>
<td>Error de seguiment parell / corrent</td>
<td>(3.12)</td>
</tr>
<tr>
<td>$I_d(t)$</td>
<td>Corrent desitjada a l’estator</td>
<td>(3.15)</td>
</tr>
<tr>
<td>$\tau_d(t)$</td>
<td>Parell desitjat</td>
<td>(3.19)</td>
</tr>
<tr>
<td>$w_e(t)$</td>
<td>Variable auxiliar escalar</td>
<td>(3.24)</td>
</tr>
</tbody>
</table>

### 5.4.3 Taula de Funcions Constants

A continuació es relaciona la funció constant del control del motor PMS, capítol 3:

<table>
<thead>
<tr>
<th>F.Cons.</th>
<th>Descripció</th>
<th>Núm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_d(t)$</td>
<td>Trajectòria de la posició desitjada de la càrrega</td>
<td>(3.31)</td>
</tr>
</tbody>
</table>
5.4.4 **Taula de Constants**

Seguidament, es relacionen totes les constants que intervenen en el disseny del control de posició del motor PMS, capítol 3, comentant el seu significat:

<table>
<thead>
<tr>
<th>Const.</th>
<th>Descripció</th>
<th>Núm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M$</td>
<td>Constant de la inèrcia mecànica del rotor i la càrrega connectada</td>
<td>(3.1)</td>
</tr>
<tr>
<td>$B$</td>
<td>Coeficient de fricció viscosa.</td>
<td>(3.1)</td>
</tr>
<tr>
<td>$N$</td>
<td>Constant global de la càrrega</td>
<td>(3.1)</td>
</tr>
<tr>
<td>$K_D$</td>
<td>$K_D \sin(4N_r q)$, constant de parell en posició aturada</td>
<td>(3.1)</td>
</tr>
<tr>
<td>$N_r$</td>
<td>Nombre de dents del rotor</td>
<td>(3.1)</td>
</tr>
<tr>
<td>$L$</td>
<td>Inductància</td>
<td>(3.3)</td>
</tr>
<tr>
<td>$R$</td>
<td>Constant de resistència</td>
<td>(3.3)</td>
</tr>
<tr>
<td>$K_m$</td>
<td>Constant de parell</td>
<td>(3.3)</td>
</tr>
<tr>
<td>$\alpha$</td>
<td>Constant positiva de control de guany</td>
<td>(3.7)</td>
</tr>
<tr>
<td>$k_s$</td>
<td>Constant positiva de control de guany</td>
<td>(3.17)</td>
</tr>
<tr>
<td>$J$</td>
<td>Inèrcia del rotor</td>
<td>(3.30)</td>
</tr>
<tr>
<td>$m_i$</td>
<td>Massa del braç</td>
<td>(3.30)</td>
</tr>
<tr>
<td>$l$</td>
<td>Longitud del braç</td>
<td>(3.30)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Equation</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>$m_0$</td>
<td>Massa de la càrrega</td>
<td>(3.30)</td>
</tr>
<tr>
<td>$r_0$</td>
<td>Radi de la càrrega</td>
<td>(3.30)</td>
</tr>
<tr>
<td>$B_0$</td>
<td>Coeficient de fricció viscosa mutu</td>
<td>(3.30)</td>
</tr>
<tr>
<td>$G$</td>
<td>Coeficient de gravetat</td>
<td>(3.30)</td>
</tr>
</tbody>
</table>

### 5.4.5 Taula de Figures

A continuació es nombren i relacionen totes les figures del capítol 3, corresponents al disseny del control de posició del motor *PMS*.

<table>
<thead>
<tr>
<th>Pàg</th>
<th>Núm.</th>
<th>Fórmula i Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>3.1</td>
<td>Diagrama Esquemàtic del Motor PMS Acoblat a una Càrrega</td>
</tr>
<tr>
<td>69</td>
<td>3.2</td>
<td>Editor del <em>Matlab</em>, Arxiu: constants_pms.m</td>
</tr>
<tr>
<td>70</td>
<td>3.3</td>
<td>Editor del <em>Matlab</em>, Arxiu: fig_pms.m</td>
</tr>
<tr>
<td>71</td>
<td>3.4</td>
<td>Controlador de Seguiment de Posició en Llaç Tancat del Motor PMS.</td>
</tr>
<tr>
<td>73</td>
<td>3.4_bis</td>
<td>Controlador de Seguiment de Posició en Llaç Tancat del Motor PMS</td>
</tr>
<tr>
<td>74</td>
<td>3.5</td>
<td>Subsistema d’Equacions del Motor Pas a Pas d’Imants Permanents PMS.</td>
</tr>
<tr>
<td>75</td>
<td>3.6</td>
<td>Desenvolupament del Subsistema del Motor Pas a Pas d’Imants Permanents PMS</td>
</tr>
<tr>
<td>76</td>
<td>3.7</td>
<td>Voltatge d’Entrada a la Fase 1 del Motor</td>
</tr>
<tr>
<td>76</td>
<td>3.8</td>
<td>Voltatge d’Entrada a la Fase 2 del Motor</td>
</tr>
<tr>
<td>77</td>
<td>3.9</td>
<td>Posició de la Càrrega Acoblada</td>
</tr>
<tr>
<td>77</td>
<td>3.10</td>
<td>Velocitat de la Càrrega Acoblada</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.11</td>
<td>Corrent d'Entrada a la Fase 1 del Motor</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.12</td>
<td>Corrent d'Entrada a la Fase 2 del Motor</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.13</td>
<td>Subsistema de la Posició Desitjada de la Trajectòria de la Càrrega</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.14</td>
<td>Posició Desitjada de la Càrrega Acoblada</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.15</td>
<td>Velocitat Desitjada de la Càrrega</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.16</td>
<td>Subsistema de les Variables Auxiliars $w_j(q,\dot{q},I_1,I_2,t)$</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.17</td>
<td>Desenvolupament del Subsistema de les Variables Auxiliars $w_j(q,\dot{q},I_1,I_2,t)$</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.17bis</td>
<td>Desenvolupament del Subsistema de les Variables Auxiliars $w_j(q,\dot{q},I_1,I_2,t)$</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.18</td>
<td>Subsistemes dels Corrents Desitjats en Cada Fase</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.19</td>
<td>Desenvolupament del Subsistema del Corrent Desitjat en la Fase 1</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.20</td>
<td>Corrent Desitjat a la fase 1</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.21</td>
<td>Corrent Desitjat a la fase 2</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.22</td>
<td>Corrent Desitjat i Corrent Real al la Fase 1</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.23</td>
<td>Corrent Desitjat i Corrent Real al la Fase 2</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.24</td>
<td>Error de Seguiment de Corrent a la Fase 1</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.25</td>
<td>Error de Seguiment de Corrent a la Fase 2</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.26</td>
<td>Subsistema de $\sin(x_j)r(t)$</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.27</td>
<td>Desenvolupament del Subsistema de $\sin(x_j)r(t)$</td>
</tr>
<tr>
<td>Pàgina</td>
<td>3.28</td>
<td>Error de Seguiment de Posició</td>
</tr>
</tbody>
</table>
5.4.6 Taula de Taules

A continuació es nombren i relacionen totes les taules del capítol 3, corresponents al control de posició del motor PMS:

<table>
<thead>
<tr>
<th>Pàg</th>
<th>Núm.</th>
<th>Fórmula i Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>3.1</td>
<td>Equacions del Subsistema del Motor Pas a Pas d’Imants Permanents PMS</td>
</tr>
<tr>
<td>79</td>
<td>3.2</td>
<td>Equacions del Subsistema de la Posició Desitjada de la Trajectòria de la Càrrega</td>
</tr>
<tr>
<td>82</td>
<td>3.3</td>
<td>Equacions del Subsistema de les Variables Auxiliars ( w_j(q,\dot{q},I_1,I_2,t) )</td>
</tr>
<tr>
<td>86</td>
<td>3.4</td>
<td>Equacions dels Subsistemes dels Corrents Desitjats en Cada Fase</td>
</tr>
<tr>
<td>91</td>
<td>3.5</td>
<td>Equacions dels Subsistemes de ( \sin(x_j)r(t) )</td>
</tr>
</tbody>
</table>
5.5 Formulari i Figures del Motor de Inducció

5.5.1 Taula de Fórmules

S’adjunta relació de totes les fórmules necessàries per al disseny del control del motor d’inducció, capítol 4:

<table>
<thead>
<tr>
<th>Pàg</th>
<th>Núm.</th>
<th>Fórmula i descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>(4.1)</td>
<td>$M\dot{q} + B\dot{q} + N\sin(q) = \psi_a I_b - \psi_b I_a$</td>
</tr>
<tr>
<td>97</td>
<td>(4.2)</td>
<td>$L_i \dot{I}_a = -R_i I_a + \alpha_1 \psi_a + \alpha_2 \psi_b \dot{q} + V_a$</td>
</tr>
<tr>
<td>97</td>
<td>(4.3)</td>
<td>$L_i \dot{I}_b = -R_i I_b + \alpha_1 \psi_b - \alpha_2 \psi_a \dot{q} + V_b$</td>
</tr>
<tr>
<td>97</td>
<td>(4.4)</td>
<td>$L_i \psi_a = -R_i \psi_a - \alpha_3 \dot{q} \psi_b + K_i I_a$</td>
</tr>
<tr>
<td>97</td>
<td>(4.5)</td>
<td>$L_i \psi_b = -R_i \psi_b + \alpha_3 \dot{q} \psi_a + K_i I_b$</td>
</tr>
<tr>
<td>97</td>
<td>(4.2)</td>
<td>$L_i = L_s - M_e^2 / L_r$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K_i = R_s M_e$</td>
</tr>
<tr>
<td>97</td>
<td>(4.3)</td>
<td>$R_i = (M_e^2 R_s + L_s^2 R_h) / L_r^2$</td>
</tr>
<tr>
<td>97</td>
<td>(4.4)</td>
<td>$\alpha_1 = M_e R_s / L_r$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha_2 = n_\mu M_e / L_r$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha_3 = n_\mu L_r$</td>
</tr>
<tr>
<td>99</td>
<td>(4.6)</td>
<td>$e = q_d - q$</td>
</tr>
<tr>
<td>99</td>
<td>(4.7)</td>
<td>$r = \dot{e} + \alpha \dot{e}$</td>
</tr>
<tr>
<td>99</td>
<td>(4.8)</td>
<td>$\dot{r} = (\ddot{q}_d + \alpha \ddot{e}) - \ddot{q}$</td>
</tr>
<tr>
<td>99</td>
<td>(4.9)</td>
<td>$Mr = M(\ddot{q}_d + \alpha \ddot{e}) + B\ddot{q} + N\sin(q) - (\psi_a I_b - \psi_b I_a)$</td>
</tr>
<tr>
<td>99</td>
<td>(4.10)</td>
<td>$Mr = W_r \theta - (\psi_a I_b - \psi_b I_a)$</td>
</tr>
<tr>
<td>100</td>
<td>(4.11)</td>
<td>$W_r = [\dddot{q}_d + \alpha \dddot{e} \dot{q} \sin(q)]$</td>
</tr>
</tbody>
</table>
\[ 100 \quad (4.12) \quad \theta_\tau = \begin{bmatrix} M & B & N \end{bmatrix}^T \]

\[ 100 \quad (4.13) \quad M\dot{r} = W_\tau \theta_\tau - \tau_d + \eta_\tau \]

\[ 100 \quad (4.14) \quad \eta_\tau = \tau_d - (\psi_a I_a + \psi_b I_b) \]

\[ 100 \quad (4.15) \quad L_5 \ddot{\eta}_\tau = L_5 \ddot{\tau}_d - L_5 (\dot{\psi}_a I_a + \dot{\psi}_b I_b) + L_5 (\dot{\psi}_b I_a + \dot{\psi}_b \dot{I}_b) \]

\[ 101 \quad (4.16) \quad \begin{aligned} L_5 \ddot{\eta}_\tau &= L_5 \ddot{\tau}_d - L_5 \ddot{I}_a \psi_a (\ddot{\psi}_a - \alpha_3 \ddot{\psi}_a) \\
&\quad + L_5 \ddot{I}_a \psi_b (\ddot{\psi}_a + \alpha_3 \ddot{\psi}_a) \\
&\quad - \psi_a (\ddot{\tau}_a - \alpha_3 \ddot{\psi}_a) + \psi_b (\ddot{\tau}_a + \alpha_3 \ddot{\psi}_a) \\
&\quad + \psi_b \dddot{V}_a - \psi_b \dddot{V}_b \end{aligned} \]

\[ 102 \quad (4.17) \quad \eta_\psi = \psi_d - \frac{1}{2} (\psi_a^2 + \psi_b^2) \]

\[ 102 \quad (4.18) \quad L_5 \ddot{\eta}_\psi = L_5 \ddot{\tau}_d - L_5 (\dot{\psi}_a \dot{\psi}_a + \dot{\psi}_b \dot{\psi}_b) \]

\[ 102 \quad (4.19) \quad L_5 \ddot{\eta}_\psi = L_5 \ddot{\psi}_d + \dddot{R}_a (\psi_a^2 + \psi_b^2) - K_1 (\psi_a \dot{I}_a + \psi_b \dot{I}_b) \]

\[ 103 \quad (4.20) \quad \overline{L_5 \ddot{\eta}_\psi} = Y_\psi \theta_\psi - (\psi_a I_a + \psi_b \dot{I}_b) \]

\[ 103 \quad (4.21) \quad Y_\psi = \begin{bmatrix} \dot{\psi}_d & \psi_a^2 + \psi_b^2 \end{bmatrix}^T \quad \theta_\psi = \begin{bmatrix} \overline{L_5} & \overline{R}_5 \end{bmatrix} \]

\[ 103 \quad (4.22) \quad \overline{L_5 \ddot{\eta}_\psi} = Y_\psi \theta_\psi - u_\tau + \eta_\tau \]

\[ 103 \quad (4.23) \quad \eta_\tau = u_\tau - (\psi_a I_a + \psi_b \dot{I}_b) \]

\[ 103 \quad (4.24) \quad L_5 \ddot{\eta}_\tau = L_5 \ddot{\tau}_d - L_5 (\dot{\psi}_a I_a + \dot{\psi}_b I_b) + L_5 (\dot{\psi}_b \dot{I}_a + \dot{\psi}_b \dot{I}_b) \]

\[ 104 \quad (4.25) \quad \begin{aligned} L_5 \ddot{\eta}_\tau &= L_5 \ddot{\tau}_d - L_5 L^{-1}_a (\dddot{\psi}_a - \alpha_3 \ddot{\psi}_a + K_1 I_a) \\
&\quad - L_5 L^{-1}_a (\dddot{\psi}_b + \alpha_3 \ddot{\psi}_a + K_1 I_b) \\
&\quad - \psi_a (\dddot{\tau}_a - \alpha_3 \ddot{\psi}_a) - \psi_b (\dddot{\tau}_a + \alpha_3 \ddot{\psi}_a) - \psi_a \dddot{V}_a - \psi_b \dddot{V}_b \end{aligned} \]

\[ 105 \quad (4.26) \quad \tau_d = W_\tau \theta_\tau + k_r \]
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>(4.27)</td>
<td>( \dot{M}r = -k_r r + \eta_r )</td>
</tr>
<tr>
<td>105</td>
<td>(4.28)</td>
<td>( \dot{\theta}_d = \dot{W}_r \theta_r + k_r \dot{r} )</td>
</tr>
<tr>
<td>106</td>
<td>(4.29)</td>
<td>( \dot{\theta}_d = M(\ddot{\theta}_d + \alpha(\dot{\theta}_d - \ddot{\theta})) + B\dot{q} + N\dot{q} \cos(q) + k_s(\ddot{q}_d - \ddot{q} + \alpha \dot{q}) )</td>
</tr>
<tr>
<td>106</td>
<td>(4.30)</td>
<td>( \ddot{q} = -\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{1}{M} (\psi_a I_b - \psi_s I_a) )</td>
</tr>
</tbody>
</table>
| 106 | (4.31) | \( \dot{r} = M(\ddot{q}_d + \alpha \dot{q}_d) + N\dot{q} \cos(q) + k_s(\ddot{q}_d + \alpha \dot{q}) \\
+ (B - M\alpha - k_s)(-\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{1}{M} (\psi_a I_b - \psi_s I_a)) \) |
| 107 | (4.32) | \( L_w \dot{\eta}_r = w_a - (\psi_a V_b - \psi_b V_a) \) |
| 107 | (4.33) | \( w_a = L_I (M(\ddot{q}_d + \alpha \dot{q}_d) + N\dot{q} \cos(q) + k_s(\ddot{q}_d + \alpha \dot{q}) \\
+ L_I(B - M\alpha - k_s)(-\frac{B}{M} \dot{q} - \frac{N}{M} \sin(q) + \frac{1}{M} (\psi_a I_b - \psi_s I_a)) \\
- L_I L_r^{-1} I_b (-R_{y_a} - \alpha_s \dot{q} \psi_b) + L_I L_r^{-1} I_a (-R_{y_b} + \alpha_s \dot{q} \psi_a) \\
- \psi_a (-R_{y_a} I_b - \alpha_s \psi_a \dot{q}) + \psi_b (-R_{y_b} I_a + \alpha_s \psi_s \dot{q}) \) |
| 108 | (4.34) | \( \psi_a V_b - \psi_b V_a = w_a + k_2 \eta_r + r \) |
| 108 | (4.35) | \( L_w \dot{\eta}_r = -k_2 \eta_r - r \) |
| 108 | (4.36) | \( u_1 = Y_\theta \theta_r + k_2 \eta_r \) |
| 108 | (4.37) | \( \bar{L_w} \dot{\eta}_r = -k_2 \eta_r + \eta_r \) |
| 108 | (4.38) | \( \dot{u}_1 = \bar{Y}_\theta \theta_r + k_2 \dot{\eta}_r \) |
| 109 | (4.39) | \( \dot{u}_1 = \bar{L_w} \dot{\psi}_d + 2\bar{R}_r (\dot{\psi}_a \psi_b + \dot{\psi}_b \psi_a) + k_2 \dot{\eta}_r \) |
| 109 | (4.40) | \( L_w \dot{u}_1 = \bar{L_w} L_r \dot{\psi}_d + 2L_I L_r^{-1} \bar{R}_r \psi_a (-R_{y_a} - \alpha_s \psi_b + K_1 I_a) \\
+ 2L_I L_r^{-1} \bar{R}_r \psi_b (-R_{y_b} + \alpha_s \psi_b + K_1 I_b) + k_2 \dot{L_r} \dot{\eta}_r \) |
<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>109 (4.41)</td>
<td>[ L_i \ddot{\psi}_i = \bar{L}_i L_i \ddot{\psi}_a + 2 L_i L_i ^{-1} \bar{R}_i \psi_a (-R_i \psi_a - \alpha_3 \dot{\psi}_a + K_i I_a) + 2 L_i L_i ^{-1} \bar{R}_i \psi_b (-R_i \psi_b + \alpha_3 \dot{\psi}<em>a + K_i I_b) + k_3 L_i \bar{L}<em>i ^{-1} (Y</em>\phi \theta</em>\phi - (\psi_a I_a + \psi_b I_b)) ]</td>
</tr>
<tr>
<td>110 (4.42)</td>
<td>[ L_i \ddot{\eta}_i = w_b - (\psi_a V_a + \psi_b V_b) ]</td>
</tr>
<tr>
<td>111 (4.43)</td>
<td>[ \begin{align*} w_b &amp;= \bar{L}_i L_i \ddot{\psi}_a + L_i ^{-1} (2 L_i \bar{R}_i \psi_a - L_i I_a) (-R_i \psi_a - \alpha_3 \dot{\psi}<em>a + K_i I_a) + k_3 L_i \bar{L}<em>i ^{-1} (Y</em>\phi \theta</em>\phi - (\psi_a I_a + \psi_b I_b)) + L_i ^{-1} (2 L_i \bar{R}_i \psi_b - L_i I_b) (-R_i \psi_b + \alpha_3 \dot{\psi}_a + K_i I_b) - \psi_a (-R_i I_a + \alpha_3 \psi_a) - \psi_b (-R_i I_b + \alpha_3 \psi_b) \end{align*} ]</td>
</tr>
<tr>
<td>111 (4.44)</td>
<td>[ \psi_a V_a + \psi_b V_b = w_b + k_3 \ddot{\eta}<em>i + \eta</em>\phi ]</td>
</tr>
<tr>
<td>111 (4.45)</td>
<td>[ L_i \ddot{\eta}_i = -k_3 \ddot{\eta}<em>i - \eta</em>\phi ]</td>
</tr>
<tr>
<td>111 (4.46)</td>
<td>[ \begin{bmatrix} V_a \ V_b \end{bmatrix} = C \begin{bmatrix} w_a + k_3 \ddot{\eta}_i + r \ w_b + k_3 \ddot{\eta}<em>i + \eta</em>\phi \end{bmatrix} ]</td>
</tr>
<tr>
<td>111 (4.47)</td>
<td>[ C = \begin{bmatrix} -\psi_b &amp; \psi_a \ \psi_a &amp; \psi_b \end{bmatrix} \in \mathbb{R}^{2 \times 2} ]</td>
</tr>
<tr>
<td>111 (4.48)</td>
<td>[ \det(C) = -(\psi_a^2 + \psi_b^2) ]</td>
</tr>
<tr>
<td>113 (4.49)</td>
<td>[ M = \frac{J}{\alpha_2} + \frac{m l_0^2}{3 \alpha_2} ]</td>
</tr>
<tr>
<td>113 (4.49)</td>
<td>[ B = \frac{B_0}{\alpha_2} ]</td>
</tr>
<tr>
<td>113 (4.49)</td>
<td>[ N = \frac{m G l_0}{2 \alpha_2} ]</td>
</tr>
<tr>
<td>114 (4.50)</td>
<td>[ q_\alpha = \frac{\pi}{2} \sin(5t)(1 - e^{-0.1t}) \text{ rad} ]</td>
</tr>
<tr>
<td>114 (4.51)</td>
<td>[ \psi_d = 2(1 - e^{-\gamma t}) + 1 \text{ Wb} \cdot \text{Wb} ]</td>
</tr>
</tbody>
</table>
### 5.5.2 Taula de Funcions Variables

Seguidament es relacionen i descriuen breument totes les funcions variables implicades en el disseny del control de posició del motor d’inducció, capítol 4:

<table>
<thead>
<tr>
<th>$F.\text{Var.}$</th>
<th>Descripció</th>
<th>Núm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q(t)$</td>
<td>Posició de la càrrega</td>
<td>(4.6)</td>
</tr>
<tr>
<td>$\dot{q}(t)$</td>
<td>Velocitat de la càrrega</td>
<td>(4.1)</td>
</tr>
<tr>
<td>$\ddot{q}(t)$</td>
<td>Acceleració de la càrrega</td>
<td>(4.1)</td>
</tr>
<tr>
<td>$I_a(t)$</td>
<td>Corrent transformat a l’estator</td>
<td>(4.1)</td>
</tr>
<tr>
<td>$I_b(t)$</td>
<td>Corrent transformat a l’estator</td>
<td>(4.1)</td>
</tr>
<tr>
<td>$\psi_a(t)$</td>
<td>Flux transformat a l’estator</td>
<td>(4.1)</td>
</tr>
<tr>
<td>$\psi_b(t)$</td>
<td>Flux transformat a l’estator</td>
<td>(4.1)</td>
</tr>
<tr>
<td>$V_a(t)$</td>
<td>Voltatge transformat a l’entrada de l’estator</td>
<td>(4.2)</td>
</tr>
<tr>
<td>$V_b(t)$</td>
<td>Voltatge transformat a l’entrada de l’estator</td>
<td>(4.2)</td>
</tr>
<tr>
<td>$e(t)$</td>
<td>Error de seguiment de posició de la càrrega</td>
<td>(4.6)</td>
</tr>
<tr>
<td>$r(t)$</td>
<td>Filtre de l’error de seguiment de posició</td>
<td>(4.7)</td>
</tr>
<tr>
<td>$\eta_q(t)$</td>
<td>Error de seguiment de parell</td>
<td>(4.14)</td>
</tr>
<tr>
<td>$\eta_{\psi}(t)$</td>
<td>Error de seguiment de flux</td>
<td>(4.17)</td>
</tr>
<tr>
<td>$\eta_{\psi}(t)$</td>
<td>Auxiliar de seguiment de flux</td>
<td>(4.22)</td>
</tr>
<tr>
<td>$w_a(t)$</td>
<td>Variable auxiliar escalar, $w_a(q,\dot{q},I_a,I_b,\psi_a,\psi_b,t)$</td>
<td>(4.33)</td>
</tr>
<tr>
<td>$w_b(t)$</td>
<td>Variable auxiliar escalar, $w_b(\dot{q},I_a,I_b,\psi_a,\psi_b,t)$</td>
<td>(4.43)</td>
</tr>
<tr>
<td>$\tau_d(t)$</td>
<td>Senyal de parell desitjat</td>
<td>(4.13)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>$u_r(t)$</td>
<td>Controlador de flux</td>
<td>(4.43)</td>
</tr>
</tbody>
</table>

5.5.3 **Taula de Funcions Constants**

A continuació es nombren i relacionen totes les funcions constants emprades en el controlador del motor d’inducció, al capítol 4:

<table>
<thead>
<tr>
<th>F.Cons.</th>
<th>Descripció</th>
<th>Núm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_d(t)$</td>
<td>Posició de la càrrega desitjada</td>
<td>(4.50)</td>
</tr>
<tr>
<td>$\psi_d(t)$</td>
<td>Senyal de flux desitjat</td>
<td>(4.51)</td>
</tr>
</tbody>
</table>
5.5.4  Taula de Constants

Relació de totes les constants que intervenen en el disseny del control de posició del motor d’inducció, capítol 4, comentant el seu significat:

<table>
<thead>
<tr>
<th>Const.</th>
<th>Descripció</th>
<th>Núm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M$</td>
<td>Constant positiva relacionada amb la inèrcia mecànica del sistema</td>
<td>(4.1)</td>
</tr>
<tr>
<td>$B$</td>
<td>Coeficient positiu de fricció viscosa</td>
<td>(4.1)</td>
</tr>
<tr>
<td>$N$</td>
<td>Constant positiva relacionada amb la massa de la càrrega i el coeficient de la gravetat</td>
<td>(4.1)</td>
</tr>
<tr>
<td>$L_I$</td>
<td>Constant positiva del subsistema elèctic</td>
<td>(4.2)</td>
</tr>
<tr>
<td>$R_I$</td>
<td>Constant positiva del subsistema elèctic</td>
<td>(4.2)</td>
</tr>
<tr>
<td>$\alpha_1$</td>
<td>Constant positiva del subsistema elèctic</td>
<td>(4.2)</td>
</tr>
<tr>
<td>$\alpha_2$</td>
<td>Constant positiva del subsistema elèctic, coeficient de parell constant</td>
<td>(4.2)</td>
</tr>
<tr>
<td>$K_I$</td>
<td>Constant positiva del subsistema elèctic</td>
<td>(4.4)</td>
</tr>
<tr>
<td>$L_r$</td>
<td>Constant positiva, inductància del rotor</td>
<td>(4.4)</td>
</tr>
<tr>
<td>$R_r$</td>
<td>Constant positiva, resistència del rotor</td>
<td>(4.4)</td>
</tr>
<tr>
<td>$\alpha_3$</td>
<td>Constants positives del subsistema elèctic</td>
<td>(4.4)</td>
</tr>
<tr>
<td>$n_p$</td>
<td>Constant positiva, nombre de parells de pols</td>
<td>(4.2)</td>
</tr>
<tr>
<td>$L_s$</td>
<td>Constant positiva, inductància de l’estator</td>
<td>(4.2)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Reference</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>$M_e$</td>
<td>Constant positiva, inductância mútua</td>
<td>(4.2)</td>
</tr>
<tr>
<td>$m$</td>
<td>Càrrega puntual</td>
<td>(4.49)</td>
</tr>
<tr>
<td>$J$</td>
<td>Inèrcia del rotor</td>
<td>(4.49)</td>
</tr>
<tr>
<td>$L_0$</td>
<td>Longitud del braç</td>
<td>(4.49)</td>
</tr>
<tr>
<td>$B_0$</td>
<td>Coeficient de fricció viscosa mutu</td>
<td>(4.49)</td>
</tr>
<tr>
<td>$G$</td>
<td>Coeficient de la gravetat</td>
<td>(4.49)</td>
</tr>
<tr>
<td>$k_s$</td>
<td>Constant positiva de control de guany</td>
<td>(4.26)</td>
</tr>
<tr>
<td>$k_1$</td>
<td>Constant positiva de control de guany</td>
<td>(4.34)</td>
</tr>
<tr>
<td>$k_2$</td>
<td>Constant positiva de control de guany</td>
<td>(4.36)</td>
</tr>
<tr>
<td>$k_3$</td>
<td>Constant positiva de control de guany</td>
<td>(4.44)</td>
</tr>
</tbody>
</table>
5.5.5 Taula de Figures

A continuació es nombren i relacionen totes les figures del capítol 4, corresponents al disseny del control de posició del motor d’inducció:

<table>
<thead>
<tr>
<th>Pàg</th>
<th>Núm.</th>
<th>Fórmula i Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>4.1</td>
<td>Diagrama Esquemàtic del Sistema Motor / Càrrega de Inducció</td>
</tr>
<tr>
<td>121</td>
<td>4.1_bis</td>
<td>Esquemàtic del Sistema Motor / Càrrega de Inducció</td>
</tr>
<tr>
<td>115</td>
<td>4.2</td>
<td>Editor del Matlab, Arxiu: constants_mi.m</td>
</tr>
<tr>
<td>116</td>
<td>4.3</td>
<td>Editor del Matlab, Arxiu: fig_mi.m</td>
</tr>
<tr>
<td>117</td>
<td>4.4</td>
<td>Controlador de Seguiment de Posició en Llaç Tancat del Motor de Inducció</td>
</tr>
<tr>
<td>119</td>
<td>4.4_bis</td>
<td>Controlador de Seguiment de Posició en Llaç Tancat del Motor de Inducció</td>
</tr>
<tr>
<td>120</td>
<td>4.5</td>
<td>Subsistema d’Equacions del Motor de Inducció</td>
</tr>
<tr>
<td>122</td>
<td>4.6</td>
<td>Desenvolupament del Subsistema d’Equacions del Motor de Inducció</td>
</tr>
<tr>
<td>123</td>
<td>4.7</td>
<td>Voltatge Transformat d’Entrada (v_a(t)) a l’Estator del Motor de Inducció</td>
</tr>
<tr>
<td>123</td>
<td>4.8</td>
<td>Voltatge Transformat d’Entrada (v_b(t)) a l’Estator del Motor de Inducció</td>
</tr>
<tr>
<td>124</td>
<td>4.9</td>
<td>Posició de la Càrrega Acoblada</td>
</tr>
<tr>
<td>124</td>
<td>4.10</td>
<td>Velocitat de la Càrrega Acoblada</td>
</tr>
<tr>
<td>125</td>
<td>4.11</td>
<td>Corrent Transformat (I_a(t)) a l’Estator del Motor de Inducció</td>
</tr>
<tr>
<td>125</td>
<td>4.12</td>
<td>Corrent Transformat (I_b(t)) a l’Estator del Motor de Inducció</td>
</tr>
<tr>
<td>126</td>
<td>4.13</td>
<td>Flux Transformat (\psi_a(t)) al Rotor del Motor de Inducció</td>
</tr>
</tbody>
</table>
Flux Transformat $\psi_b(t)$ al Rotor del Motor de Inducció

Subsistema de la Posició Desitjada de la Trajectòria de la Càrrega

Posició Desitjada de la Càrrega Acoblada

Velocitat Desitjada de la Càrrega

Subsistema de Càlcul de $w_a + k_i n_r + r$

Desenvolupament del Subsistema de Càlcul de $w_a + k_i n_r + r$

Subsistema del Filtre de l’Error de Seguiment de Posició $r(t)$

Filtre de l’Error Seguiment de Posició $r(t)$

Subsistema de Càlcul de $w_a(q, \dot{q}, I_a, I_b, \psi_a, \psi_b, t)$

Desenvolupament del Subsistema de Càlcul de $w_a(q, \dot{q}, I_a, I_b, \psi_a, \psi_b, t)$

Subsistema de Càlcul de l’Error de Seguiment de Parell

Desenvolupament del Subsistema de Càlcul de l’Error de Seguiment de Parell

Error de Seguiment de Parell $n_r(t)$

Subsistema de Càlcul de $W_c \cdot \theta_c$

Subsistema de la Magnitud de Flux Desitjat

Trajectòria de Flux Desitjat

Subsistema de Càlcul de $w_h + k_i n_r + \eta_r$

Desenvolupament del Subsistema de Càlcul de $w_h + k_i n_r + \eta_r$

Subsistema de Càlcul de l’Error de Seguiment de Flux
146	4.33	Error de Seguiment de Flux $\eta_\psi(t)$
147	4.34	Subsistema de la Variable Auxiliar $w_b(\dot{q}, I_a, I_b, \psi_a, \psi_b, t)$
148	4.35	Desenvolupament del Subsistema de la Variable Auxiliar $w_b(\dot{q}, I_a, I_b, \psi_a, \psi_b, t)$
149	4.36	Subsistema de Càlcul de $Y_\psi \cdot \Theta_\psi$
150	4.37	Subsistema de Càlcul de $\eta_i(t)$
151	4.38	Desenvolupament del Subsistema de Càlcul de $\eta_i(t)$
152	4.39	Variable Auxiliar de Seguiment de Flux $\eta_i(t)$
153	4.40	Subsistema de la Tensió Transformada d’Entrada al Motor, $V_a(t)$
154	4.41	Subsistema de Càlcul del Determinant de la Matriu C
155	4.42	Subsistema de la Tensió Transformada d’Entrada al Motor, $V_b(t)$
156	4.43	Gràfic de la Posició Desitjada i la Posició Simulada
157	4.44	Error de Seguiment de Posició
157	4.45	Detall de l’Error de Seguiment de Posició
158	4.46	Error de Seguiment de Flux $\eta_\psi(t)$
5.5.6 **Taula de Taules**

A continuació es nombren i relacionen totes les taules del capítol 4, del disseny del control del motor de inducció:

<table>
<thead>
<tr>
<th>Pàg</th>
<th>Núm.</th>
<th>Fórmula i Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>4.1</td>
<td>Equacions del Subsistema del Motor de Inducció</td>
</tr>
<tr>
<td>127</td>
<td>4.2</td>
<td>Equacions del Subsistema de la Posició Desitjada de la Trajectòria de la Càrrega</td>
</tr>
<tr>
<td>130</td>
<td>4.3</td>
<td>Equacions del Subsistema de Càlcul de $w_\eta + k_\eta \eta_r + r$</td>
</tr>
<tr>
<td>132</td>
<td>4.4</td>
<td>Equacions del Subsistema del Filtre de l’Error de Seguiment de Posició $r(t)$</td>
</tr>
<tr>
<td>134</td>
<td>4.5</td>
<td>Equacions del Subsistema de Càlcul de $w_\psi (q, \dot{q}, I_a, I_b, \psi_a, \psi_b, t)$</td>
</tr>
<tr>
<td>136</td>
<td>4.6</td>
<td>Equacions del Subsistema de Càlcul de l’Error de Seguiment de Parell</td>
</tr>
<tr>
<td>139</td>
<td>4.7</td>
<td>Equacions del Subsistema de Càlcul de $W_r \cdot \theta_r$</td>
</tr>
<tr>
<td>140</td>
<td>4.8</td>
<td>Equacions del Subsistema de la Magnitud de Flux Desitjat</td>
</tr>
<tr>
<td>143</td>
<td>4.9</td>
<td>Equacions del Subsistema de Càlcul de $w_b + k_\psi \eta_i + \eta_\psi$</td>
</tr>
<tr>
<td>145</td>
<td>4.10</td>
<td>Equacions del Subsistema de Càlcul de l’Error de Seguiment de Flux</td>
</tr>
<tr>
<td>147</td>
<td>4.11</td>
<td>Equacions del Subsistema de la Variable Auxiliar $w_b (\dot{q}, I_a, I_b, \psi_a, \psi_b, t)$</td>
</tr>
<tr>
<td>149</td>
<td>4.12</td>
<td>Equacions del Subsistema de Càlcul de $Y_\psi \cdot \theta_\psi$</td>
</tr>
<tr>
<td>150</td>
<td>4.13</td>
<td>Equacions del Subsistema de Càlcul de $\eta_i(t)$</td>
</tr>
<tr>
<td>153</td>
<td>4.14</td>
<td>Equacions del Subsistema de la Tensió Transformada d’Entrada, $V_a(t)$</td>
</tr>
<tr>
<td>154</td>
<td>4.15</td>
<td>Equacions del Subsistema de Càlcul del Determinant de la Matriu C</td>
</tr>
<tr>
<td>155</td>
<td>4.16</td>
<td>Equacions del Subsistema de la Tensió Transformada d’Entrada al Motor, $V_b(t)$</td>
</tr>
</tbody>
</table>
5.6 Bibliografía


Hi-Dong Chai, “Elecromechanical Motion Devices”, Pretice Hall PTR, 1998.


Dr R. Sepulchre, Dr M. Jankovic´, Professor P.V. Kokotovic´, “Constructive Nonlinear Control”, IEEE, 1997.